mit

Light emitting device, electronic appliance, and method for manufacturing light emitting device

To provide a light emitting device that has a structure in which a light emitting element is sandwiched by two substrates to prevent moisture from penetrating into the light emitting element, and a method for manufacturing thereof. In addition, a gap between the two substrates can be controlled precisely. In the light emitting device according to the present invention, an airtight space surrounded by a sealing material with a closed pattern is kept under reduced pressure by attaching the pair of substrates under reduced pressure. A columnar or wall-shaped structure is formed between light emitting regions inside of the sealing material, in a region overlapping with the sealing material, or in a region outside of the sealing material so that the gap between the pair of substrates can be maintained precisely.




mit

Organic light emitting diode device and manufacturing method thereof

An organic light emitting diode device can have an enhanced thin film encapsulation layer for preventing moisture from permeating from the outside. The thin film encapsulation layer can have a multilayered structure in which one or more inorganic layers and one or more organic layers are alternately laminated. A barrier can be formed outside of a portion of the substrate on which the organic light emitting diode is formed. The organic layers of the thin film encapsulation layer can be formed inside an area defined by the barrier.




mit

Manufacturing method of light emitting devices

A manufacturing method of light emitting devices, comprises a substrate-forming step of forming a planar-shaped substrate, a frame-forming step of forming a closed frame on the substrate, an element-mounting step of mounting multiple light emitting elements in an inside of the frame, a sealing step of injecting a liquid material that is to be a sealing member to the inside of the frame so as to seal the multiple light emitting elements, and a dividing step of dividing the multiple light emitting elements together with the substrate and the sealing member so as to obtain multiple light emitting devices with the sealing member exposed from a side surface thereof.




mit

Thin film semiconductor device and organic light-emitting display apparatus

An apparatus and a method of manufacturing a thin film semiconductor device having a thin film transistor with improved electrical properties in organic light-emitting display apparatus are described.




mit

Light-emitting element, light-emitting device, and electronic device

It is an object of the present invention to provide a light-emitting element with high light emission efficiency and with a long lifetime. A light-emitting device comprises a first electrode, a second electrode, a light-emitting layer, a first layer, and a second layer, wherein the first layer is provided between the light-emitting layer and the first electrode, the second layer is provided between the light-emitting layer and the second electrode, the first layer is a layer for controlling the hole transport, the second layer is a layer for controlling the electron transport, and light emission from the light-emitting layer is obtained when voltage is applied to the first electrode and the second electrode so that potential of the first electrode is higher than potential of the second electrode.




mit

Method and apparatus of transmitting training signal in wireless local area network system

A method of transmitting a training signal in a Wireless Local Area Network (WLAN) system includes generating one or more first training signals for a first destination station and one or more second training signals for a second destination station by applying a mapping matrix P to a training signal generation sequence, mapping the first training signals and the second training signals to a plurality of antennas according to an antenna mapping matrix, and performing Inverse Fast Fourier Transform (IFFT) on each of the first training signals and the second training signals mapped to the plurality of antennas and transmitting the training signals through the plurality of antennas.




mit

Method and device for retransmitting data under antenna gain imbalance

The disclosure provides a method and device for retransmitting data under antenna gain imbalance, and the method includes: determining that gains of multiple antennas at a transmission terminal are imbalanced; using a better spatial sub-channel in the multiple antennas to retransmit data when streams transmitted by the multiple antennas adopt a same Modulation and Coding Scheme; and using a better spatial sub-channel in the multiple antennas to retransmit data and/or using a single-stream approach to retransmit data when the streams transmitted by the multiple antennas adopt different Modulation and Coding Schemes. The disclosure selects a corresponding retransmission approach according to the condition of a spatial sub-channel on which streams have an error, thus improving and ensuring success rate for retransmitting a stream.




