xi

A Class of Functional Inequalities and their Applications to Fourth-Order Nonlinear Parabolic Equations. (arXiv:1612.03508v3 [math.AP] UPDATED)

We study a class of fourth order nonlinear parabolic equations which include the thin-film equation and the quantum drift-diffusion model as special cases. We investigate these equations by first developing functional inequalities of the type $ int_Omega u^{2gamma-alpha-eta}Delta u^alphaDelta u^eta dx geq cint_Omega|Delta u^gamma |^2dx $, which seem to be of interest on their own right.




xi

On the zeros of the Riemann zeta function, twelve years later. (arXiv:0806.2361v7 [math.GM] UPDATED)

The paper proves the Riemann Hypothesis.




xi

Word problems for finite nilpotent groups. (arXiv:2005.03634v1 [math.GR])

Let $w$ be a word in $k$ variables. For a finite nilpotent group $G$, a conjecture of Amit states that $N_w(1) ge |G|^{k-1}$, where $N_w(1)$ is the number of $k$-tuples $(g_1,...,g_k)in G^{(k)}$ such that $w(g_1,...,g_k)=1$. Currently, this conjecture is known to be true for groups of nilpotency class 2. Here we consider a generalized version of Amit's conjecture, and prove that $N_w(g) ge |G|^{k-2}$, where $g$ is a $w$-value in $G$, for finite groups $G$ of odd order and nilpotency class 2. If $w$ is a word in two variables, we further show that $N_w(g) ge |G|$, where $g$ is a $w$-value in $G$ for finite groups $G$ of nilpotency class 2. In addition, for $p$ a prime, we show that finite $p$-groups $G$, with two distinct irreducible complex character degrees, satisfy the generalized Amit conjecture for words $w_k =[x_1,y_1]...[x_k,y_k]$ with $k$ a natural number; that is, for $g$ a $w_k$-value in $G$ we have $N_{w_k}(g) ge |G|^{2k-1}$.

Finally, we discuss the related group properties of being rational and chiral, and show that every finite group of nilpotency class 2 is rational.




xi

Surjective endomorphisms of projective surfaces -- the existence of infinitely many dense orbits. (arXiv:2005.03628v1 [math.AG])

Let $f colon X o X$ be a surjective endomorphism of a normal projective surface. When $operatorname{deg} f geq 2$, applying an (iteration of) $f$-equivariant minimal model program (EMMP), we determine the geometric structure of $X$. Using this, we extend the second author's result to singular surfaces to the extent that either $X$ has an $f$-invariant non-constant rational function, or $f$ has infinitely many Zariski-dense forward orbits; this result is also extended to Adelic topology (which is finer than Zariski topology).




xi

A Hamilton-Jacobi Formulation for Time-Optimal Paths of Rectangular Nonholonomic Vehicles. (arXiv:2005.03623v1 [math.OC])

We address the problem of optimal path planning for a simple nonholonomic vehicle in the presence of obstacles. Most current approaches are either split hierarchically into global path planning and local collision avoidance, or neglect some of the ambient geometry by assuming the car is a point mass. We present a Hamilton-Jacobi formulation of the problem that resolves time-optimal paths and considers the geometry of the vehicle.




xi

On the partitions into distinct parts and odd parts. (arXiv:2005.03619v1 [math.CO])

In this paper, we show that the difference between the number of parts in the odd partitions of $n$ and the number of parts in the distinct partitions of $n$ satisfies Euler's recurrence relation for the partition function $p(n)$ when $n$ is odd. A decomposition of this difference in terms of the total number of parts in all the partitions of $n$ is also derived. In this context, we conjecture that for $k>0$, the series

$$

(q^2;q^2)_infty sum_{n=k}^infty frac{q^{{kchoose 2}+(k+1)n}}{(q;q)_n}

egin{bmatrix}

n-1\k-1

end{bmatrix}

$$ has non-negative coefficients.




xi

On the asymptotic behavior of solutions to the Vlasov-Poisson system. (arXiv:2005.03617v1 [math.AP])

We prove small data modified scattering for the Vlasov-Poisson system in dimension $d=3$ using a method inspired from dispersive analysis. In particular, we identify a simple asymptotic dynamic related to the scattering mass.




xi

On Harmonic and Asymptotically harmonic Finsler manifolds. (arXiv:2005.03616v1 [math.DG])

