cro

Microsecond time-resolved X-ray diffraction for the investigation of fatigue behavior during ultrasonic fatigue loading

A new method based on time-resolved X-ray diffraction is proposed in order to measure the elastic strain and stress during ultrasonic fatigue loading experiments. Pure Cu was chosen as an example material for the experiments using a 20 kHz ultrasonic fatigue machine mounted on the six-circle diffractometer available at the DiffAbs beamline on the SOLEIL synchrotron facility in France. A two-dimensional hybrid pixel X-ray detector (XPAD3.2) was triggered by the strain gage signal in a synchronous data acquisition scheme (pump–probe-like). The method enables studying loading cycles with a period of 50 µs, achieving a temporal resolution of 1 µs. This allows a precise reconstruction of the diffraction patterns during the loading cycles. From the diffraction patterns, the position of the peaks, their shifts and their respective broadening can be deduced. The diffraction peak shift allows the elastic lattice strain to be estimated with a resolution of ∼10−5. Stress is calculated by the self-consistent scale-transition model through which the elastic response of the material is estimated. The amplitudes of the cyclic stresses range from 40 to 120 MPa and vary linearly with respect to the displacement applied by the ultrasonic machine. Moreover, the experimental results highlight an increase of the diffraction peak broadening with the number of applied cycles.




cro

X-ray fluorescence analysis of metal distributions in cryogenic biological samples using large-acceptance-angle SDD detection and continuous scanning at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III

A new Rococo 2 X-ray fluorescence detector was implemented into the cryogenic sample environment at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III, DESY, Hamburg, Germany. A four sensor-field cloverleaf design is optimized for the investigation of planar samples and operates in a backscattering geometry resulting in a large solid angle of up to 1.1 steradian. The detector, coupled with the Xspress 3 pulse processor, enables measurements at high count rates of up to 106 counts per second per sensor. The measured energy resolution of ∼129 eV (Mn Kα at 10000 counts s−1) is only minimally impaired at the highest count rates. The resulting high detection sensitivity allows for an accurate determination of trace element distributions such as in thin frozen hydrated biological specimens. First proof-of-principle measurements using continuous-movement 2D scans of frozen hydrated HeLa cells as a model system are reported to demonstrate the potential of the new detection system.




cro

X-ray fluorescence detection for serial macromolecular crystallography using a JUNGFRAU pixel detector

Detection of heavy elements, such as metals, in macromolecular crystallography (MX) samples by X-ray fluorescence is a function traditionally covered at synchrotron MX beamlines by silicon drift detectors, which cannot be used at X-ray free-electron lasers because of the very short duration of the X-ray pulses. Here it is shown that the hybrid pixel charge-integrating detector JUNGFRAU can fulfill this function when operating in a low-flux regime. The feasibility of precise position determination of micrometre-sized metal marks is also demonstrated, to be used as fiducials for offline prelocation in serial crystallography experiments, based on the specific fluorescence signal measured with JUNGFRAU, both at the synchrotron and at SwissFEL. Finally, the measurement of elemental absorption edges at a synchrotron beamline using JUNGFRAU is also demonstrated.




cro

A lathe system for micrometre-sized cylindrical sample preparation at room and cryogenic temperatures

A simple two-spindle based lathe system for the preparation of cylindrical samples intended for X-ray tomography is presented. The setup can operate at room temperature as well as under cryogenic conditions, allowing the preparation of samples down to 20 and 50 µm in diameter, respectively, within minutes. Case studies are presented involving the preparation of a brittle biomineral brachiopod shell and cryogenically fixed soft brain tissue, and their examination by means of ptychographic X-ray computed tomography reveals the preparation method to be mainly free from causing artefacts. Since this lathe system easily yields near-cylindrical samples ideal for tomography, a usage for a wide variety of otherwise challenging specimens is anticipated, in addition to potential use as a time- and cost-saving tool prior to focused ion-beam milling. Fast sample preparation becomes especially important in relation to shorter measurement times expected in next-generation synchrotron sources.




cro

Limited angle tomography for transmission X-ray microscopy using deep learning

In transmission X-ray microscopy (TXM) systems, the rotation of a scanned sample might be restricted to a limited angular range to avoid collision with other system parts or high attenuation at certain tilting angles. Image reconstruction from such limited angle data suffers from artifacts because of missing data. In this work, deep learning is applied to limited angle reconstruction in TXMs for the first time. With the challenge to obtain sufficient real data for training, training a deep neural network from synthetic data is investigated. In particular, U-Net, the state-of-the-art neural network in biomedical imaging, is trained from synthetic ellipsoid data and multi-category data to reduce artifacts in filtered back-projection (FBP) reconstruction images. The proposed method is evaluated on synthetic data and real scanned chlorella data in 100° limited angle tomography. For synthetic test data, U-Net significantly reduces the root-mean-square error (RMSE) from 2.55 × 10−3 µm−1 in the FBP reconstruction to 1.21 × 10−3 µm−1 in the U-Net reconstruction and also improves the structural similarity (SSIM) index from 0.625 to 0.920. With penalized weighted least-square denoising of measured projections, the RMSE and SSIM are further improved to 1.16 × 10−3 µm−1 and 0.932, respectively. For real test data, the proposed method remarkably improves the 3D visualization of the subcellular structures in the chlorella cell, which indicates its important value for nanoscale imaging in biology, nanoscience and materials science.




cro

Investigating increasingly complex macromolecular systems with small-angle X-ray scattering

A review of recent and ongoing development and results within the field of biological solution small-angle X-ray scattering (BioSAXS), with a focus on the increasing complexity of biological samples, data collection and data evaluation strategies.




cro

Capability of X-ray diffraction for the study of microstructure of metastable thin films

PLEASE REDUCE TO 1-2 SENTENCES. The capability of X-ray diffraction for the microstructure investigations of metastable systems is illustrated on the example of thin films of titanium aluminium nitrides with high aluminium content, which are supersaturated and partially decomposed. In addition to the chemical composition, the surface mobility of the deposited species was employed as a factor influencing the microstructure of the thin films. It is shown how the micromechanical properties of the partially decomposed (Ti,Al)N thin films, which were deduced from the synchrotron diffraction experiments, are related to the thin film microstructure and to the decomposition mechanism. The prominent role of the crystallographic anisotropy of the macroscopic and microscopic lattice deformations in the understanding of the micromechanical properties is addressed.




cro

Macromolecular X-ray crystallography: soon to be a road less travelled?

