ia Asymptotic expansions of eigenvalues by both the Crouzeix-Raviart and enriched Crouzeix-Raviart elements. (arXiv:1902.09524v2 [math.NA] UPDATED) By arxiv.org Published On :: Asymptotic expansions are derived for eigenvalues produced by both the Crouzeix-Raviart element and the enriched Crouzeix--Raviart element. The expansions are optimal in the sense that extrapolation eigenvalues based on them admit a fourth order convergence provided that exact eigenfunctions are smooth enough. The major challenge in establishing the expansions comes from the fact that the canonical interpolation of both nonconforming elements lacks a crucial superclose property, and the nonconformity of both elements. The main idea is to employ the relation between the lowest-order mixed Raviart--Thomas element and the two nonconforming elements, and consequently make use of the superclose property of the canonical interpolation of the lowest-order mixed Raviart--Thomas element. To overcome the difficulty caused by the nonconformity, the commuting property of the canonical interpolation operators of both nonconforming elements is further used, which turns the consistency error problem into an interpolation error problem. Then, a series of new results are obtained to show the final expansions. Full Article
ia Performance of the smallest-variance-first rule in appointment sequencing. (arXiv:1812.01467v4 [math.PR] UPDATED) By arxiv.org Published On :: A classical problem in appointment scheduling, with applications in health care, concerns the determination of the patients' arrival times that minimize a cost function that is a weighted sum of mean waiting times and mean idle times. One aspect of this problem is the sequencing problem, which focuses on ordering the patients. We assess the performance of the smallest-variance-first (SVF) rule, which sequences patients in order of increasing variance of their service durations. While it was known that SVF is not always optimal, it has been widely observed that it performs well in practice and simulation. We provide a theoretical justification for this observation by proving, in various settings, quantitative worst-case bounds on the ratio between the cost incurred by the SVF rule and the minimum attainable cost. We also show that, in great generality, SVF is asymptotically optimal, i.e., the ratio approaches 1 as the number of patients grows large. While evaluating policies by considering an approximation ratio is a standard approach in many algorithmic settings, our results appear to be the first of this type in the appointment scheduling literature. Full Article
ia Identifying Compromised Accounts on Social Media Using Statistical Text Analysis. (arXiv:1804.07247v3 [cs.SI] UPDATED) By arxiv.org Published On :: Compromised accounts on social networks are regular user accounts that have been taken over by an entity with malicious intent. Since the adversary exploits the already established trust of a compromised account, it is crucial to detect these accounts to limit the damage they can cause. We propose a novel general framework for discovering compromised accounts by semantic analysis of text messages coming out from an account. Our framework is built on the observation that normal users will use language that is measurably different from the language that an adversary would use when the account is compromised. We use our framework to develop specific algorithms that use the difference of language models of users and adversaries as features in a supervised learning setup. Evaluation results show that the proposed framework is effective for discovering compromised accounts on social networks and a KL-divergence-based language model feature works best. Full Article
ia Defending Hardware-based Malware Detectors against Adversarial Attacks. (arXiv:2005.03644v1 [cs.CR]) By arxiv.org Published On :: In the era of Internet of Things (IoT), Malware has been proliferating exponentially over the past decade. Traditional anti-virus software are ineffective against modern complex Malware. In order to address this challenge, researchers have proposed Hardware-assisted Malware Detection (HMD) using Hardware Performance Counters (HPCs). The HPCs are used to train a set of Machine learning (ML) classifiers, which in turn, are used to distinguish benign programs from Malware. Recently, adversarial attacks have been designed by introducing perturbations in the HPC traces using an adversarial sample predictor to misclassify a program for specific HPCs. These attacks are designed with the basic assumption that the attacker is aware of the HPCs being used to detect Malware. Since modern processors consist of hundreds of HPCs, restricting to only a few of them for Malware detection aids the attacker. In this paper, we propose a Moving target defense (MTD) for this adversarial attack by designing multiple ML classifiers trained on different sets of HPCs. The MTD randomly selects a classifier; thus, confusing the attacker about the HPCs or the number of classifiers applied. We have developed an analytical model which proves that the probability of an attacker to guess the perfect HPC-classifier combination for MTD is extremely low (in the range of $10^{-1864}$ for a system with 20 HPCs). Our experimental results prove that the proposed defense is able to improve the classification accuracy of HPC traces that have been modified through an adversarial sample generator by up to 31.5%, for a near perfect (99.4%) restoration of the original accuracy. Full Article