In this paper we introduce various types of harmonic Finsler manifolds and study the relation between them. We give several characterizations of such spaces in terms of the mean curvature and Laplacian. In addition, we prove that some harmonic Finsler manifolds are of Einstein type and a technique to construct harmonic Finsler manifolds of Rander type is given. Moreover, we provide many examples of non-Riemmanian Finsler harmonic manifolds of constant flag curvature and constant $S$-curvature. Finally, we analyze Busemann functions in a general Finsler setting and in certain kind of Finsler harmonic manifolds, namely asymptotically harmonic Finsler manifolds along with studying some applications. In particular, we show the Busemann function is smooth in asymptotically harmonic Finsler manifolds and the total Busemann function is continuous in $C^{infty}$ topology.




xi

A Model for Optimal Human Navigation with Stochastic Effects. (arXiv:2005.03615v1 [math.OC])

We present a method for optimal path planning of human walking paths in mountainous terrain, using a control theoretic formulation and a Hamilton-Jacobi-Bellman equation. Previous models for human navigation were entirely deterministic, assuming perfect knowledge of the ambient elevation data and human walking velocity as a function of local slope of the terrain. Our model includes a stochastic component which can account for uncertainty in the problem, and thus includes a Hamilton-Jacobi-Bellman equation with viscosity. We discuss the model in the presence and absence of stochastic effects, and suggest numerical methods for simulating the model. We discuss two different notions of an optimal path when there is uncertainty in the problem. Finally, we compare the optimal paths suggested by the model at different levels of uncertainty, and observe that as the size of the uncertainty tends to zero (and thus the viscosity in the equation tends to zero), the optimal path tends toward the deterministic optimal path.




xi

A survey of Hardy type inequalities on homogeneous groups. (arXiv:2005.03614v1 [math.FA])

In this review paper, we survey Hardy type inequalities from the point of view of Folland and Stein's homogeneous groups. Particular attention is paid to Hardy type inequalities on stratified groups which give a special class of homogeneous groups. In this environment, the theory of Hardy type inequalities becomes intricately intertwined with the properties of sub-Laplacians and more general subelliptic partial differential equations. Particularly, we discuss the Badiale-Tarantello conjecture and a conjecture on the geometric Hardy inequality in a half-space of the Heisenberg group with a sharp constant.




xi

Positive Geometries and Differential Forms with Non-Logarithmic Singularities I. (arXiv:2005.03612v1 [hep-th])

Positive geometries encode the physics of scattering amplitudes in flat space-time and the wavefunction of the universe in cosmology for a large class of models. Their unique canonical forms, providing such quantum mechanical observables, are characterised by having only logarithmic singularities along all the boundaries of the positive geometry. However, physical observables have logarithmic singularities just for a subset of theories. Thus, it becomes crucial to understand whether a similar paradigm can underlie their structure in more general cases. In this paper we start a systematic investigation of a geometric-combinatorial characterisation of differential forms with non-logarithmic singularities, focusing on projective polytopes and related meromorphic forms with multiple poles. We introduce the notions of covariant forms and covariant pairings. Covariant forms have poles only along the boundaries of the given polytope; moreover, their leading Laurent coefficients along any of the boundaries are still covariant forms on the specific boundary. Whereas meromorphic forms in covariant pairing with a polytope are associated to a specific (signed) triangulation, in which poles on spurious boundaries do not cancel completely, but their order is lowered. These meromorphic forms can be fully characterised if the polytope they are associated to is viewed as the restriction of a higher dimensional one onto a hyperplane. The canonical form of the latter can be mapped into a covariant form or a form in covariant pairing via a covariant restriction. We show how the geometry of the higher dimensional polytope determines the structure of these differential forms. Finally, we discuss how these notions are related to Jeffrey-Kirwan residues and cosmological polytopes.




xi

On products of groups and indices not divisible by a given prime. (arXiv:2005.03608v1 [math.GR])

Let the group $G = AB$ be the product of subgroups $A$ and $B$, and let $p$ be a prime. We prove that $p$ does not divide the conjugacy class size (index) of each $p$-regular element of prime power order $xin Acup B$ if and only if $G$ is $p$-decomposable, i.e. $G=O_p(G) imes O_{p'}(G)$.