mit

Method and apparatus for mitigating signal interference in a feedback system

A system that incorporates the subject disclosure may include, for example, a process that includes adjusting a filter in electrical communication between an input terminal and a demodulator. The filter is applied to an information bearing signal, e.g., to mitigate interference, received at the input terminal, resulting in a filtered signal. An error signal is received, indicative of errors detected within information obtained by demodulation of a modulated carrier of the filtered signal. A modified filter state is determined in response to the error signal and the filter is adjusted according to the modified filter state, e.g., to improve mitigation of the interference. Other embodiments are disclosed.




mit

Characteristic response extraction for non-linear transmit channels

Techniques for extracting the characteristic response of a non-linear channel are presented. In various implementations of the invention, a channel's characteristic response may be determined by identifying a first input sequence, determining the ones compliment of the first input sequence and then determining the response of the channel to these two input sequences. Subsequently, two input matrices and two response matrices may be generated based upon the two input sequences and their corresponding responses. Given these four matrices, a symmetrical response component may be determined by iteratively solving a system of equations formed from the columns of each matrix. Subsequently, given the symmetric component and these four matrices, an asymmetrical response component may be determined by again iteratively solving the system of equations for the columns of each matrix.




mit

Transmission method, transmitter apparatus, reception method and receiver apparatus

Transmission quality is improved in an environment in which direct waves dominate in a transmission method for transmitting a plurality of modulated signals from a plurality of antennas at the same time. All data symbols used in data transmission of a modulated signal are precoded by hopping between precoding matrices so that the precoding matrix used to precode each data symbol and the precoding matrices used to precode data symbols that are adjacent to the data symbol in the frequency domain and the time domain all differ. A modulated signal with such data symbols arranged therein is transmitted.




mit

Transport stream generating device, transmitting device, receiving device, and a digital broadcast system having the same, and method thereof

A transport stream (TS) generating apparatus, a transmitting apparatus, a receiving apparatus, a digital broadcast system having the above, and a method thereof are provided. The digital broadcast system includes a transport stream (TS) generating apparatus which generates a multi transport stream (TS) by multiplexing a normal stream and a turbo stream having a variable coding rate, a transmitting apparatus which re-constructs the multi TS by processing the turbo stream, and transmits the re-constructed multi TS, and a receiving apparatus which receives the re-constructed multi TS, and decodes the normal stream and the turbo stream respectively, to recover normal data and turbo data. Accordingly, a multi TS, which includes normal stream and a turbo stream of various coding rates, can be transmitted and received efficiently.




mit

Light-emitting device and driving method thereof

Charge corresponding to a potential difference between electrodes of an electroluminescence element is accumulated in a period in which the electroluminescence element emits light; the potential difference is detected without decrease in the luminance at the time of light emission of the electroluminescence element; and a reference potential of one electrode of the electroluminescence element is changed based on the detected potential difference, so that reduction in luminance of the electroluminescence element due to deterioration of the electroluminescence element is compensated.




mit

Organic light emitting display device

An organic light emitting display device includes: a scan driver; a data driver; a display unit including pixels located at crossing regions of scan lines and data lines; first power lines coupled between a first power supply and the pixels; at least one second power line located outside the display unit and coupled to a second power supply having a voltage different from a voltage of the first power supply; at least one third power line coupled to a third power supply having a voltage different from the voltage of the first power supply; and fourth power lines coupled to the pixels, wherein the pixels are charged with voltages corresponding to the data signals and the third power supply and are configured to control the amount of current flowing from the first power supply in response to the voltages charges in the pixels.




mit

Filter, receiver, transmitter and transceiver

Embodiments of the present invention provide a filter, a receiver, a transmitter, and a transceiver. The filter includes a resonant cavity component, a microstrip filtering component, and two connecting pieces, where the resonant cavity component includes at least two resonant cavities connected in parallel, each resonant cavity is provided with a resonator and a tuning screw, the microstrip filtering component includes a dielectric substrate and a microstrip positioned on the dielectric substrate, one of the connecting pieces matches and connects one end of the microstrip to the resonator on one resonant cavity, the other connecting piece matches and connects the other end of the microstrip to the resonator on another resonant cavity, and impedance of the resonant cavity component is less than impedance of the microstrip filtering component.