ia On Exposure Bias, Hallucination and Domain Shift in Neural Machine Translation. (arXiv:2005.03642v1 [cs.CL]) By arxiv.org Published On :: The standard training algorithm in neural machine translation (NMT) suffers from exposure bias, and alternative algorithms have been proposed to mitigate this. However, the practical impact of exposure bias is under debate. In this paper, we link exposure bias to another well-known problem in NMT, namely the tendency to generate hallucinations under domain shift. In experiments on three datasets with multiple test domains, we show that exposure bias is partially to blame for hallucinations, and that training with Minimum Risk Training, which avoids exposure bias, can mitigate this. Our analysis explains why exposure bias is more problematic under domain shift, and also links exposure bias to the beam search problem, i.e. performance deterioration with increasing beam size. Our results provide a new justification for methods that reduce exposure bias: even if they do not increase performance on in-domain test sets, they can increase model robustness to domain shift. Full Article
ia A Tale of Two Perplexities: Sensitivity of Neural Language Models to Lexical Retrieval Deficits in Dementia of the Alzheimer's Type. (arXiv:2005.03593v1 [cs.CL]) By arxiv.org Published On :: In recent years there has been a burgeoning interest in the use of computational methods to distinguish between elicited speech samples produced by patients with dementia, and those from healthy controls. The difference between perplexity estimates from two neural language models (LMs) - one trained on transcripts of speech produced by healthy participants and the other trained on transcripts from patients with dementia - as a single feature for diagnostic classification of unseen transcripts has been shown to produce state-of-the-art performance. However, little is known about why this approach is effective, and on account of the lack of case/control matching in the most widely-used evaluation set of transcripts (DementiaBank), it is unclear if these approaches are truly diagnostic, or are sensitive to other variables. In this paper, we interrogate neural LMs trained on participants with and without dementia using synthetic narratives previously developed to simulate progressive semantic dementia by manipulating lexical frequency. We find that perplexity of neural LMs is strongly and differentially associated with lexical frequency, and that a mixture model resulting from interpolating control and dementia LMs improves upon the current state-of-the-art for models trained on transcript text exclusively. Full Article
ia Learning Implicit Text Generation via Feature Matching. (arXiv:2005.03588v1 [cs.CL]) By arxiv.org Published On :: Generative feature matching network (GFMN) is an approach for training implicit generative models for images by performing moment matching on features from pre-trained neural networks. In this paper, we present new GFMN formulations that are effective for sequential data. Our experimental results show the effectiveness of the proposed method, SeqGFMN, for three distinct generation tasks in English: unconditional text generation, class-conditional text generation, and unsupervised text style transfer. SeqGFMN is stable to train and outperforms various adversarial approaches for text generation and text style transfer. Full Article
ia MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis. (arXiv:2005.03545v1 [cs.CL]) By arxiv.org Published On :: Multimodal Sentiment Analysis is an active area of research that leverages multimodal signals for affective understanding of user-generated videos. The predominant approach, addressing this task, has been to develop sophisticated fusion techniques. However, the heterogeneous nature of the signals creates distributional modality gaps that pose significant challenges. In this paper, we aim to learn effective modality representations to aid the process of fusion. We propose a novel framework, MISA, which projects each modality to two distinct subspaces. The first subspace is modality invariant, where the representations across modalities learn their commonalities and reduce the modality gap. The second subspace is modality-specific, which is private to each modality and captures their characteristic features. These representations provide a holistic view of the multimodal data, which is used for fusion that leads to task predictions. Our experiments on popular sentiment analysis benchmarks, MOSI and MOSEI, demonstrate significant gains over state-of-the-art models. We also consider the task of Multimodal Humor Detection and experiment on the recently proposed UR_FUNNY dataset. Here too, our model fares better than strong baselines, establishing MISA as a useful multimodal framework. Full Article
ia Two Efficient Device Independent Quantum Dialogue Protocols. (arXiv:2005.03518v1 [quant-ph]) By arxiv.org Published On :: Quantum dialogue is a process of two way secure and simultaneous communication using a single channel. Recently, a Measurement Device Independent Quantum Dialogue (MDI-QD) protocol has been proposed (Quantum Information Processing 16.12 (2017): 305). To make the protocol secure against information leakage, the authors have discarded almost half of the qubits remaining after the error estimation phase. In this paper, we propose two modified versions of the MDI-QD protocol such that the number of discarded qubits is reduced to almost one-fourth of the remaining qubits after the error estimation phase. We use almost half of their discarded qubits along with their used qubits to make our protocol more efficient in qubits count. We show that both of our protocols are secure under the same adversarial model given in MDI-QD protocol. Full Article
ia Algorithmic Averaging for Studying Periodic Orbits of Planar Differential Systems. (arXiv:2005.03487v1 [cs.SC]) By arxiv.org Published On :: One of the main open problems in the qualitative theory of real planar differential systems is the study of limit cycles. In this article, we present an algorithmic approach for detecting how many limit cycles can bifurcate from the periodic orbits of a given polynomial differential center when it is perturbed inside a class of polynomial differential systems via the averaging method. We propose four symbolic algorithms to implement the averaging method. The first algorithm is based on the change of polar coordinates that allows one to transform a considered differential system to the normal form of averaging. The second algorithm is used to derive the solutions of certain differential systems associated to the unperturbed term of the normal of averaging. The third algorithm exploits the partial Bell polynomials and allows one to compute the integral formula of the averaged functions at any order. The last algorithm is based on the aforementioned algorithms and determines the exact expressions of the averaged functions for the considered differential systems. The implementation of our algorithms is discussed and evaluated using several examples. The experimental results have extended the existing relevant results for certain classes of differential systems. Full Article