xi

The Fourier Transform Approach to Inversion of lambda-Cosine and Funk Transforms on the Unit Sphere. (arXiv:2005.03607v1 [math.FA])

We use the classical Fourier analysis to introduce analytic families of weighted differential operators on the unit sphere. These operators are polynomial functions of the usual Beltrami-Laplace operator. New inversion formulas are obtained for totally geodesic Funk transforms on the sphere and the correpsonding lambda-cosine transforms.




xi

Groups up to congruence relation and from categorical groups to c-crossed modules. (arXiv:2005.03601v1 [math.CT])

We introduce a notion of c-group, which is a group up to congruence relation and consider the corresponding category. Extensions, actions and crossed modules (c-crossed modules) are defined in this category and the semi-direct product is constructed. We prove that each categorical group gives rise to c-groups and to a c-crossed module, which is a connected, special and strict c-crossed module in the sense defined by us. The results obtained here will be applied in the proof of an equivalence of the categories of categorical groups and connected, special and strict c-crossed modules.




xi

Gluing curves of genus 1 and 2 along their 2-torsion. (arXiv:2005.03587v1 [math.AG])

Let $X$ (resp. $Y$) be a curve of genus 1 (resp. 2) over a base field $k$ whose characteristic does not equal 2. We give criteria for the existence of a curve $Z$ over $k$ whose Jacobian is up to twist (2,2,2)-isogenous to the products of the Jacobians of $X$ and $Y$. Moreover, we give algorithms to construct the curve $Z$ once equations for $X$ and $Y$ are given. The first of these involves the use of hyperplane sections of the Kummer variety of $Y$ whose desingularization is isomorphic to $X$, whereas the second is based on interpolation methods involving numerical results over $mathbb{C}$ that are proved to be correct over general fields a posteriori. As an application, we find a twist of a Jacobian over $mathbb{Q}$ that admits a rational 70-torsion point.




xi

Steiner symmetry in the minimization of the principal positive eigenvalue of an eigenvalue problem with indefinite weight. (arXiv:2005.03581v1 [math.AP])

In cite{CC} the authors, investigating a model of population dynamics, find the following result. Let $Omegasubset mathbb{R}^N$, $Ngeq 1$, be a bounded smooth domain. The weighted eigenvalue problem $-Delta u =lambda m u $ in $Omega$ under homogeneous Dirichlet boundary conditions, where $lambda in mathbb{R}$ and $min L^infty(Omega)$, is considered. The authors prove the existence of minimizers $check m$ of the principal positive eigenvalue $lambda_1(m)$ when $m$ varies in a class $mathcal{M}$ of functions where average, maximum, and minimum values are given. A similar result is obtained in cite{CCP} when $m$ is in the class $mathcal{G}(m_0)$ of rearrangements of a fixed $m_0in L^infty(Omega)$. In our work we establish that, if $Omega$ is Steiner symmetric, then every minimizer in cite{CC,CCP} inherits the same kind of symmetry.




xi

On abelianity lines in elliptic $W$-algebras. (arXiv:2005.03579v1 [math-ph])

We present a systematic derivation of the abelianity conditions for the $q$-deformed $W$-algebras constructed from the elliptic quantum algebra $mathcal{A}_{q,p}(widehat{gl}(N)_{c})$. We identify two sets of conditions on a given critical surface yielding abelianity lines in the moduli space ($p, q, c$). Each line is identified as an intersection of a countable number of critical surfaces obeying diophantine consistency conditions. The corresponding Poisson brackets structures are then computed for which some universal features are described.




xi

Graded 2-generated axial algebras. (arXiv:2005.03577v1 [math.RA])

Axial algebras are non-associative algebras generated by semisimple idempotents whose adjoint actions obey a fusion law. Axial algebras that are generated by two such idempotents play a crucial role in the theory. We classify all primitive 2-generated axial algebras whose fusion laws have two eigenvalues and all graded primitive 2-generated axial algebras whose fusion laws have three eigenvalues. This represents a significant broadening in our understanding of axial algebras.




xi

Minimal acceleration for the multi-dimensional isentropic Euler equations. (arXiv:2005.03570v1 [math.AP])

Among all dissipative solutions of the multi-dimensional isentropic Euler equations there exists at least one that minimizes the acceleration, which implies that the solution is as close to being a weak solution as possible. The argument is based on a suitable selection procedure.