From the perspective of a young(ish) structural biologist who currently specialises in macromolecular X-ray crystallography, are the best years of crystallography over? Some evidence and hopefully thought-provoking analysis is presented here on the subject.




cro

Bis(15-crown-5-κ5O)barium tetra­kis­(iso­thio­cynato-κN)zinc(II)

In the title compound, [Ba(C10H20O5)2][Zn(NCS)4], the 15-crown-5 mol­ecules are disordered over two positions with site occupancies of 0.706 (4) and 0.294 (4). The Ba2+ ions are sandwiched between the 15-crown-5 rings and Zn2+ ions are surrounded by four N atoms from the thio­cyanate ligands in a distorted tetra­hedral geometry. The crystal studied was refined as an inversion twin.




cro

Hydro­nium bis­(tri­fluoro­methane­sulfon­yl)amide–18-crown-6 (1/1)

The structure of the title compound, H3O+·C2F6NO4S2−·C12H24O6 or [H3O+·C12H24O6][N(SO2CF3)2−], which is an ionic liquid with a melting point of 341–343 K, has been determined at 113 K. The asymmetric unit consists of two crystallographically independent 18-crown-6 mol­ecules, two hydro­nium ions and two bis­(tri­fluoro­methane­sulfon­yl)amide anions; each 18-crown-6 mol­ecule complexes with a hydro­nium ion. In one 18-crown-6 mol­ecule, a part of the ring exhibits conformational disorder over two sets of sites with an occupancy ratio of 0.533 (13):0.467 (13). One hydro­nium ion is complexed with the ordered 18-crown-6 mol­ecule via O—H⋯O hydrogen bonds with H2OH⋯OC distances of 1.90 (6)–2.19 (7) Å, and the other hydro­nium ion with the disordered crown mol­ecule with distances of 1.85 (6)–2.36 (6) Å. The hydro­nium ions are also linked to the anions via O—H⋯F hydrogen bonds. The crystal studied was found to be a racemic twin with a component ratio of 0.55 (13):0.45 (13).




cro

The crystal structures of {LnCu5}3+ (Ln = Gd, Dy and Ho) 15-metallacrown-5 complexes and a reevaluation of the isotypic EuIII analogue

Three new isotypic heteropolynuclear complexes, namely penta­aqua­carbonato­penta­kis­(glycinehydroxamato)nitrato­penta­copper(II)lanthanide(III) x-hydrate, [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5]·xH2O (GlyHA2− is glycine­hydrox­amate, N-hy­droxy­glycinamidate or amino­aceto­hydroxamate, C2H4N2O22−), with lanthanide(III) (LnIII) = gadolinium (Gd, 1, x = 3.5), dysprosium (Dy, 2, x = 3.28) and holmium (Ho, 3, x = 3.445), within a 15-metallacrown-5 class were obtained on reaction of lanthanide(III) nitrate, copper(II) acetate and sodium glycinehydroxamate. Complexes 1–3 contain five copper(II) ions and five bridging GlyHA2− anions, forming a [CuGlyHA]5 metallamacrocyclic core. The LnIII ions are coordinated to the metallamacrocycle through five O-donor hydroxamates. The electroneutrality of complexes 1–3 is achieved by a bidentate carbonate anion coordinated to the LnIII ion and a monodentate nitrate anion coordinated apically to one of the copper(II) ions of the metallamacrocycle. The lattice parameters of complexes 1–3 are similar to those previously reported for an EuIII–CuII 15-metallacrown-5 complex with glycine­hydroxamate of proposed composition [EuCu5(GlyHA)5(OH)(NO3)2(H2O)4]·3.5H2O [Stemmler et al. (1999). Inorg. Chem. 38, 2807–2817]. High-quality X-ray data obtained for 1–3 have allowed a re-evaluation of the X-ray data solution proposed earlier for the EuCu5 complex and suggest that the formula is actually [EuCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.5H2O.




cro

Crystal structure of [K(18-crown-6)]+2[Pt(CN)4]2−

In the title compound, di-μ-cyanato-1:2κ2N:C;2:3κ2C:N-di­cyanato-2κ2C-bis­(1,4,7,10,13,16-hexa­oxa­cyclo­octa­deca­ne)-1κ6O;3κ6O-1,3-dipotassium(I)-2-platinum(II), [K2Pt(CN)4(C12H24O6)2] or [K(18-crown-6)]2·[Pt(CN)4], two trans-orientated cyano groups of the square-planar [Pt(CN)4]2− dianion (Pt site symmetry overline{1}) bind to one potassium ion each, which are additionally coordinated by the six O atoms of 18-crown-6. No Pt⋯Pt inter­actions occur in the crystal, but very weak Pt⋯H contacts (2.79 Å) are observed.




cro

Synthesis and crystal structure of a penta­copper(II) 12-metallacrown-4: cis-di­aqua­tetra­kis­(di­methyl­formamide-κO)manganese(II) tetra­kis­(μ3-N,2-dioxido­benzene-1-carboximidate)penta­copper(II)