ia Anonymized GCN: A Novel Robust Graph Embedding Method via Hiding Node Position in Noise. (arXiv:2005.03482v1 [cs.LG]) By arxiv.org Published On :: Graph convolution network (GCN) have achieved state-of-the-art performance in the task of node prediction in the graph structure. However, with the gradual various of graph attack methods, there are lack of research on the robustness of GCN. At this paper, we will design a robust GCN method for node prediction tasks. Considering the graph structure contains two types of information: node information and connection information, and attackers usually modify the connection information to complete the interference with the prediction results of the node, we first proposed a method to hide the connection information in the generator, named Anonymized GCN (AN-GCN). By hiding the connection information in the graph structure in the generator through adversarial training, the accurate node prediction can be completed only by the node number rather than its specific position in the graph. Specifically, we first demonstrated the key to determine the embedding of a specific node: the row corresponding to the node of the eigenmatrix of the Laplace matrix, by target it as the output of the generator, we designed a method to hide the node number in the noise. Take the corresponding noise as input, we will obtain the connection structure of the node instead of directly obtaining. Then the encoder and decoder are spliced both in discriminator, so that after adversarial training, the generator and discriminator can cooperate to complete the encoding and decoding of the graph, then complete the node prediction. Finally, All node positions can generated by noise at the same time, that is to say, the generator will hides all the connection information of the graph structure. The evaluation shows that we only need to obtain the initial features and node numbers of the nodes to complete the node prediction, and the accuracy did not decrease, but increased by 0.0293. Full Article
ia Soft Interference Cancellation for Random Coding in Massive Gaussian Multiple-Access. (arXiv:2005.03364v1 [cs.IT]) By arxiv.org Published On :: We utilize recent results on the exact block error probability of Gaussian random codes in additive white Gaussian noise to analyze Gaussian random coding for massive multiple-access at finite message length. Soft iterative interference cancellation is found to closely approach the performance bounds recently found in [1]. The existence of two fundamentally different regimes in the trade-off between power and bandwidth efficiency reported in [2] is related to much older results in [3] on power optimization by linear programming. Furthermore, we tighten the achievability bounds of [1] in the low power regime and show that orthogonal constellations are very close to the theoretical limits for message lengths around 100 and above. Full Article
ia DMCP: Differentiable Markov Channel Pruning for Neural Networks. (arXiv:2005.03354v1 [cs.CV]) By arxiv.org Published On :: Recent works imply that the channel pruning can be regarded as searching optimal sub-structure from unpruned networks. However, existing works based on this observation require training and evaluating a large number of structures, which limits their application. In this paper, we propose a novel differentiable method for channel pruning, named Differentiable Markov Channel Pruning (DMCP), to efficiently search the optimal sub-structure. Our method is differentiable and can be directly optimized by gradient descent with respect to standard task loss and budget regularization (e.g. FLOPs constraint). In DMCP, we model the channel pruning as a Markov process, in which each state represents for retaining the corresponding channel during pruning, and transitions between states denote the pruning process. In the end, our method is able to implicitly select the proper number of channels in each layer by the Markov process with optimized transitions. To validate the effectiveness of our method, we perform extensive experiments on Imagenet with ResNet and MobilenetV2. Results show our method can achieve consistent improvement than state-of-the-art pruning methods in various FLOPs settings. The code is available at https://github.com/zx55/dmcp Full Article
ia Pricing under a multinomial logit model with non linear network effects. (arXiv:2005.03352v1 [cs.GT]) By arxiv.org Published On :: We study the problem of pricing under a Multinomial Logit model where we incorporate network effects over the consumer's decisions. We analyse both cases, when sellers compete or collaborate. In particular, we pay special attention to the overall expected revenue and how the behaviour of the no purchase option is affected under variations of a network effect parameter. Where for example we prove that the market share for the no purchase option, is decreasing in terms of the value of the network effect, meaning that stronger communication among costumers increases the expected amount of sales. We also analyse how the customer's utility is altered when network effects are incorporated into the market, comparing the cases where both competitive and monopolistic prices are displayed. We use tools from stochastic approximation algorithms to prove that the probability of purchasing the available products converges to a unique stationary distribution. We model that the sellers can use this stationary distribution to establish their strategies. Finding that under those settings, a pure Nash Equilibrium represents the pricing strategies in the case of competition, and an optimal (that maximises the total revenue) fixed price characterise the case of collaboration. Full Article