xi

Connectedness of square-free Groebner Deformations. (arXiv:2005.03569v1 [math.AC])

Let $Isubseteq S=K[x_1,ldots,x_n]$ be a homogeneous ideal equipped with a monomial order $<$. We show that if $operatorname{in}_<(I)$ is a square-free monomial ideal, then $S/I$ and $S/operatorname{in}_<(I)$ have the same connectedness dimension. We also show that graphs related to connectedness of these quotient rings have the same number of components. We also provide consequences regarding Lyubeznik numbers. We obtain these results by furthering the study of connectedness modulo a parameter in a local ring.




xi

Phase Transitions for one-dimensional Lorenz-like expanding Maps. (arXiv:2005.03558v1 [math.DS])

Given an one-dimensional Lorenz-like expanding map we prove that the conditionlinebreak $P_{top}(phi,partial mathcal{P},ell)<P_{top}(phi,ell)$ (see, subsection 2.4 for definition), introduced by Buzzi and Sarig in [1] is satisfied for all continuous potentials $phi:[0,1]longrightarrow mathbb{R}$. We apply this to prove that quasi-H"older-continuous potentials (see, subsection 2.2 for definition) have at most one equilibrium measure and we construct a family of continuous but not H"older and neither weak H"older continuous potentials for which we observe phase transitions. Indeed, this class includes all H"older and weak-H"older continuous potentials and form an open and [2].




xi

Off-diagonal estimates for bi-commutators. (arXiv:2005.03548v1 [math.CA])

We study the bi-commutators $[T_1, [b, T_2]]$ of pointwise multiplication and Calder'on-Zygmund operators, and characterize their $L^{p_1}L^{p_2} o L^{q_1}L^{q_2}$ boundedness for several off-diagonal regimes of the mixed-norm integrability exponents $(p_1,p_2) eq(q_1,q_2)$. The strategy is based on a bi-parameter version of the recent approximate weak factorization method.




xi

Special subvarieties of non-arithmetic ball quotients and Hodge Theory. (arXiv:2005.03524v1 [math.AG])

Let $Gamma subset operatorname{PU}(1,n)$ be a lattice, and $S_Gamma$ the associated ball quotient. We prove that, if $S_Gamma$ contains infinitely many maximal totally geodesic subvarieties, then $Gamma$ is arithmetic. We also prove an Ax-Schanuel Conjecture for $S_Gamma$, similar to the one recently proven by Mok, Pila and Tsimerman. One of the main ingredients in the proofs is to realise $S_Gamma$ inside a period domain for polarised integral variations of Hodge structures and interpret totally geodesic subvarieties as unlikely intersections.




xi

Asymptotic behavior of Wronskian polynomials that are factorized via $p$-cores and $p$-quotients. (arXiv:2005.03516v1 [math.CA])

In this paper we consider Wronskian polynomials labeled by partitions that can be factorized via the combinatorial concepts of $p$-cores and $p$-quotients. We obtain the asymptotic behavior for these polynomials when the $p$-quotient is fixed while the size of the $p$-core grows to infinity. For this purpose, we associate the $p$-core with its characteristic vector and let all entries of this vector simultaneously tend to infinity. This result generalizes the Wronskian Hermite setting which is recovered when $p=2$.




xi

Twisted quadrics and algebraic submanifolds in R^n. (arXiv:2005.03509v1 [math-ph])

We propose a general procedure to construct noncommutative deformations of an algebraic submanifold $M$ of $mathbb{R}^n$, specializing the procedure [G. Fiore, T. Weber, Twisted submanifolds of $mathbb{R}^n$, arXiv:2003.03854] valid for smooth submanifolds. We use the framework of twisted differential geometry of [Aschieri et al.,Class. Quantum Gravity 23 (2006), 1883], whereby the commutative pointwise product is replaced by the $star$-product determined by a Drinfel'd twist. We actually simultaneously construct noncommutative deformations of all the algebraic submanifolds $M_c$ that are level sets of the $f^a(x)$, where $f^a(x)=0$ are the polynomial equations solved by the points of $M$, employing twists based on the Lie algebra $Xi_t$ of vector fields that are tangent to all the $M_c$. The twisted Cartan calculus is automatically equivariant under twisted $Xi_t$. If we endow $mathbb{R}^n$ with a metric, then twisting and projecting to normal or tangent components commute, projecting the Levi-Civita connection to the twisted $M$ is consistent, and in particular a twisted Gauss theorem holds, provided the twist is based on Killing vector fields. Twisted algebraic quadrics can be characterized in terms of generators and $star$-polynomial relations. We explicitly work out deformations based on abelian or Jordanian twists of all quadrics in $mathbb{R}^3$ except ellipsoids, in particular twisted cylinders embedded in twisted Euclidean $mathbb{R}^3$ and twisted hyperboloids embedded in twisted Minkowski $mathbb{R}^3$ [the latter are twisted (anti-)de Sitter spaces $dS_2,AdS_2$].