The title compound, [Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NO or cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF, where MC is metallacrown, shi3− is salicyl­hydroximate, and DMF is N,N-di­methyl­formamide, crystallizes in the monoclinic space group P21/n. Two crystallographically independent metallacrown anions are present in the structure, and both anions exhibit minor main mol­ecule disorder by an approximate (non-crystallographic) 180° rotation with occupancy ratios of 0.9010 (9) to 0.0990 (9) for one anion and 0.9497 (8) to 0.0503 (8) for the other. Each penta­copper(II) metallacrown contains four CuII ions in the MC ring and a CuII ion captured in the central cavity. Each CuII ion is four-coordinate with a square-planar geometry. The anionic {Cu[12-MCCu(II)N(shi)-4]}2− is charged-balanced by the presence of a cis-[Mn(H2O)2(DMF)4]2+ cation located in the lattice. In addition, the octa­hedral MnII counter-cation is hydrogen bonded to both MC anions via the coordinated water mol­ecules of the MnII ion. The water mol­ecules form hydrogen bonds with the phenolate and carbonyl oxygen atoms of the shi3− ligands of the MCs.




cro

Optimization of crystallization of biological macromolecules using dialysis combined with temperature control

A rational way to find the appropriate conditions to grow crystal samples for bio-crystallography is to determine the crystallization phase diagram, which allows precise control of the parameters affecting the crystal growth process. First, the nucleation is induced at supersaturated conditions close to the solubility boundary between the nucleation and metastable regions. Then, crystal growth is further achieved in the metastable zone – which is the optimal location for slow and ordered crystal expansion – by modulation of specific physical parameters. Recently, a prototype of an integrated apparatus for the rational optimization of crystal growth by mapping and manipulating temperature–precipitant–concentration phase diagrams has been constructed. Here, it is demonstrated that a thorough knowledge of the phase diagram is vital in any crystallization experiment. The relevance of the selection of the starting position and the kinetic pathway undertaken in controlling most of the final properties of the synthesized crystals is shown. The rational crystallization optimization strategies developed and presented here allow tailoring of crystal size and diffraction quality, significantly reducing the time, effort and amount of expensive protein material required for structure determination.




cro

Sulfur-SAD phasing from microcrystals utilizing low-energy X-rays




cro

Magnetic field-induced magnetostructural transition and huge tensile superelasticity in an oligocrystalline Ni–Cu–Co–Mn–In microwire

Meta-magnetic shape-memory alloys combine ferroelastic order with ferromagnetic order and exhibit attractive multifunctional properties, but they are extremely brittle, showing hardly any tensile deformability, which impedes their practical application. Here, for the first time, an Ni–Cu–Co–Mn–In microwire has been developed that simultaneously exhibits a magnetic field-induced first-order meta-magnetic phase transition and huge tensile superelasticity. A temperature-dependent in situ synchrotron high-energy X-ray diffraction investigation reveals that the martensite of this Ni43.7Cu1.5Co5.1Mn36.7In13 microwire shows a monoclinic six-layered modulated structure and the austenite shows a cubic structure. This microwire exhibits an oligocrystalline structure with bamboo grains, which remarkably reduces the strain incompatibility during deformation and martensitic transformation. As a result, huge tensile superelasticity with a recoverable strain of 13% is achieved in the microwire. This huge tensile superelasticity is in agreement with our theoretical calculations based on the crystal structure and lattice correspondence of austenite and martensite and the crystallographic orientation of the grains. Owing to the large magnetization difference between austenite and martensite, a pronounced magnetic field-induced magnetostructural transition is achieved in the microwire, which could give rise to a variety of magnetically driven functional properties. For example, a large magnetocaloric effect with an isothermal entropy change of 12.7 J kg−1 K−1 (under 5 T) is obtained. The realization of magnetic-field- and tensile-stress-induced structural transformations in the microwire may pave the way for exploiting the multifunctional properties under the coupling of magnetic field and stress for applications in miniature multifunctional devices.




cro

MicroED with the Falcon III direct electron detector

Microcrystal electron diffraction (MicroED) combines crystallography and electron cryo-microscopy (cryo-EM) into a method that is applicable to high-resolution structure determination. In MicroED, nanosized crystals, which are often intractable using other techniques, are probed by high-energy electrons in a transmission electron microscope. Diffraction data are recorded by a camera in movie mode: the nanocrystal is continuously rotated in the beam, thus creating a sequence of frames that constitute a movie with respect to the rotation angle. Until now, diffraction-optimized cameras have mostly been used for MicroED. Here, the use of a direct electron detector that was designed for imaging is reported. It is demonstrated that data can be collected more rapidly using the Falcon III for MicroED and with markedly lower exposure than has previously been reported. The Falcon III was operated at 40 frames per second and complete data sets reaching atomic resolution were recorded in minutes. The resulting density maps to 2.1 Å resolution of the serine protease proteinase K showed no visible signs of radiation damage. It is thus demonstrated that dedicated diffraction-optimized detectors are not required for MicroED, as shown by the fact that the very same cameras that are used for imaging applications in electron microscopy, such as single-particle cryo-EM, can also be used effectively for diffraction measurements.




cro

DeepRes: a new deep-learning- and aspect-based local resolution method for electron-microscopy maps