ia Error estimates for the Cahn--Hilliard equation with dynamic boundary conditions. (arXiv:2005.03349v1 [math.NA]) By arxiv.org Published On :: A proof of convergence is given for bulk--surface finite element semi-discretisation of the Cahn--Hilliard equation with Cahn--Hilliard-type dynamic boundary conditions in a smooth domain. The semi-discretisation is studied in the weak formulation as a second order system. Optimal-order uniform-in-time error estimates are shown in the $L^2$ and $H^1$ norms. The error estimates are based on a consistency and stability analysis. The proof of stability is performed in an abstract framework, based on energy estimates exploiting the anti-symmetric structure of the second order system. Numerical experiments illustrate the theoretical results. Full Article
ia Nakdan: Professional Hebrew Diacritizer. (arXiv:2005.03312v1 [cs.CL]) By arxiv.org Published On :: We present a system for automatic diacritization of Hebrew text. The system combines modern neural models with carefully curated declarative linguistic knowledge and comprehensive manually constructed tables and dictionaries. Besides providing state of the art diacritization accuracy, the system also supports an interface for manual editing and correction of the automatic output, and has several features which make it particularly useful for preparation of scientific editions of Hebrew texts. The system supports Modern Hebrew, Rabbinic Hebrew and Poetic Hebrew. The system is freely accessible for all use at this http URL Full Article
ia Adaptive Dialog Policy Learning with Hindsight and User Modeling. (arXiv:2005.03299v1 [cs.AI]) By arxiv.org Published On :: Reinforcement learning methods have been used to compute dialog policies from language-based interaction experiences. Efficiency is of particular importance in dialog policy learning, because of the considerable cost of interacting with people, and the very poor user experience from low-quality conversations. Aiming at improving the efficiency of dialog policy learning, we develop algorithm LHUA (Learning with Hindsight, User modeling, and Adaptation) that, for the first time, enables dialog agents to adaptively learn with hindsight from both simulated and real users. Simulation and hindsight provide the dialog agent with more experience and more (positive) reinforcements respectively. Experimental results suggest that, in success rate and policy quality, LHUA outperforms competitive baselines from the literature, including its no-simulation, no-adaptation, and no-hindsight counterparts. Full Article
ia Phase retrieval of complex-valued objects via a randomized Kaczmarz method. (arXiv:2005.03238v1 [cs.IT]) By arxiv.org Published On :: This paper investigates the convergence of the randomized Kaczmarz algorithm for the problem of phase retrieval of complex-valued objects. While this algorithm has been studied for the real-valued case}, its generalization to the complex-valued case is nontrivial and has been left as a conjecture. This paper establishes the connection between the convergence of the algorithm and the convexity of an objective function. Based on the connection, it demonstrates that when the sensing vectors are sampled uniformly from a unit sphere and the number of sensing vectors $m$ satisfies $m>O(nlog n)$ as $n, m ightarrowinfty$, then this algorithm with a good initialization achieves linear convergence to the solution with high probability. Full Article
ia Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent Multi-View Representation Learning. (arXiv:2005.03227v1 [eess.IV]) By arxiv.org Published On :: Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world. Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed, and could largely reduce the efforts of clinicians and accelerate the diagnosis process. Chest computed tomography (CT) has been recognized as an informative tool for diagnosis of the disease. In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images. To fully explore multiple features describing CT images from different views, a unified latent representation is learned which can completely encode information from different aspects of features and is endowed with promising class structure for separability. Specifically, the completeness is guaranteed with a group of backward neural networks (each for one type of features), while by using class labels the representation is enforced to be compact within COVID-19/community-acquired pneumonia (CAP) and also a large margin is guaranteed between different types of pneumonia. In this way, our model can well avoid overfitting compared to the case of directly projecting highdimensional features into classes. Extensive experimental results show that the proposed method outperforms all comparison methods, and rather stable performances are observed when varying the numbers of training data. Full Article