xi

Continuity properties of the shearlet transform and the shearlet synthesis operator on the Lizorkin type spaces. (arXiv:2005.03505v1 [math.FA])

We develop a distributional framework for the shearlet transform $mathcal{S}_{psi}colonmathcal{S}_0(mathbb{R}^2) omathcal{S}(mathbb{S})$ and the shearlet synthesis operator $mathcal{S}^t_{psi}colonmathcal{S}(mathbb{S}) omathcal{S}_0(mathbb{R}^2)$, where $mathcal{S}_0(mathbb{R}^2)$ is the Lizorkin test function space and $mathcal{S}(mathbb{S})$ is the space of highly localized test functions on the standard shearlet group $mathbb{S}$. These spaces and their duals $mathcal{S}_0^prime (mathbb R^2),, mathcal{S}^prime (mathbb{S})$ are called Lizorkin type spaces of test functions and distributions. We analyze the continuity properties of these transforms when the admissible vector $psi$ belongs to $mathcal{S}_0(mathbb{R}^2)$. Then, we define the shearlet transform and the shearlet synthesis operator of Lizorkin type distributions as transpose mappings of the shearlet synthesis operator and the shearlet transform, respectively. They yield continuous mappings from $mathcal{S}_0^prime (mathbb R^2)$ to $mathcal{S}^prime (mathbb{S})$ and from $mathcal{S}^prime (mathbb S)$ to $mathcal{S}_0^prime (mathbb{R}^2)$. Furthermore, we show the consistency of our definition with the shearlet transform defined by direct evaluation of a distribution on the shearlets. The same can be done for the shearlet synthesis operator. Finally, we give a reconstruction formula for Lizorkin type distributions, from which follows that the action of such generalized functions can be written as an absolutely convergent integral over the standard shearlet group.




xi

Toric Sasaki-Einstein metrics with conical singularities. (arXiv:2005.03502v1 [math.DG])

We show that any toric K"ahler cone with smooth compact cross-section admits a family of Calabi-Yau cone metrics with conical singularities along its toric divisors. The family is parametrized by the Reeb cone and the angles are given explicitly in terms of the Reeb vector field. The result is optimal, in the sense that any toric Calabi-Yau cone metric with conical singularities along the toric divisor (and smooth elsewhere) belongs to this family. We also provide examples and interpret our results in terms of Sasaki-Einstein metrics.




xi

A reaction-diffusion system to better comprehend the unlockdown: Application of SEIR-type model with diffusion to the spatial spread of COVID-19 in France. (arXiv:2005.03499v1 [q-bio.PE])

A reaction-diffusion model was developed describing the spread of the COVID-19 virus considering the mean daily movement of susceptible, exposed and asymptomatic individuals. The model was calibrated using data on the confirmed infection and death from France as well as their initial spatial distribution. First, the system of partial differential equations is studied, then the basic reproduction number, R0 is derived. Second, numerical simulations, based on a combination of level-set and finite differences, shown the spatial spread of COVID-19 from March 16 to June 16. Finally, scenarios of unlockdown are compared according to variation of distancing, or partially spatial lockdown.




xi

Continuity in a parameter of solutions to boundary-value problems in Sobolev spaces. (arXiv:2005.03494v1 [math.CA])

We consider the most general class of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of an arbitrary order whose solutions and right-hand sides belong to appropriate Sobolev spaces. For parameter-dependent problems from this class, we prove a constructive criterion for their solutions to be continuous in the Sobolev space with respect to the parameter. We also prove a two-sided estimate for the degree of convergence of these solutions to the solution of the nonperturbed problem.