mit

Weaving machine having movable shed opening limiter device

A weaving machine for producing a woven fabric has a shedding device to form a loom shed of warp material, a weft insertion device for inserting a preferably tape-shaped or band-shaped weft material into the loom shed, a drawing-off device for drawing off the finished fabric in a drawing-off direction, fabric movement device for moving the fabric back and forth in the warp direction to bring the last inserted weft material into contact with the binding point or fabric edge. A shed limiter device limits the opening of the loom shed from above and below the warp, and is movable back and forth in the warp direction. The shed limiter device only loosely bounds the fabric and essentially without actively clamping or pinching or contacting the fabric and/or the last inserted weft material, at least while moving in the direction opposite the drawing-off direction.




mit

Direct feeding apparatus for impedance matching of wireless power transmission device, and transmitter and receiver using the same

A direct feeding apparatus for impedance matching of a wireless power transmission device includes a helical type resonator, and a feeding unit configured to directly feed power to a region having a relatively small current value as compared to a center of a conductive line of the resonator.




mit

Overvoltage limiter in an aircraft electrical power generation system

A generator includes a permanent magnet generator, an exciter and a main generator mounted for rotation on a shaft. The main generator is configured to produce a voltage output. A generator control unit includes a circuit configured to provide current from the permanent magnet generator to the exciter. A switch is provided in the circuit and is configured to change between open and closed conditions. The switch is configured to flow current in the circuit in the closed condition and interrupt current flow in the open condition. An overvoltage limit controller is programmed to determine an amount of overvoltage of the output voltage exceeding a desired voltage. Either a fixed reference threshold is used or a reference threshold voltage is calculated based upon the duration in over voltage condition, and the switch is modulated between the open and closed conditions according to error between the actual output voltage and the reference threshold voltage to limit the output voltage to the desired reference threshold voltage.




mit

Device and method for inductively transmitting electric energy to displaceable consumers

The invention relates to a device for inductively transmitting electrical energy to displaceable consumers (F1-F13) that can be moved along a track, having a primary conductor arrangement (2) divided into route segments (3-7) that are electrically separated from each other, and extending along the track, wherein individual route segments (3-7) are each associated with at least one current source (3'-7') for imprinting a continuous current into each of the route segments (3-7), and to a corresponding method. The aim of the invention is to supply the displaceable consumers in an energy-saving manner with electric energy matched to demand, and to allow short reaction times when operating the device. This aim is achieved by providing the device with a means (11) for determining the total power of the displaceable consumers (F1-F13) present in each of the individual route segments (3-7) and with a means (11) for actuating the current sources (3'-7') for applying the electrical continuous current corresponding to the total power required for each route segment (3-7), or by determining, according to the method, the required total power of the displaceable consumers (F1-F13) present in each route segment and applying an electrical continuous current to each route segment (3-7) by means of the associated current source (3'-7'), said current corresponding to the total power required therein.




mit

Spring whip defensive mechanism having means to permit disassembly thereof

A knock down spring whip assembly including a hollow housing which serves as a handgrip, and also stores a spring subassembly formed of lengths of helically wound springs of sequentially increasingly larger diameter size to move between a telescoped position within the housing and an extended whipping position projecting from one end of the housing with the springs wedgingly engaging each other in an end to end arrangement. A removable closure unit is provided for plugging the other end of the housing to define a storage compartment. The closure unit includes an integral magnet for retaining the spring subassembly in the telescoped position, where the closure unit can be replaced with other types of closure units. The housing includes a tapered end and an annular constriction for providing both a wedging engagement of the projecting springs as well as a positive locking action. Weighted ball bearings can be included within one of the springs for spiral rotation therethrough to provide an additional striking force. The striking spring can be replaced by a solid rod for an increased striking force. Preferably, the tip portion at the striking end is also removable to permit the spring whip assembly to be disassembled into its component parts.