ia An Optimal Control Theory for the Traveling Salesman Problem and Its Variants. (arXiv:2005.03186v1 [math.OC]) By arxiv.org Published On :: We show that the traveling salesman problem (TSP) and its many variants may be modeled as functional optimization problems over a graph. In this formulation, all vertices and arcs of the graph are functionals; i.e., a mapping from a space of measurable functions to the field of real numbers. Many variants of the TSP, such as those with neighborhoods, with forbidden neighborhoods, with time-windows and with profits, can all be framed under this construct. In sharp contrast to their discrete-optimization counterparts, the modeling constructs presented in this paper represent a fundamentally new domain of analysis and computation for TSPs and their variants. Beyond its apparent mathematical unification of a class of problems in graph theory, the main advantage of the new approach is that it facilitates the modeling of certain application-specific problems in their home space of measurable functions. Consequently, certain elements of economic system theory such as dynamical models and continuous-time cost/profit functionals can be directly incorporated in the new optimization problem formulation. Furthermore, subtour elimination constraints, prevalent in discrete optimization formulations, are naturally enforced through continuity requirements. The price for the new modeling framework is nonsmooth functionals. Although a number of theoretical issues remain open in the proposed mathematical framework, we demonstrate the computational viability of the new modeling constructs over a sample set of problems to illustrate the rapid production of end-to-end TSP solutions to extensively-constrained practical problems. Full Article
ia Evolutionary Multi Objective Optimization Algorithm for Community Detection in Complex Social Networks. (arXiv:2005.03181v1 [cs.NE]) By arxiv.org Published On :: Most optimization-based community detection approaches formulate the problem in a single or bi-objective framework. In this paper, we propose two variants of a three-objective formulation using a customized non-dominated sorting genetic algorithm III (NSGA-III) to find community structures in a network. In the first variant, named NSGA-III-KRM, we considered Kernel k means, Ratio cut, and Modularity, as the three objectives, whereas the second variant, named NSGA-III-CCM, considers Community score, Community fitness and Modularity, as three objective functions. Experiments are conducted on four benchmark network datasets. Comparison with state-of-the-art approaches along with decomposition-based multi-objective evolutionary algorithm variants (MOEA/D-KRM and MOEA/D-CCM) indicates that the proposed variants yield comparable or better results. This is particularly significant because the addition of the third objective does not worsen the results of the other two objectives. We also propose a simple method to rank the Pareto solutions so obtained by proposing a new measure, namely the ratio of the hyper-volume and inverted generational distance (IGD). The higher the ratio, the better is the Pareto set. This strategy is particularly useful in the absence of empirical attainment function in the multi-objective framework, where the number of objectives is more than two. Full Article
ia Fact-based Dialogue Generation with Convergent and Divergent Decoding. (arXiv:2005.03174v1 [cs.CL]) By arxiv.org Published On :: Fact-based dialogue generation is a task of generating a human-like response based on both dialogue context and factual texts. Various methods were proposed to focus on generating informative words that contain facts effectively. However, previous works implicitly assume a topic to be kept on a dialogue and usually converse passively, therefore the systems have a difficulty to generate diverse responses that provide meaningful information proactively. This paper proposes an end-to-end Fact-based dialogue system augmented with the ability of convergent and divergent thinking over both context and facts, which can converse about the current topic or introduce a new topic. Specifically, our model incorporates a novel convergent and divergent decoding that can generate informative and diverse responses considering not only given inputs (context and facts) but also inputs-related topics. Both automatic and human evaluation results on DSTC7 dataset show that our model significantly outperforms state-of-the-art baselines, indicating that our model can generate more appropriate, informative, and diverse responses. Full Article
ia An augmented Lagrangian preconditioner for implicitly-constituted non-Newtonian incompressible flow. (arXiv:2005.03150v1 [math.NA]) By arxiv.org Published On :: We propose an augmented Lagrangian preconditioner for a three-field stress-velocity-pressure discretization of stationary non-Newtonian incompressible flow with an implicit constitutive relation of power-law type. The discretization employed makes use of the divergence-free Scott-Vogelius pair for the velocity and pressure. The preconditioner builds on the work [P. E. Farrell, L. Mitchell, and F. Wechsung, SIAM J. Sci. Comput., 41 (2019), pp. A3073-A3096], where a Reynolds-robust preconditioner for the three-dimensional Newtonian system was introduced. The preconditioner employs a specialized multigrid method for the stress-velocity block that involves a divergence-capturing space decomposition and a custom prolongation operator. The solver exhibits excellent robustness with respect to the parameters arising in the constitutive relation, allowing for the simulation of a wide range of materials. Full Article
ia Strong replica symmetry in high-dimensional optimal Bayesian inference. (arXiv:2005.03115v1 [math.PR]) By arxiv.org Published On :: We consider generic optimal Bayesian inference, namely, models of signal reconstruction where the posterior distribution and all hyperparameters are known. Under a standard assumption on the concentration of the free energy, we show how replica symmetry in the strong sense of concentration of all multioverlaps can be established as a consequence of the Franz-de Sanctis identities; the identities themselves in the current setting are obtained via a novel perturbation of the prior distribution of the signal. Concentration of multioverlaps means that asymptotically the posterior distribution has a particularly simple structure encoded by a random probability measure (or, in the case of binary signal, a non-random probability measure). We believe that such strong control of the model should be key in the study of inference problems with underlying sparse graphical structure (error correcting codes, block models, etc) and, in particular, in the derivation of replica symmetric formulas for the free energy and mutual information in this context. Full Article