xi

On completion of unimodular rows over polynomial extension of finitely generated rings over $mathbb{Z}$. (arXiv:2005.03485v1 [math.AC])

In this article, we prove that if $R$ is a finitely generated ring over $mathbb{Z}$ of dimension $d, dgeq2, frac{1}{d!}in R$, then any unimodular row over $R[X]$ of length $d+1$ can be mapped to a factorial row by elementary transformations.




xi

Solving equations in dense Sidon sets. (arXiv:2005.03484v1 [math.CO])

We offer an alternative proof of a result of Conlon, Fox, Sudakov and Zhao on solving translation-invariant linear equations in dense Sidon sets. Our proof generalises to equations in more than five variables and yields effective bounds.




xi

Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric. (arXiv:2005.03483v1 [math.DG])

In cite{S 2017}, Suh gave a non-existence theorem for Hopf real hypersurfaces in the complex quadric with parallel normal Jacobi operator. Motivated by this result, in this paper, we introduce some generalized conditions named $mathcal C$-parallel or Reeb parallel normal Jacobi operators. By using such weaker parallelisms of normal Jacobi operator, first we can assert a non-existence theorem of Hopf real hypersurfaces with $mathcal C$-parallel normal Jacobi operator in the complex quadric $Q^{m}$, $m geq 3$. Next, we prove that a Hopf real hypersurface has Reeb parallel normal Jacobi operator if and only if it has an $mathfrak A$-isotropic singular normal vector field.




xi

Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces. (arXiv:2005.03481v1 [math.DG])

We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a "fundamental cubic form" for which we provide a closed simple expression.




xi

$k$-Critical Graphs in $P_5$-Free Graphs. (arXiv:2005.03441v1 [math.CO])

Given two graphs $H_1$ and $H_2$, a graph $G$ is $(H_1,H_2)$-free if it contains no induced subgraph isomorphic to $H_1$ or $H_2$. Let $P_t$ be the path on $t$ vertices. A graph $G$ is $k$-vertex-critical if $G$ has chromatic number $k$ but every proper induced subgraph of $G$ has chromatic number less than $k$. The study of $k$-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is $(k-1)$-colorable.

In this paper, we initiate a systematic study of the finiteness of $k$-vertex-critical graphs in subclasses of $P_5$-free graphs. Our main result is a complete classification of the finiteness of $k$-vertex-critical graphs in the class of $(P_5,H)$-free graphs for all graphs $H$ on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs $H$ using various techniques -- such as Ramsey-type arguments and the dual of Dilworth's Theorem -- that may be of independent interest.




xi

On the connection problem for the second Painlev'e equation with large initial data. (arXiv:2005.03440v1 [math.CA])

We consider two special cases of the connection problem for the second Painlev'e equation (PII) using the method of uniform asymptotics proposed by Bassom et al.. We give a classification of the real solutions of PII on the negative (positive) real axis with respect to their initial data. By product, a rigorous proof of a property associate with the nonlinear eigenvalue problem of PII on the real axis, recently revealed by Bender and Komijani, is given by deriving the asymptotic behavior of the Stokes multipliers.




xi

The formation of trapped surfaces in the gravitational collapse of spherically symmetric scalar fields with a positive cosmological constant. (arXiv:2005.03434v1 [gr-qc])

Given spherically symmetric characteristic initial data for the Einstein-scalar field system with a positive cosmological constant, we provide a criterion, in terms of the dimensionless size and dimensionless renormalized mass content of an annular region of the data, for the formation of a future trapped surface. This corresponds to an extension of Christodoulou's classical criterion by the inclusion of the cosmological term.




xi

Aspiration can promote cooperation in well-mixed populations as in regular graphs. (arXiv:2005.03421v1 [q-bio.PE])

Classical studies on aspiration-based dynamics suggest that a dissatisfied individual changes strategy without taking into account the success of others. This promotes defection spreading. The imitation-based dynamics allow individuals to imitate successful strategies without taking into account their own-satisfactions. In this article, we propose to study a dynamic based on aspiration which takes into account imitation of successful strategies for dissatisfied individuals. This helps cooperative members to resist. Individuals compare their success to their desired satisfaction level before making a decision to update their strategies. This mechanism helps individuals with a minimum of self-satisfaction to maintain their strategies. If an individual is dissatisfied, it will learn from others by choosing successful strategies. We derive an exact expression of the fixation probability in well-mixed populations as in structured populations in networks. As a result, we show that selection may favor cooperation more than defection in well-mixed populations as in populations ranged over a regular graph. We show that the best scenario is a graph with small connectivity.