mit

Spring whip defensive mechanism having means to permit disassembly thereof

A knock down spring whip assembly including a hollow housing which serves as a handgrip, and also stores a spring subassembly formed of lengths of helically wound springs of sequentially increasingly larger diameter size to move between a telescoped position within the housing and an extended whipping position projecting from one end of the housing with the springs wedgingly engaging each other in an end to end arrangement. A removable closure unit is provided for plugging the other end of the housing to define a storage compartment. The closure unit includes an integral magnet for retaining the spring subassembly in the telescoped position, where the closure unit can be replaced with other types of closure units. The housing includes a tapered end and an annular constriction for providing both a wedging engagement of the projecting springs as well as a positive locking action. Weighted ball bearings can be included within one of the springs for spiral rotation therethrough to provide an additional striking force. The striking spring can be replaced by a solid rod for an increased striking force. Preferably, the tip portion at the striking end is also removable to permit the spring whip assembly to be disassembled into its component parts.




mit

Group III nitride based quantum well light emitting device structures with an indium containing capping structure

Group III nitride based light emitting devices and methods of fabricating Group III nitride based light emitting devices are provided. The emitting devices include an n-type Group III nitride layer, a Group III nitride based active region on the n-type Group III nitride layer and comprising at least one quantum well structure, a Group III nitride layer including indium on the active region, a p-type Group III nitride layer including aluminum on the Group III nitride layer including indium, a first contact on the n-type Group III nitride layer and a second contact on the p-type Group III nitride layer. The Group III nitride layer including indium may also include aluminum.




mit

Light emitting device package

A light emitting device package is provided comprising a light emitting device including at least one light emitting diode and a body including a first lead frame on which the light emitting device is mounted and a second lead frame spaced apart from the first lead frame, wherein at least one of the first and second lead frames is extending to a bending region in a first direction by a predetermined length on the basis of an outer surface of the body and is bent in a second direction intersecting the first direction.




mit

Organic light emitting display device and method for fabricating the same

An organic light emitting display device includes a light shield layer formed on a substrate and a buffer layer formed on an entire surface of the substrate, an oxide semiconductor layer and first electrode formed on the buffer layer, a gate insulation film and gate electrode formed on the oxide semiconductor layer while being deposited to expose both edges of the oxide semiconductor layer, an interlayer insulation film formed to expose both the exposed edges of the oxide semiconductor layer and the first electrode, source and drain electrodes connected with one edge and the other edge of the oxide semiconductor layer, respectively, and a protective film formed to cover the source and drain electrodes while exposing a region of the first electrode so as to define a luminescent region and a non-luminescent region.




mit

Semiconductor light-emitting device

A semiconductor light-emitting device includes a lamination of semiconductor layers including a first layer of a first conductivity type, an active layer, and a second layer of a second conductivity type; a transparent conductive film formed on a principal surface of the lamination and having an opening; a pad electrode formed on part the opening; and a wiring electrode connected with the pad electrode, formed on another part of the opening while partially overlapping the transparent conductive film; wherein contact resistance between the transparent conductive film and the lamination is larger than contact resistance between the wiring electrode and the lamination. Field concentration at the wiring electrode upon application of high voltage is mitigated by the overlapping transparent conductive film.




mit

Substrate for mounting light-emitting element and light-emitting device

There is provided a substrate for light-emitting element, including a mounting surface on which a light-emitting element is to be mounted, the mounting surface being one of two opposed main surfaces of the substrate. The substrate of the present invention is provided with a protection element for the light-emitting element, the protection element comprising a voltage-dependent resistive layer embedded in a body of the substrate, and comprising a first electrode and a second electrode each of which is in connection with the voltage-dependent resistive layer wherein the light-emitting element is to be mounted such that it is positioned in an overlapping relation with the voltage-dependent resistive layer.