ia Deep Learning for Image-based Automatic Dial Meter Reading: Dataset and Baselines. (arXiv:2005.03106v1 [cs.CV]) By arxiv.org Published On :: Smart meters enable remote and automatic electricity, water and gas consumption reading and are being widely deployed in developed countries. Nonetheless, there is still a huge number of non-smart meters in operation. Image-based Automatic Meter Reading (AMR) focuses on dealing with this type of meter readings. We estimate that the Energy Company of Paran'a (Copel), in Brazil, performs more than 850,000 readings of dial meters per month. Those meters are the focus of this work. Our main contributions are: (i) a public real-world dial meter dataset (shared upon request) called UFPR-ADMR; (ii) a deep learning-based recognition baseline on the proposed dataset; and (iii) a detailed error analysis of the main issues present in AMR for dial meters. To the best of our knowledge, this is the first work to introduce deep learning approaches to multi-dial meter reading, and perform experiments on unconstrained images. We achieved a 100.0% F1-score on the dial detection stage with both Faster R-CNN and YOLO, while the recognition rates reached 93.6% for dials and 75.25% for meters using Faster R-CNN (ResNext-101). Full Article
ia Optimal Location of Cellular Base Station via Convex Optimization. (arXiv:2005.03099v1 [cs.IT]) By arxiv.org Published On :: An optimal base station (BS) location depends on the traffic (user) distribution, propagation pathloss and many system parameters, which renders its analytical study difficult so that numerical algorithms are widely used instead. In this paper, the problem is studied analytically. First, it is formulated as a convex optimization problem to minimize the total BS transmit power subject to quality-of-service (QoS) constraints, which also account for fairness among users. Due to its convex nature, Karush-Kuhn-Tucker (KKT) conditions are used to characterize a globally-optimum location as a convex combination of user locations, where convex weights depend on user parameters, pathloss exponent and overall geometry of the problem. Based on this characterization, a number of closed-form solutions are obtained. In particular, the optimum BS location is the mean of user locations in the case of free-space propagation and identical user parameters. If the user set is symmetric (as defined in the paper), the optimal BS location is independent of pathloss exponent, which is not the case in general. The analytical results show the impact of propagation conditions as well as system and user parameters on optimal BS location and can be used to develop design guidelines. Full Article
ia Near-optimal Detector for SWIPT-enabled Differential DF Relay Networks with SER Analysis. (arXiv:2005.03096v1 [cs.IT]) By arxiv.org Published On :: In this paper, we analyze the symbol error rate (SER) performance of the simultaneous wireless information and power transfer (SWIPT) enabled three-node differential decode-and-forward (DDF) relay networks, which adopt the power splitting (PS) protocol at the relay. The use of non-coherent differential modulation eliminates the need for sending training symbols to estimate the instantaneous channel state informations (CSIs) at all network nodes, and therefore improves the power efficiency, as compared with the coherent modulation. However, performance analysis results are not yet available for the state-of-the-art detectors such as the approximate maximum-likelihood detector. Existing works rely on Monte-Carlo simulation to show that there exists an optimal PS ratio that minimizes the overall SER. In this work, we propose a near-optimal detector with linear complexity with respect to the modulation size. We derive an accurate approximate SER expression, based on which the optimal PS ratio can be accurately estimated without requiring any Monte-Carlo simulation. Full Article
ia A Multifactorial Optimization Paradigm for Linkage Tree Genetic Algorithm. (arXiv:2005.03090v1 [cs.NE]) By arxiv.org Published On :: Linkage Tree Genetic Algorithm (LTGA) is an effective Evolutionary Algorithm (EA) to solve complex problems using the linkage information between problem variables. LTGA performs well in various kinds of single-task optimization and yields promising results in comparison with the canonical genetic algorithm. However, LTGA is an unsuitable method for dealing with multi-task optimization problems. On the other hand, Multifactorial Optimization (MFO) can simultaneously solve independent optimization problems, which are encoded in a unified representation to take advantage of the process of knowledge transfer. In this paper, we introduce Multifactorial Linkage Tree Genetic Algorithm (MF-LTGA) by combining the main features of both LTGA and MFO. MF-LTGA is able to tackle multiple optimization tasks at the same time, each task learns the dependency between problem variables from the shared representation. This knowledge serves to determine the high-quality partial solutions for supporting other tasks in exploring the search space. Moreover, MF-LTGA speeds up convergence because of knowledge transfer of relevant problems. We demonstrate the effectiveness of the proposed algorithm on two benchmark problems: Clustered Shortest-Path Tree Problem and Deceptive Trap Function. In comparison to LTGA and existing methods, MF-LTGA outperforms in quality of the solution or in computation time. Full Article