xi

A note on Penner's cocycle on the fatgraph complex. (arXiv:2005.03414v1 [math.GT])

We study a 1-cocycle on the fatgraph complex of a punctured surface introduced by Penner. We present an explicit cobounding cochain for this cocycle, whose formula involves a summation over trivalent vertices of a trivalent fatgraph spine. In a similar fashion, we express the symplectic form of the underlying surface of a given fatgraph spine.




xi

Sums of powers of integers and hyperharmonic numbers. (arXiv:2005.03407v1 [math.NT])

In this paper, we derive a formula for the sums of powers of the first $n$ positive integers that involves the hyperharmonic numbers and the Stirling numbers of the second kind. Then, using an explicit representation for the hyperharmonic numbers, we generalize this formula to the sums of powers of an arbitrary arithmetic progression. Moreover, as a by-product, we express the Bernoulli polynomials in terms of the hyperharmonic polynomials and the Stirling numbers of the second kind.




xi

Removable singularities for Lipschitz caloric functions in time varying domains. (arXiv:2005.03397v1 [math.CA])

In this paper we study removable singularities for regular $(1,1/2)$-Lipschitz solutions of the heat equation in time varying domains. We introduce an associated Lipschitz caloric capacity and we study its metric and geometric properties and the connection with the $L^2$ boundedness of the singular integral whose kernel is given by the gradient of the fundamental solution of the heat equation.




xi

A closer look at the non-Hopfianness of $BS(2,3)$. (arXiv:2005.03396v1 [math.GR])

The Baumslag Solitar group $BS(2,3)$, is a so-called non-Hopfian group, meaning that it has an epimorphism $phi$ onto itself, that is not injective. In particular this is equivalent to saying that $BS(2,3)$ has a quotient that is isomorphic to itself. As a consequence the Cayley graph of $BS(2,3)$ has a quotient that is isomorphic to itself up to change of generators. We describe this quotient on the graph-level and take a closer look at the most common epimorphism $phi$. We show its kernel is a free group of infinite rank with an explicit set of generators.




xi

Semiglobal non-oscillatory big bang singular spacetimes for the Einstein-scalar field system. (arXiv:2005.03395v1 [math-ph])

We construct semiglobal singular spacetimes for the Einstein equations coupled to a massless scalar field. Consistent with the heuristic analysis of Belinskii, Khalatnikov, Lifshitz or BKL for this system, there are no oscillations due to the scalar field. (This is much simpler than the oscillatory BKL heuristics for the Einstein vacuum equations.) Prior results are due to Andersson and Rendall in the real analytic case, and Rodnianski and Speck in the smooth near-spatially-flat-FLRW case. Similar to Andersson and Rendall we give asymptotic data at the singularity, which we refer to as final data, but our construction is not limited to real analytic solutions. This paper is a test application of tools (a graded Lie algebra formulation of the Einstein equations and a filtration) intended for the more subtle vacuum case. We use homological algebra tools to construct a formal series solution, then symmetric hyperbolic energy estimates to construct a true solution well-approximated by truncations of the formal one. We conjecture that the image of the map from final data to initial data is an open set of anisotropic initial data.




xi

Maximum of Exponential Random Variables, Hurwitz's Zeta Function, and the Partition Function. (arXiv:2005.03392v1 [math.PR])

A natural problem in the context of the coupon collector's problem is the behavior of the maximum of independent geometrically distributed random variables (with distinct parameters). This question has been addressed by Brennan et al. (British J. of Math. & CS. 8 (2015), 330-336). Here we provide explicit asymptotic expressions for the moments of that maximum, as well as of the maximum of exponential random variables with corresponding parameters. We also deal with the probability of each of the variables being the maximal one.