In this article, a method is presented to estimate a new local quality measure for 3D cryoEM maps that adopts the form of a `local resolution' type of information. The algorithm (DeepRes) is based on deep-learning 3D feature detection. DeepRes is fully automatic and parameter-free, and avoids the issues of most current methods, such as their insensitivity to enhancements owing to B-factor sharpening (unless the 3D mask is changed), among others, which is an issue that has been virtually neglected in the cryoEM field until now. In this way, DeepRes can be applied to any map, detecting subtle changes in local quality after applying enhancement processes such as isotropic filters or substantially more complex procedures, such as model-based local sharpening, non-model-based methods or denoising, that may be very difficult to follow using current methods. It performs as a human observer expects. The comparison with traditional local resolution indicators is also addressed.




cro

Measuring energy-dependent photoelectron escape in microcrystals

With the increasing trend of using microcrystals and intense microbeams at synchrotron X-ray beamlines, radiation damage becomes a more pressing problem. Theoretical calculations show that the photoelectrons that primarily cause damage can escape microcrystals. This effect would become more pronounced with decreasing crystal size as well as at higher energies. To prove this effect, data from cryocooled lysozyme crystals of dimensions 5 × 3 × 3 and 20 × 8 × 8 µm mounted on cryo-transmission electron microscopy (cryo-TEM) grids were collected at 13.5 and 20.1 keV using a PILATUS CdTe 2M detector, which has a similar quantum efficiency at both energies. Accurate absorbed doses were calculated through the direct measurement of individual crystal sizes using scanning electron microscopy after the experiment and characterization of the X-ray microbeam. The crystal lifetime was then quantified based on the D1/2 metric. In this first systematic study, a longer crystal lifetime for smaller crystals was observed and crystal lifetime increased at higher X-ray energies, supporting the theoretical predictions of photoelectron escape. The use of detector technologies specifically optimized for data collection at energies above 20 keV allows the theoretically predicted photoelectron escape to be quantified and exploited, guiding future beamline-design choices.




cro

3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow

Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX.




cro

The early history of cryo-cooling for macromolecular crystallography

This paper recounts the first successful cryo-cooling of protein crystals that demonstrated the reduction in X-ray damage to macromolecular crystals. The project was suggested by David C. Phillips in 1965 at the Royal Institution of Great Britain and continued in 1967 at the Weizmann Institute of Science, where the first cryo-cooling experiments were performed on lysozyme crystals, and was completed in 1969 at Purdue University on lactate dehydrogenase crystals. A 1970 publication in Acta Crystallographica described the cryo-procedures, the use of cryo-protectants to prevent ice formation, the importance of fast, isotropic cryo-cooling and the collection of analytical data showing more than a tenfold decrease in radiation damage in cryo-cooled lactate dehydrogenase crystals. This was the first demonstration of any method that reduced radiation damage in protein crystals, which provided crystallographers with suitable means to employ synchrotron X-ray sources for protein-crystal analysis. Today, fifty years later, more than 90% of the crystal structures deposited in the Protein Data Bank have been cryo-cooled.




cro

Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals

Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme.




cro

Hypothesis for a mechanism of beam-induced motion in cryo-electron microscopy

Estimates of heat-transfer rates during plunge-cooling and the patterns of ice observed in cryo-EM samples indicate that the grid bars cool much more slowly than do the support foil and sample near the middle of the grid openings. The resulting transient temperature differences generate transient tensile stresses in the support foil. Most of this foil stress develops while the sample is liquid and cooling toward its glass transition Tg, and so does not generate tensile sample stress. As the grid bars continue cooling towards the cryogen temperature and contracting, the tensile stress in the foil is released, placing the sample in compressive stress. Radiation-induced creep in the presence of this compressive stress should generate a doming of the sample in the foil openings, as is observed experimentally. Crude estimates of the magnitude of the doming that may be generated by this mechanism are consistent with observation. Several approaches to reducing beam-induced motion are discussed.




cro

Scanning electron microscopy as a method for sample visualization in protein X-ray crystallography

Developing methods to determine high-resolution structures from micrometre- or even submicrometre-sized protein crystals has become increasingly important in recent years. This applies to both large protein complexes and membrane proteins, where protein production and the subsequent growth of large homogeneous crystals is often challenging, and to samples which yield only micro- or nanocrystals such as amyloid or viral polyhedrin proteins. The versatile macromolecular crystallography microfocus (VMXm) beamline at Diamond Light Source specializes in X-ray diffraction measurements from micro- and nanocrystals. Because of the possibility of measuring data from crystalline samples that approach the resolution limit of visible-light microscopy, the beamline design includes a scanning electron microscope (SEM) to visualize, locate and accurately centre crystals for X-ray diffraction experiments. To ensure that scanning electron microscopy is an appropriate method for sample visualization, tests were carried out to assess the effect of SEM radiation on diffraction quality. Cytoplasmic polyhedrosis virus polyhedrin protein crystals cryocooled on electron-microscopy grids were exposed to SEM radiation before X-ray diffraction data were collected. After processing the data with DIALS, no statistically significant difference in data quality was found between datasets collected from crystals exposed and not exposed to SEM radiation. This study supports the use of an SEM as a tool for the visualization of protein crystals and as an integrated visualization tool on the VMXm beamline.




cro

New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy

This study made use of a recently developed combination of advanced methods to reveal the atomic structure of a disordered nanocrystalline zeolite using exit wave reconstruction, automated diffraction tomography, disorder modelling and diffraction pattern simulation. By applying these methods, it was possible to determine the so far unknown structures of the hydrous layer silicate RUB-6 and the related zeolite-like material RUB-5. The structures of RUB-5 and RUB-6 contain the same dense layer-like building units (LLBUs). In the case of RUB-5, these building units are interconnected via additional SiO4/2 tetrahedra, giving rise to a framework structure with a 2D pore system consisting of intersecting 8-ring channels. In contrast, RUB-6 contains these LLBUs as separate silicate layers terminated by silanol/sil­oxy groups. Both RUB-6 and RUB-5 show stacking disorder with intergrowths of different polymorphs. The unique structure of RUB-6, together with the possibility for an interlayer expansion reaction to form RUB-5, make it a promising candidate for interlayer expansion with various metal sources to include catalytically active reaction centres.