ia Diagnosing the Environment Bias in Vision-and-Language Navigation. (arXiv:2005.03086v1 [cs.CL]) By arxiv.org Published On :: Vision-and-Language Navigation (VLN) requires an agent to follow natural-language instructions, explore the given environments, and reach the desired target locations. These step-by-step navigational instructions are crucial when the agent is navigating new environments about which it has no prior knowledge. Most recent works that study VLN observe a significant performance drop when tested on unseen environments (i.e., environments not used in training), indicating that the neural agent models are highly biased towards training environments. Although this issue is considered as one of the major challenges in VLN research, it is still under-studied and needs a clearer explanation. In this work, we design novel diagnosis experiments via environment re-splitting and feature replacement, looking into possible reasons for this environment bias. We observe that neither the language nor the underlying navigational graph, but the low-level visual appearance conveyed by ResNet features directly affects the agent model and contributes to this environment bias in results. According to this observation, we explore several kinds of semantic representations that contain less low-level visual information, hence the agent learned with these features could be better generalized to unseen testing environments. Without modifying the baseline agent model and its training method, our explored semantic features significantly decrease the performance gaps between seen and unseen on multiple datasets (i.e. R2R, R4R, and CVDN) and achieve competitive unseen results to previous state-of-the-art models. Our code and features are available at: https://github.com/zhangybzbo/EnvBiasVLN Full Article
ia Line Artefact Quantification in Lung Ultrasound Images of COVID-19 Patients via Non-Convex Regularisation. (arXiv:2005.03080v1 [eess.IV]) By arxiv.org Published On :: In this paper, we present a novel method for line artefacts quantification in lung ultrasound (LUS) images of COVID-19 patients. We formulate this as a non-convex regularisation problem involving a sparsity-enforcing, Cauchy-based penalty function, and the inverse Radon transform. We employ a simple local maxima detection technique in the Radon transform domain, associated with known clinical definitions of line artefacts. Despite being non-convex, the proposed method has guaranteed convergence via a proximal splitting algorithm and accurately identifies both horizontal and vertical line artefacts in LUS images. In order to reduce the number of false and missed detection, our method includes a two-stage validation mechanism, which is performed in both Radon and image domains. We evaluate the performance of the proposed method in comparison to the current state-of-the-art B-line identification method and show a considerable performance gain with 87% correctly detected B-lines in LUS images of nine COVID-19 patients. In addition, owing to its fast convergence, which takes around 12 seconds for a given frame, our proposed method is readily applicable for processing LUS image sequences. Full Article
ia AVAC: A Machine Learning based Adaptive RRAM Variability-Aware Controller for Edge Devices. (arXiv:2005.03077v1 [eess.SY]) By arxiv.org Published On :: Recently, the Edge Computing paradigm has gained significant popularity both in industry and academia. Researchers now increasingly target to improve performance and reduce energy consumption of such devices. Some recent efforts focus on using emerging RRAM technologies for improving energy efficiency, thanks to their no leakage property and high integration density. As the complexity and dynamism of applications supported by such devices escalate, it has become difficult to maintain ideal performance by static RRAM controllers. Machine Learning provides a promising solution for this, and hence, this work focuses on extending such controllers to allow dynamic parameter updates. In this work we propose an Adaptive RRAM Variability-Aware Controller, AVAC, which periodically updates Wait Buffer and batch sizes using on-the-fly learning models and gradient ascent. AVAC allows Edge devices to adapt to different applications and their stages, to improve computation performance and reduce energy consumption. Simulations demonstrate that the proposed model can provide up to 29% increase in performance and 19% decrease in energy, compared to static controllers, using traces of real-life healthcare applications on a Raspberry-Pi based Edge deployment. Full Article
ia Weakly-Supervised Neural Response Selection from an Ensemble of Task-Specialised Dialogue Agents. (arXiv:2005.03066v1 [cs.CL]) By arxiv.org Published On :: Dialogue engines that incorporate different types of agents to converse with humans are popular. However, conversations are dynamic in the sense that a selected response will change the conversation on-the-fly, influencing the subsequent utterances in the conversation, which makes the response selection a challenging problem. We model the problem of selecting the best response from a set of responses generated by a heterogeneous set of dialogue agents by taking into account the conversational history, and propose a emph{Neural Response Selection} method. The proposed method is trained to predict a coherent set of responses within a single conversation, considering its own predictions via a curriculum training mechanism. Our experimental results show that the proposed method can accurately select the most appropriate responses, thereby significantly improving the user experience in dialogue systems. Full Article
ia Evaluating text coherence based on the graph of the consistency of phrases to identify symptoms of schizophrenia. (arXiv:2005.03008v1 [cs.CL]) By arxiv.org Published On :: Different state-of-the-art methods of the detection of schizophrenia symptoms based on the estimation of text coherence have been analyzed. The analysis of a text at the level of phrases has been suggested. The method based on the graph of the consistency of phrases has been proposed to evaluate the semantic coherence and the cohesion of a text. The semantic coherence, cohesion, and other linguistic features (lexical diversity, lexical density) have been taken into account to form feature vectors for the training of a model-classifier. The training of the classifier has been performed on the set of English-language interviews. According to the retrieved results, the impact of each feature on the output of the model has been analyzed. The results obtained can indicate that the proposed method based on the graph of the consistency of phrases may be used in the different tasks of the detection of mental illness. Full Article