mit

Semiconductor light emitting device

According to one embodiment, a semiconductor light emitting device includes a stacked structure body, a first electrode, a second electrode, and a dielectric body part. The stacked structure body includes a first semiconductor layer, having a first portion and a second portion juxtaposed with the first portion, a light emitting layer provided on the second portion, a second semiconductor layer provided on the light emitting layer. The first electrode includes a contact part provided on the first portion and contacting the first layer. The second electrode includes a first part provided on the second semiconductor layer and contacting the second layer, and a second part electrically connected with the first part and including a portion overlapping with the contact part when viewed from the first layer toward the second layer. The dielectric body part is provided between the contact part and the second part.




mit

Light emitting device and lighting system with the same

A light emitting device including a light emitting structure having a first conduction type semiconductor layer, an active layer, and a second conduction type semiconductor layer, a transparent conductive layer disposed on the light emitting structure, a metal filter having an irregular pattern disposed between the light emitting structure and the transparent conductive layer, and openings disposed between the irregular patterns in the metal filter.




mit

Defect mitigation structures for semiconductor devices

A method and a semiconductor device for incorporating defect mitigation structures are provided. The semiconductor device comprises a substrate, a defect mitigation structure comprising a combination of layers of doped or undoped group IV alloys and metal or non-metal nitrides disposed over the substrate, and a device active layer disposed over the defect mitigation structure. The defect mitigation structure is fabricated by depositing one or more defect mitigation layers comprising a substrate nucleation layer disposed over the substrate, a substrate intermediate layer disposed over the substrate nucleation layer, a substrate top layer disposed over the substrate intermediate layer, a device nucleation layer disposed over the substrate top layer, a device intermediate layer disposed over the device nucleation layer, and a device top layer disposed over the device intermediate layer. The substrate intermediate layer and the device intermediate layer comprise a distribution in their compositions along a thickness coordinate.




mit

Display device having light emitting elements with red color filters

A display device comprising TFT elements having satisfactory characteristics and being easy to assemble. In the display device, a pixel emitting red light comprises a red color filter. The red color filter forms a light shielding film for the TFT elements in a driver circuit portion or in a pixel portion.




mit

Semiconductor light emitting device

According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a light emitting unit, a second semiconductor layer, a reflecting electrode, an oxide layer and a nitrogen-containing layer. The first semiconductor layer is of a first conductivity type. The light emitting unit is provided on the first semiconductor layer. The second semiconductor layer is provided on the light emitting unit and is of a second conductivity type. The reflecting electrode is provided on the second semiconductor layer and includes Ag. The oxide layer is provided on the reflecting electrode. The oxide layer is insulative and has a first opening. The nitrogen-containing layer is provided on the oxide layer. The nitrogen-containing layer is insulative and has a second opening communicating with the first opening.




mit

Light-emitting element, light-emitting device, and electronic device

A light-emitting element includes a first electrode, a first light-emitting layer formed over the first electrode, a second light-emitting layer formed on and in contact with the first light-emitting layer to be in contact therewith, and a second electrode formed over the second light-emitting layer. The first light-emitting layer includes a first light-emitting substance and a hole-transporting organic compound, and the second light-emitting layer includes a second light-emitting substance and an electron-transporting organic compound. Substances are selected such that a difference in LUMO levels between the first light-emitting substance, the second light-emitting substance, and the electron-transporting organic compound is 0.2 eV or less, a difference in HOMO levels between the hole-transporting organic compound, the first light-emitting substance, and the second light-emitting substance is 0.2 eV or less, and a difference in LUMO levels between the hole-transporting organic compound and the first light-emitting substance is greater than 0.3 eV.




mit

Light emitting device having an organic light emitting diode that emits white light

The present invention has an object of providing a light-emitting device including an OLED formed on a plastic substrate, which prevents degradation due to penetration of moisture or oxygen. On a plastic substrate, a plurality of films for preventing oxygen or moisture from penetrating into an organic light-emitting layer in the OLED (“barrier films”) and a film having a smaller stress than the barrier films (“stress relaxing film”), the film being interposed between the barrier films, are provided. Owing to a laminate structure, if a crack occurs in one of the barrier films, the other barrier film(s) can prevent moisture or oxygen from penetrating into the organic light emitting layer. The stress relaxing film, which has a smaller stress than the barrier films, is interposed between the barrier films, making it possible to reduce stress of the entire sealing film. Therefore, a crack due to stress hardly occurs.