The calculations lead to expressions involving Hurwitz's zeta function at certain special points. We find here explicitly the values of the function at these points. Also, the distribution function of the maximum we deal with is closely related to the generating function of the partition function. Thus, our results (and proofs) rely on classical results pertaining to the partition function.




xi

Minimum pair degree condition for tight Hamiltonian cycles in $4$-uniform hypergraphs. (arXiv:2005.03391v1 [math.CO])

We show that every 4-uniform hypergraph with $n$ vertices and minimum pair degree at least $(5/9+o(1))n^2/2$ contains a tight Hamiltonian cycle. This degree condition is asymptotically optimal.




xi

Filtered expansions in general relativity II. (arXiv:2005.03390v1 [math-ph])

This is the second of two papers in which we construct formal power series solutions in external parameters to the vacuum Einstein equations, implementing one bounce for the Belinskii-Khalatnikov-Lifshitz (BKL) proposal for spatially inhomogeneous spacetimes. Here we show that spatially inhomogeneous perturbations of spatially homogeneous elements are unobstructed. A spectral sequence for a filtered complex, and a homological contraction based on gauge-fixing, are used to do this.




xi

Clear elements and clear rings. (arXiv:2005.03387v1 [math.AC])

An element in a ring $R$ is called clear if it is the sum of unit-regular element and unit. An associative ring is clear if every its element is clear. In this paper we defined clear rings and extended many results to wider class. Finally, we proved that a commutative B'ezout domain is an elementary divisor ring if and only if every full matrix order 2 over it is nontrivial clear.




xi

A reducibility problem for even Unitary groups: The depth zero case. (arXiv:2005.03386v1 [math.RT])

We study a problem concerning parabolic induction in certain p-adic unitary groups. More precisely, for $E/F$ a quadratic extension of p-adic fields the associated unitary group $G=mathrm{U}(n,n)$ contains a parabolic subgroup $P$ with Levi component $L$ isomorphic to $mathrm{GL}_n(E)$. Let $pi$ be an irreducible supercuspidal representation of $L$ of depth zero. We use Hecke algebra methods to determine when the parabolically induced representation $iota_P^G pi$ is reducible.




xi

A theory of stacks with twisted fields and resolution of moduli of genus two stable maps. (arXiv:2005.03384v1 [math.AG])

We construct a smooth moduli stack of tuples consisting of genus two nodal curves, line bundles, and twisted fields. It leads to a desingularization of the moduli of genus two stable maps to projective spaces. The construction of this new moduli is based on systematical application of the theory of stacks with twisted fields (STF), which has its prototype appeared in arXiv:1906.10527 and arXiv:1201.2427 and is fully developed in this article. The results of this article are the second step of a series of works toward the resolutions of the moduli of stable maps of higher genera.




xi

A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz. (arXiv:2005.03377v1 [math.AP])

In this paper, we study the regularity criterion of weak solutions to the three-dimensional (3D) MHD equations. It is proved that the solution $(u,b)$ becomes regular provided that one velocity and one current density component of the solution satisfy% egin{equation} u_{3}in L^{frac{30alpha }{7alpha -45}}left( 0,T;L^{alpha ,infty }left( mathbb{R}^{3} ight) ight) ext{ with }frac{45}{7}% leq alpha leq infty , label{eq01} end{equation}% and egin{equation} j_{3}in L^{frac{2eta }{2eta -3}}left( 0,T;L^{eta ,infty }left( mathbb{R}^{3} ight) ight) ext{ with }frac{3}{2}leq eta leq infty , label{eq02} end{equation}% which generalize some known results.




xi

Type space functors and interpretations in positive logic. (arXiv:2005.03376v1 [math.LO])

We construct a 2-equivalence $mathfrak{CohTheory}^ ext{op} simeq mathfrak{TypeSpaceFunc}$. Here $mathfrak{CohTheory}$ is the 2-category of positive theories and $mathfrak{TypeSpaceFunc}$ is the 2-category of type space functors. We give a precise definition of interpretations for positive logic, which will be the 1-cells in $mathfrak{CohTheory}$. The 2-cells are definable homomorphisms. The 2-equivalence restricts to a duality of categories, making precise the philosophy that a theory is `the same' as the collection of its type spaces (i.e. its type space functor).

In characterising those functors that arise as type space functors, we find that they are specific instances of (coherent) hyperdoctrines. This connects two different schools of thought on the logical structure of a theory.

The key ingredient, the Deligne completeness theorem, arises from topos theory, where positive theories have been studied under the name of coherent theories.