cro

CM01: a facility for cryo-electron microscopy at the European Synchrotron

Recent improvements in direct electron detectors, microscope technology and software provided the stimulus for a `quantum leap' in the application of cryo-electron microscopy in structural biology, and many national and international centres have since been created in order to exploit this. Here, a new facility for cryo-electron microscopy focused on single-particle reconstruction of biological macromolecules that has been commissioned at the European Synchrotron Radiation Facility (ESRF) is presented. The facility is operated by a consortium of institutes co-located on the European Photon and Neutron Campus and is managed in a similar fashion to a synchrotron X-ray beamline. It has been open to the ESRF structural biology user community since November 2017 and will remain open during the 2019 ESRF–EBS shutdown.




cro

Prediction of models for ordered solvent in macromolecular structures by a classifier based upon resolution-independent projections of local feature data

Current software tools for the automated building of models for macro­molecular X-ray crystal structures are capable of assembling high-quality models for ordered macromolecule and small-molecule scattering components with minimal or no user supervision. Many of these tools also incorporate robust functionality for modelling the ordered water molecules that are found in nearly all macromolecular crystal structures. However, no current tools focus on differentiating these ubiquitous water molecules from other frequently occurring multi-atom solvent species, such as sulfate, or the automated building of models for such species. PeakProbe has been developed specifically to address the need for such a tool. PeakProbe predicts likely solvent models for a given point (termed a `peak') in a structure based on analysis (`probing') of its local electron density and chemical environment. PeakProbe maps a total of 19 resolution-dependent features associated with electron density and two associated with the local chemical environment to a two-dimensional score space that is independent of resolution. Peaks are classified based on the relative frequencies with which four different classes of solvent (including water) are observed within a given region of this score space as determined by large-scale sampling of solvent models in the Protein Data Bank. Designed to classify peaks generated from difference density maxima, PeakProbe also incorporates functionality for identifying peaks associated with model errors or clusters of peaks likely to correspond to multi-atom solvent, and for the validation of existing solvent models using solvent-omit electron-density maps. When tasked with classifying peaks into one of four distinct solvent classes, PeakProbe achieves greater than 99% accuracy for both peaks derived directly from the atomic coordinates of existing solvent models and those based on difference density maxima. While the program is still under development, a fully functional version is publicly available. PeakProbe makes extensive use of cctbx libraries, and requires a PHENIX licence and an up-to-date phenix.python environment for execution.




cro

Combining random microseed matrix screening and the magic triangle for the efficient structure solution of a potential lysin from bacteriophage P68

Two commonly encountered bottlenecks in the structure determination of a protein by X-ray crystallography are screening for conditions that give high-quality crystals and, in the case of novel structures, finding derivatization conditions for experimental phasing. In this study, the phasing molecule 5-amino-2,4,6-triiodoisophthalic acid (I3C) was added to a random microseed matrix screen to generate high-quality crystals derivatized with I3C in a single optimization experiment. I3C, often referred to as the magic triangle, contains an aromatic ring scaffold with three bound I atoms. This approach was applied to efficiently phase the structures of hen egg-white lysozyme and the N-terminal domain of the Orf11 protein from Staphylococcus phage P68 (Orf11 NTD) using SAD phasing. The structure of Orf11 NTD suggests that it may play a role as a virion-associated lysin or endolysin.




cro

Methods for merging data sets in electron cryo-microscopy

Recent developments have resulted in electron cryo-microscopy (cryo-EM) becoming a useful tool for the structure determination of biological macromolecules. For samples containing inherent flexibility, heterogeneity or preferred orientation, the collection of extensive cryo-EM data using several conditions and microscopes is often required. In such a scenario, merging cryo-EM data sets is advantageous because it allows improved three-dimensional reconstructions to be obtained. Since data sets are not always collected with the same pixel size, merging data can be challenging. Here, two methods to combine cryo-EM data are described. Both involve the calculation of a rescaling factor from independent data sets. The effects of errors in the scaling factor on the results of data merging are also estimated. The methods described here provide a guideline for cryo-EM users who wish to combine data sets from the same type of microscope and detector.




cro

Calcium-ligand variants of the myocilin olfactomedin propeller selected from invertebrate phyla reveal cross-talk with N-terminal blade and surface helices

Olfactomedins are a family of modular proteins found in multicellular organisms that all contain five-bladed β-propeller olfactomedin (OLF) domains. In support of differential functions for the OLF propeller, the available crystal structures reveal that only some OLF domains harbor an internal calcium-binding site with ligands derived from a triad of residues. For the myocilin OLF domain (myoc-OLF), ablation of the ion-binding site (triad Asp, Asn, Asp) by altering the coordinating residues affects the stability and overall structure, in one case leading to misfolding and glaucoma. Bioinformatics analysis reveals a variety of triads with possible ion-binding characteristics lurking in OLF domains in invertebrate chordates such as Arthropoda (Asp–Glu–Ser), Nematoda (Asp–Asp–His) and Echinodermata (Asp–Glu–Lys). To test ion binding and to extend the observed connection between ion binding and distal structural rearrangements, consensus triads from these phyla were installed in the myoc-OLF. All three protein variants exhibit wild-type-like or better stability, but their calcium-binding properties differ, concomitant with new structural deviations from wild-type myoc-OLF. Taken together, the results indicate that calcium binding is not intrinsically destabilizing to myoc-OLF or required to observe a well ordered side helix, and that ion binding is a differential feature that may underlie the largely elusive biological function of OLF propellers.