ia What Soccer Was Like When Retired Soccer Star Briana Scurry First Started Playing By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST Soccer great Briana Scurry started playing soccer at 12 on an all boys team and in the goal — the "safest" position for a girl ... Full Article video
ia Retired Soccer Star Briana Scurry on Sharing "Her Hell" By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST For a long time after her injury, soccer great Briana Scurry "hid her hell." Now, she knows that that was not the right thing to do and she wants to teach others to become more open and understanding about concussion. Full Article video
ia Retired Soccer Star Briana Scurry on What a Concussion Feels Like By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST After she was hit, retired soccer star Briana Scurry felt off balance, sensitive to light and sound,and felt intense pain in her head and neck. Full Article video
ia Retired Soccer Star Briana Scurry: "This Has Been the Most Difficult Thing" By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST "The penalty kicks, the final goals in the Olympics, playing in front of the president, in front of 90,000 people ... that is what I was born to do ... and my brain is what I used to get myself there." Full Article video
ia Retired Soccer Star Briana Scurry: Message to People Struggling After Concussions By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST If you don't feel right after a concussion, talk to your parents, your coach, your doctor ... get a second, third, fourth opinion ... Do not accept that you will not get better. Full Article video
ia How Occipital Nerve Surgery Helped Retired Soccer Star Briana Scurry By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST Bilateral occipital nerve release surgery was the first, significant step to relieving Scurry's debilitating post-concussive headaches. Full Article video
ia Retired Soccer Star Briana Scurry on Girls Soccer and Concussion Protocols By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST One out of two girls will sustain a concussion playing soccer, but most will recover and return to play with ease. Nevertheless, awareness and education are key to keeping players safe. Full Article video
ia Retired Soccer Star Briana Scurry on "Being Me Again" By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST "The Briana Scurry who could tune out 90,000 people during the World Cup and focus on a single ball and know I could keep it out of the goal ... that is who I want to be again." Full Article video
ia Retired Soccer Star Briana Scurry: "My Brain Was Broken" By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST Retired soccer star Briana Scurry talks about how all her successes started with her mind and her ability to overcome obstacles. After her injury, she felt lost, broken. Full Article video
ia Retired Soccer Star Briana Scurry on Her Post-Concussion Depression By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST Was her depression physiological from the hit to her head or because her professional soccer career was over? Full Article video
ia When Retired Soccer Star Briana Scurry Knew Her Career Was Over By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST After several weeks of not playing because of a concussion and then failing several baseline tests, Briana Scurry became very worried. Full Article video
ia Why Retired Soccer Star Briana Scurry Is Speaking Out About Concussion By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST As someone who had a phenomenal career in professional soccer and that had a career-ending head injury, Briana Scurry knows she can help other female — and male — athletes. Full Article video
ia The Hit That Ended Briana Scurry's Soccer Career By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST "I knew I was in trouble ... I didn't know how much trouble," says retired soccer star Briana Scurry. Full Article video
ia Briana Scurry's Letter to Young Soccer Players By feedproxy.google.com Published On :: Tue, 25 Feb 2014 00:00:00 EST Soccer great Briana Scurry writes an open letter to young athletes about her love for soccer and the importance of taking concussions seriously. Full Article page
ia Is My WordPress Site ADA Compliant? 3+ Plugins for Finding Out! By feedproxy.google.com Published On :: Sat, 21 Dec 2019 14:00:51 +0000 Did you know that breaking the Americans with Disabilities Act (ADA) can result in a six-figure fine? For every violation, companies can receive a $150,000 fine — and if you have a WordPress site, you could be liable. While WordPress aims to ensure website accessibility, it cannot guarantee it since every site owner customizes the […] The post Is My WordPress Site ADA Compliant? 3+ Plugins for Finding Out! appeared first on WebFX Blog. Full Article Web Design
ia Is My Website ADA Compliant? How to Check (and Update) Your Site By feedproxy.google.com Published On :: Tue, 11 Feb 2020 14:00:55 +0000 What do Amazon, Hershey’s, and The Wall Street Journal have in common? They’ve all gotten named in lawsuits related to website accessibility and the Americans with Disabilities Act (ADA). They aren’t alone, either. In 2018, more than 2000 website accessibility lawsuits (a 177% increase from 2017) got filed, emphasizing the increased importance and focus on […] The post Is My Website ADA Compliant? How to Check (and Update) Your Site appeared first on WebFX Blog. Full Article Web Design
ia Closure of Diablo Canyon Nuclear Plant By feedproxy.google.com Published On :: Wed, 22 Jun 2016 10:19:38 +0000 By Lauren McCauley Common Dreams In landmark agreement, California’s last remaining nuclear plant will be replaced by greenhouse-gas-free energy sources A plan to shutter the last remaining nuclear power plant in California and replace it with renewable energy is being … Continue reading → Full Article ET News Nuclear