mit

Vehicle collision damage mitigation system

A vehicle collision damage mitigation system includes: a vehicle having a crashable zone on a front side of a dash panel in a vehicle longitudinal direction; a body airbag device that inflates a body airbag that is provided on a front surface of the dash panel by a pressure of gas generated by a gas generating device; a detector that detects whether a mode of a frontal collision of the vehicle is a full-overlap collision or another collision; and a control unit that operates the gas generating device when detecting a collision other than the full-overlap collision on the basis of a detection result of the detector and that does not operate the gas generating device when detecting the full-overlap collision.




mit

Progressive load limiter

A retractor includes a spool configured to selectively wind and unwind the webbing, a lock base configured to operate in a free position and a locked position, a first energy absorbing member coupled to the spool and the lock base, and a second energy absorbing member coupled to the spool and the lock base. When the lock base is in the free position, the spool and lock base freely rotate together when a force is applied on the spool through the webbing. When the lock base is in the locked position and a force is applied on the spool through the webbing, rotation of the spool is permitted while rotation of the lock base is prevented, such that the first energy absorbing member absorbs a first energy and the second energy absorbing member is configured to absorb a second energy after a predetermined rotation of the spool.




mit

Identifying the presence of an individual near medical radiation emitting equipment

Systems and methods are disclosed herein to a radiation safety system comprising radiation emitting medical equipment; a radiation safety system controller connected to the radiation emitting medical equipment through a first communication means configured to determine a number of people within a radiation room housing the radiation emitting medical equipment and prevent the radiation emitting medical equipment from performing radiation emitting functions if the radiation safety system controller determines that more people than a maximum allowed number of people are presently in the radiation room; and a scanner connected to the radiation safety controller through a second communication means configured to detect people in the radiation room and communicate to the radiation safety system controller that a person has been detected.




mit

Light collecting and emitting apparatus, method, and applications

A light guide apparatus includes a light guide layer having a top surface and a bottom surface, and a transversely oriented side-end surface that forms an output aperture of the light guide, characterized by an index of refraction, n1, and further characterized by a length dimension in an intended light propagation direction towards the output aperture, where the intended light propagation direction is a z-axis direction of a Cartesian coordinate system; and a plurality of light injection elements disposed in the form of at least one linear strip in at least one of the top and bottom surfaces of the light guide layer, wherein some of the plurality of light injection elements are disposed on one lateral side of the strip and some other of the plurality of light injection elements are disposed on an opposing lateral side of the strip at a rotation angle Δz about the y-axis.




mit

Organic light emitting device

Provided is an organic light emitting device. The organic light emitting device comprising a first light emitting part on a substrate, emitting a first light of a first wavelength, wherein the first light emitting part includes a transparent first electrode, a first organic light emitting layer, and a transparent second electrode sequentially stacked on the substrate, a second light emitting part on the first light emitting part, emitting a second light of a second wavelength, wherein the second light emitting part includes a transparent third electrode, a second organic light emitting layer, and a reflective fourth electrode sequentially stacked on the first light emitting part, and a fluorescent material disposed at least one between the substrate and the first light emitting part, and between the first light emitting part and second light emitting part.




mit

Apparatus, system, and method for digital base modulation of power amplifier in polar transmitter

An amplifier receives an amplitude signal of a polar modulated signal at a base terminal of a transistor and receives a phase modulated carrier signal of the polar modulated signal at the base terminal of the transistor. The amplifier combines the amplitude signal and the phase modulated signal to produce a full complex waveform at a collector terminal of the transistor.




mit

Multiplexed configurable sigma delta modulators for noise shaping in a 25-percent duty cycle digital transmitter