cro

Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix

Diffraction (X-ray, neutron and electron) and electron cryo-microscopy are powerful methods to determine three-dimensional macromolecular structures, which are required to understand biological processes and to develop new therapeutics against diseases. The overall structure-solution workflow is similar for these techniques, but nuances exist because the properties of the reduced experimental data are different. Software tools for structure determination should therefore be tailored for each method. Phenix is a comprehensive software package for macromolecular structure determination that handles data from any of these techniques. Tasks performed with Phenix include data-quality assessment, map improvement, model building, the validation/rebuilding/refinement cycle and deposition. Each tool caters to the type of experimental data. The design of Phenix emphasizes the automation of procedures, where possible, to minimize repetitive and time-consuming manual tasks, while default parameters are chosen to encourage best practice. A graphical user interface provides access to many command-line features of Phenix and streamlines the transition between programs, project tracking and re-running of previous tasks.




cro

Flexible workflows for on-the-fly electron-microscopy single-particle image processing using Scipion

Electron microscopy of macromolecular structures is an approach that is in increasing demand in the field of structural biology. The automation of image acquisition has greatly increased the potential throughput of electron microscopy. Here, the focus is on the possibilities in Scipion to implement flexible and robust image-processing workflows that allow the electron-microscope operator and the user to monitor the quality of image acquisition, assessing very simple acquisition measures or obtaining a first estimate of the initial volume, or the data resolution and heterogeneity, without any need for programming skills. These workflows can implement intelligent automatic decisions and they can warn the user of possible acquisition failures. These concepts are illustrated by analysis of the well known 2.2 Å resolution β-galactosidase data set.




cro

Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments

Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.




cro

Development of SPACE-II for rapid sample exchange at SPring-8 macromolecular crystallography beamlines

Reducing the sample-exchange time is a crucial issue in maximizing the throughput of macromolecular crystallography (MX) beamlines because the diffraction data collection itself is completed within a minute in the era of pixel-array detectors. To this end, an upgraded sample changer, SPACE-II, has been developed on the basis of the previous model, SPACE (SPring-8 Precise Automatic Cryo-sample Exchanger), at the BL41XU beamline at SPring-8. SPACE-II achieves one sample-exchange step within 16 s, of which its action accounts for only 11 s, because of three features: (i) the implementation of twin arms that enable samples to be exchanged in one cycle of mount-arm action, (ii) the implementation of long-stroke mount arms that allow samples to be exchanged without withdrawal of the detector and (iii) the use of a fast-moving translation and rotation stage for the mount arms. By pre-holding the next sample prior to the sample-exchange sequence, the time was further decreased to 11 s in the case of automatic data collection, of which the action of SPACE-II accounted for 8 s. Moreover, the sample capacity was expanded from four to eight Uni-Pucks. The performance of SPACE-II has been demonstrated in over two years of operation at BL41XU; the average number of samples mounted on the diffractometer in one day was increased from 132 to 185, with an error rate of 0.089%, which counted incidents in which users could not continue with an experiment without recovery work by entering the experimental hutch. On the basis of these results, SPACE-II has been installed at three other MX beamlines at SPring-8 as of July 2019. The fast and highly reliable SPACE-II is now one of the most important pieces of infrastructure for the MX beamlines at SPring-8, providing users with the opportunity to fully make use of limited beamtime with brilliant X-rays.




cro

The TELL automatic sample changer for macromolecular crystallography

In this paper, the design and functionalities of the high-throughput TELL sample exchange system for macromolecular crystallography is presented. TELL was developed at the Paul Scherrer Institute with a focus on speed, storage capacity and reliability to serve the three macromolecular crystallography beamlines of the Swiss Light Source, as well as the SwissMX instrument at SwissFEL.




cro

ID30A-3 (MASSIF-3) – a beamline for macromolecular crystallography at the ESRF with a small intense beam

ID30A-3 (or MASSIF-3) is a mini-focus (beam size 18 µm × 14 µm) highly intense (2.0 × 1013 photons s−1), fixed-energy (12.81 keV) beamline for macromolecular crystallography (MX) experiments at the European Synchrotron Radiation Facility (ESRF). MASSIF-3 is one of two fixed-energy beamlines sited on the first branch of the canted undulator setup on the ESRF ID30 port and is equipped with a MD2 micro-diffractometer, a Flex HCD sample changer, and an Eiger X 4M fast hybrid photon-counting detector. MASSIF-3 is recommended for collecting diffraction data from single small crystals (≤15 µm in one dimension) or for experiments using serial methods. The end-station has been in full user operation since December 2014, and here its current characteristics and capabilities are described.




cro

XTIP – the world's first beamline dedicated to the synchrotron X-ray scanning tunneling microscopy technique

In recent years, there have been numerous efforts worldwide to develop the synchrotron X-ray scanning tunneling microscopy (SX-STM) technique. Here, the inauguration of XTIP, the world's first beamline fully dedicated to SX-STM, is reported. The XTIP beamline is located at Sector 4 of the Advanced Photon Source at Argonne National Laboratory. It features an insertion device that can provide left- or right-circular as well as horizontal- and vertical-linear polarization. XTIP delivers monochromatic soft X-rays of between 400 and 1900 eV focused into an environmental enclosure that houses the endstation instrument. This article discusses the beamline system design and its performance.




cro

Versatile compact heater design for in situ nano-tomography by transmission X-ray microscopy

A versatile, compact heater designed at National Synchrotron Light Source-II for in situ X-ray nano-imaging in a full-field transmission X-ray microscope is presented. Heater design for nano-imaging is challenging, combining tight spatial constraints with stringent design requirements for the temperature range and stability. Finite-element modeling and analytical calculations were used to determine the heater design parameters. Performance tests demonstrated reliable and stable performance, including maintaining the exterior casing close to room temperature while the heater is operating at above 1100°C, a homogenous heating zone and small temperature fluctuations. Two scientific experiments are presented to demonstrate the heater capabilities: (i) in situ 3D nano-tomography including a study of metal dealloying in a liquid molten salt extreme environment, and (ii) a study of pore formation in icosahedral quasicrystals. The progression of structural changes in both studies were clearly resolved in 3D, showing that the new heater enables powerful capabilities to directly visualize and quantify 3D morphological evolution of materials under real conditions by X-ray nano-imaging at elevated temperature during synthesis, fabrication and operation processes. This heater design concept can be applied to other applications where a precise, compact heater design is required.




cro

LamNI – an instrument for X-ray scanning microscopy in laminography geometry

Across all branches of science, medicine and engineering, high-resolution microscopy is required to understand functionality. Although optical methods have been developed to `defeat' the diffraction limit and produce 3D images, and electrons have proven ever more useful in creating pictures of small objects or thin sections, so far there is no substitute for X-ray microscopy in providing multiscale 3D images of objects with a single instrument and minimal labeling and preparation. A powerful technique proven to continuously access length scales from 10 nm to 10 µm is ptychographic X-ray computed tomography, which, on account of the orthogonality of the tomographic rotation axis to the illuminating beam, still has the limitation of necessitating pillar-shaped samples of small (ca 10 µm) diameter. Large-area planar samples are common in science and engineering, and it is therefore highly desirable to create an X-ray microscope that can examine such samples without the extraction of pillars. Computed laminography, where the axis of rotation is not perpendicular to the illumination direction, solves this problem. This entailed the development of a new instrument, LamNI, dedicated to high-resolution 3D scanning X-ray microscopy via hard X-ray ptychographic laminography. Scanning precision is achieved by a dedicated interferometry scheme and the instrument covers a scan range of 12 mm × 12 mm with a position stability of 2 nm and positioning errors below 5 nm. A new feature of LamNI is a pair of counter-rotating stages carrying the sample and interferometric mirrors, respectively.




cro

Identification of Ca-rich dense granules in human platelets using scanning transmission X-ray microscopy

Whole-mount (WM) platelet preparation followed by transmission electron microscopy (TEM) observation is the standard method currently used to assess dense granule (DG) deficiency (DGD). However, due to the electron-density-based contrast mechanism in TEM, other granules such as α-granules might cause false DG detection. Here, scanning transmission X-ray microscopy (STXM) was used to identify DGs and minimize false DG detection of human platelets. STXM image stacks of human platelets were collected at the calcium (Ca) L2,3 absorption edge and then converted to optical density maps. Ca distribution maps, obtained by subtracting the optical density maps at the pre-edge region from those at the post-edge region, were used to identify DGs based on the Ca richness. DGs were successfully detected using this STXM method without false detection, based on Ca maps for four human platelets. Spectral analysis of granules in human platelets confirmed that DGs contain a richer Ca content than other granules. The Ca distribution maps facilitated more effective DG identification than TEM which might falsely detect DGs. Correct identification of DGs would be important to assess the status of platelets and DG-related diseases. Therefore, this STXM method is proposed as a promising approach for better DG identification and diagnosis, as a complementary tool to the current WM TEM approach.




cro

Development of a scanning soft X-ray spectromicroscope to investigate local electronic structures on surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere

A scanning soft X-ray spectromicroscope was recently developed based mainly on the photon-in/photon-out measurement scheme for the investigation of local electronic structures on the surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere. The apparatus was installed at the soft X-ray beamline (BL17SU) at SPring-8. The characteristic features of the apparatus are described in detail. The feasibility of this spectromicroscope was demonstrated using soft X-ray undulator radiation. Here, based on these results, element-specific two-dimensional mapping and micro-XAFS (X-ray absorption fine structure) measurements are reported, as well as the observation of magnetic domain structures from using a reference sample of permalloy micro-dot patterns fabricated on a silicon substrate, with modest spatial resolution (e.g. ∼500 nm). Then, the X-ray radiation dose for Nafion® near the fluorine K-edge is discussed as a typical example of material that is not radiation hardened against a focused X-ray beam, for near future experiments.




cro

Soft X-ray diffraction patterns measured by a LiF detector with sub-micrometre resolution and an ultimate dynamic range

The unique diagnostic possibilities of X-ray diffraction, small X-ray scattering and phase-contrast imaging techniques applied with high-intensity coherent X-ray synchrotron and X-ray free-electron laser radiation can only be fully realized if a sufficient dynamic range and/or spatial resolution of the detector is available. In this work, it is demonstrated that the use of lithium fluoride (LiF) as a photoluminescence (PL) imaging detector allows measuring of an X-ray diffraction image with a dynamic range of ∼107 within the sub-micrometre spatial resolution. At the PETRA III facility, the diffraction pattern created behind a circular aperture with a diameter of 5 µm irradiated by a beam with a photon energy of 500 eV was recorded on a LiF crystal. In the diffraction pattern, the accumulated dose was varied from 1.7 × 105 J cm−3 in the central maximum to 2 × 10−2 J cm−3 in the 16th maximum of diffraction fringes. The period of the last fringe was measured with 0.8 µm width. The PL response of the LiF crystal being used as a detector on the irradiation dose of 500 eV photons was evaluated. For the particular model of laser-scanning confocal microscope Carl Zeiss LSM700, used for the readout of the PL signal, the calibration dependencies on the intensity of photopumping (excitation) radiation (λ = 488 nm) and the gain have been obtained.