A modulator generates a baseband digital signal from an information-bearing digital signal. The baseband signal has time-varying phase and amplitude defined by a sequence of complex data words, each having an in-phase (I) component and a quadrature (Q) component. A noise-shaping modulator generates a noise-shaped digital signal from the baseband digital signal such that quantization noise in the noise-shaping modulator is attenuated by a spectral null of its noise transfer function. The spectral null is selected by a noise-shaping parameter corresponding to a selected one of a plurality of output frequencies. A signal converter generates an analog signal conveying the information of the information-bearing digital signal on an analog carrier signal having the selected output frequency.




mit

Signal generator for a transmitter or a receiver, a transmitter and a receiver

A signal generator for a transmitter or a receiver for transmitting or receiving RF-signals according to a given communication protocol includes an oscillator and a mismatch compensator. The oscillator is configured to provide a signal generator output signal having a signal generator output frequency and comprises a fine tuning circuit for providing a fine adjustment of the signal generator output frequency based on a fine tuning signal and a coarse tuning circuit for providing a course adjustment of the signal generator output frequency based on a coarse tuning signal. The mismatch compensator is configured to receive the signal generator output signal and compensate a frequency mismatch between a desired signal generator output frequency and the signal generator output frequency generated by the oscillator by providing the fine tuning signal for changing the state of the fine tuning circuit of the oscillator and by providing the coarse tuning signal for changing a state of the coarse tuning circuit of the oscillator. The mismatch compensator provides the coarse tuning signal during a guard period defined in the given communication protocol, during which no RF-signals are transmitted by the transmitter or no RF-signals are to be received by the receiver, such that the state of the coarse tuning circuit is changed within the guard period.




mit

Transmitting apparatus and communication system

Parallel/serial conversion is performed on an N (where N is a natural number)-bit first parallel data signal with a first converted clock acquired by multiplying a reference clock by N, and parallel/serial conversion is performed on an (N×K)-bit (where K is a natural number) second parallel data signal with a second converted clock acquired by multiplying the reference clock by N×K.




mit

Method for tuning a digital compensation filter within a transmitter, and associated digital compensation filter

A method for tuning a digital compensation filter within a transmitter includes: obtaining at least one resistance-capacitance (RC) detection result, wherein the digital compensation filter includes an RC compensation module; and tuning the digital compensation filter by inputting the RC detection result into the RC compensation module. For example, the RC detection result may correspond to a detected value representing a product of a resistance value and a capacitance value. In another example, the at least one RC detection result may be obtained by performing RC detection on at least a portion of the transmitter without individually measuring resistance values of resistors therein and capacitance values of capacitors therein. An associated digital compensation filter and an associated calibration circuit are also provided.




mit

Communications transmitter having high-efficiency combination modulator

A communications transmitter includes a baseband processor configured to generate amplitude, angle, in-phase and quadrature baseband signals and a combination modulator that is configurable to modulate in the polar domain and, alternatively, in the quadrature domain. The combination modulator includes a quadrature modulator and a separate and distinct angle modulator that is configured to serve as a local oscillator for the quadrature modulator. In one embodiment of the invention the combination modulator is configured to modulate in the quadrature domain when the transmitter is operating according to a first communications condition (e.g., first transmit power level or first modulation scheme) and is configured to modulate in the polar domain when the transmitter is operating according to a second communications condition (e.g., second transmit power level or second modulation scheme).




mit

Polar transmitter having frequency modulating path with interpolation in compensating feed input and related method thereof

A frequency modulating path for generating a frequency modulated clock includes a direct feed input arranged for directly modulating frequency of an oscillator, and a compensating feed input arranged for compensating effects of frequency modulating on a phase error; wherein the compensating feed input is resampled by a down-divided clock that is an integer edge division of the oscillator. A reference phase generator for generating a reference phase output includes a resampling circuit, an accumulator and a sampler. The resampling circuit is for resampling a modulating frequency command word (FCW) input to produce a plurality of samples. The accumulator is for accumulating the samples to generate an accumulated result. The sampler is for sampling the accumulated result according to a frequency reference clock, and accordingly generating a sampled result, wherein the reference phase output is updated according to at least the sampled result.




mit

Apparatus and method for transmitting and receiving data in a communication or broadcasting system using linear block code

Provided is a method for transmitting data in a communication or broadcasting system using a linear block code by generating a codeword by encoding input information data bits, interleaving the codeword; outputting modulation signal-constituting bits by bit-mapping the interleaved codeword using a bit-mapping table predetermined depending on a modulation scheme and a coding rate, outputting a modulation signal by modulating the modulation signal-constituting bits and transmitting the modulation signal via a transmit antenna.




mit

Signaling and channel estimation for uplink transmit diversity

In a method of transmitting a data stream from a transmitter in a multiple-input-multiple-output (MIMO) wireless communication system, where the transmitter comprises a plurality of transmit antennas, a discrete Fourier transform (DFT) is applied to the data stream to generate a plurality of symbol sequences; symbols of a first symbol sequence from the plurality of symbol sequences are paired with symbols of a second symbol sequence from the plurality of symbol sequences to generate a plurality of symbol pairs, wherein the pairing results in an orphan symbol; a space-time block code (STBC) is applied to the symbol pairs to generate a plurality of sets of STBC symbols, each set of STBC symbols being associated with a corresponding one of the plurality of antennas; a cyclic delay diversity (CDD) operation is applied to the orphan symbol to generate a plurality of CDD symbols, each CDD symbol being associated with a corresponding one of the plurality of antennas; and each one of the antennas transmits the corresponding set of STBC symbols and the corresponding CDD symbol.




mit

Method for the phase modulation of a carrier signal transmitted from a transmitter to a contactless transponder, and device for implementing same

A method for phase modulation of a carrier signal from a transmitter to a contactless transponder in which data is coded as consecutive symbols, each corresponding to a predefined number of carrier cycles, and in which a symbol time is at least two cycles of the carrier signal includes, at the transmitter, spreading a phase jump of a symbol in relation to a preceding symbol over a first part of the symbol time. The establishment of the phase jump is completed in the first part of the symbol time. The periods of the cycles are constant during a second part of the symbol time.




mit

ASK modulator and transmitter having the same

A modulator which has a first terminal to receive a carrier signal, a second terminal to receive a first control signal to control a frequency band of the carrier signal and a third terminal to receive a second control signal to control a modulation depth of the carrier signal.




mit

Arc mitigation assembly and method of assembly to avoid ground strike

A circuit protection device is provided for use with a circuit that includes at least one pair of conductors. The protection device is configured to generate an arc. The protection device includes at least a pair of electrode assemblies electrically coupled to the at least one pair of conductors and a conductor base to support the pair of electrode assemblies. The protection device includes a cover coupled to the conductor base and defining at least one isolation chamber, wherein the electrode assemblies are disposed within the isolation chamber. The protection device includes a containment shield moveably coupled to the cover. The containment shield defines a containment chamber configured to contain charged particles produced by the arc. The containment shield is operative to move relative to the cover in response to a change in pressure produced by the arc within the containment chamber. An isolation assembly is coupled to at least one of the cover and the containment shield and configured to prevent the cover from contacting the containment shield.




mit

Variable venting and damping arc mitigation assemblies and methods of assembly

Equipment protection systems, arc containment devices, and methods of assembling arc containment devices are disclosed. In one example, an electrical isolation structure includes a conductor base, a cover coupled to the conductor base and defining an isolation chamber, a containment shield disposed on the conductor base within the isolation chamber, and a biasing assembly positioned between the cover and the containment shield. The containment shield defines a containment chamber configured to enclose the plurality of electrode assemblies. The containment shield is configured to at least partially contain the arc products within the containment chamber. The biasing assembly is configured to permit the containment shield to move away from the conductor base to thereby define a gap between the conductor base and the containment shield to enable at least some of the arc gases to vent from the containment chamber.