cro

Development of an X-ray imaging detector for high-energy X-ray microtomography

A dedicated X-ray imaging detector for 200 keV high-energy X-ray microtomography was developed to realize high-efficiency high-resolution imaging while keeping the field of view wide.




cro

Comprehensive characterization of TSV etching performance with phase-contrast X-ray microtomography

A complete method of comprehensive and quantitative evaluation of through-silicon via reliability using a highly sensitive phase-contrast X-ray microtomography was established. Quantitative characterizations include 3D local morphology and overall consistency of statistics.




cro

Hard X-ray phase-contrast-enhanced micro-CT for quantifying interfaces within brittle dense root-filling-restored human teeth

Phase-contrast enhanced micro-computed tomography reveals huge discontinuities at the interfaces between dental fillings and the tooth substrate. Despite the complex micromorphology, gaps in bonding could be visualized and quantified in 3D.




cro

PDB2INS: bridging the gap between small-molecule and macromolecular refinement

The open-source Python program PDB2INS is designed to prepare a .ins file for refinement with SHELXL [Sheldrick (2015). Acta Cryst. C71, 3–8], taking atom coordinates and other information from a Protein Data Bank (PDB)-format file. If PDB2INS is provided with a four-character PDB code, both the PDB file and the accompanying mmCIF-format reflection data file (if available) are accessed via the internet from the PDB public archive [Read et al. (2011). Structure, 19, 1395–1412] or optionally from the PDB_REDO server [Joosten, Long, Murshudov & Perrakis (2014). IUCrJ, 1, 213–220]. The SHELX-format .ins (refinement instructions and atomic coordinates) and .hkl (reflection data) files can then be generated without further user intervention, appropriate restraints etc. being added automatically. PDB2INS was tested on the 23 974 X-ray structures deposited in the PDB between 2008 and 2018 that included reflection data to 1.7 Å or better resolution in a recognizable format. After creating the two input files for SHELXL without user intervention, ten cycles of conjugate-gradient least-squares refinement were performed. For 96% of these structures PDB2INS and SHELXL completed successfully without error messages.




cro

A comparison of gas stream cooling and plunge cooling of macromolecular crystals

Cryocooling for macromolecular crystallography is usually performed via plunging the crystal into a liquid cryogen or placing the crystal in a cold gas stream. These two approaches are compared here for the case of nitro­gen cooling. The results show that gas stream cooling, which typically cools the crystal more slowly, yields lower mosaicity and, in some cases, a stronger anomalous signal relative to rapid plunge cooling. During plunging, moving the crystal slowly through the cold gas layer above the liquid surface can produce mosaicity similar to gas stream cooling. Annealing plunge cooled crystals by warming and recooling in the gas stream allows the mosaicity and anomalous signal to recover. For tetragonal thermolysin, the observed effects are less pronounced when the cryosolvent has smaller thermal contraction, under which conditions the protein structures from plunge cooled and gas stream cooled crystals are very similar. Finally, this work also demonstrates that the resolution dependence of the reflecting range is correlated with the cooling method, suggesting it may be a useful tool for discerning whether crystals are cooled too rapidly. The results support previous studies suggesting that slower cooling methods are less deleterious to crystal order, as long as ice formation is prevented and dehydration is limited.




cro

A routine for the determination of the microstructure of stacking-faulted nickel cobalt aluminium hydroxide precursors for lithium nickel cobalt aluminium oxide battery materials

The microstructures of six stacking-faulted industrially produced cobalt- and aluminium-bearing nickel layered double hydroxide (LDH) samples that are used as precursors for Li(Ni1−x−yCoxAly)O2 battery materials were investigated. Shifts from the brucite-type (AγB)□(AγB)□ stacking pattern to the CdCl2-type (AγB)□(CβA)□(BαC)□ and the CrOOH-type (BγA)□(AβC)□(CαB)□ stacking order, as well as random intercalation of water molecules and carbonate ions, were found to be the main features of the microstructures. A recursive routine for generating and averaging supercells of stacking-faulted layered substances implemented in the TOPAS software was used to calculate diffraction patterns of the LDH phases as a function of the degree of faulting and to refine them against the measured diffraction data. The microstructures of the precursor materials were described by a model containing three parameters: transition probabilities for generating CdCl2-type and CrOOH-type faults and a transition probability for the random intercalation of water/carbonate layers. Automated series of simulations and refinements were performed, in which the transition probabilities were modified incrementally and thus the microstructures optimized by a grid search. All samples were found to exhibit the same fraction of CdCl2-type and CrOOH-type stacking faults, which indicates that they have identical Ni, Co and Al contents. Different degrees of interstratification faulting were determined, which could be correlated to different heights of intercalation-water-related mass-loss steps in the thermal analyses.




cro

PyMDA: microcrystal data assembly using Python

The recent developments at microdiffraction X-ray beamlines are making microcrystals of macromolecules appealing subjects for routine structural analysis. Microcrystal diffraction data collected at synchrotron microdiffraction beamlines may be radiation damaged with incomplete data per microcrystal and with unit-cell variations. A multi-stage data assembly method has previously been designed for microcrystal synchrotron crystallography. Here the strategy has been implemented as a Python program for microcrystal data assembly (PyMDA). PyMDA optimizes microcrystal data quality including weak anomalous signals through iterative crystal and frame rejections. Beyond microcrystals, PyMDA may be applicable for assembling data sets from larger crystals for improved data quality.




cro

Simulation of small-angle X-ray scattering data of biological macromolecules in solution

This article presents IMSIM, an application to simulate two-dimensional small-angle X-ray scattering patterns and, further, one-dimensional profiles from biological macromolecules in solution. IMSIM implements a statistical approach yielding two-dimensional images in TIFF, CBF or EDF format, which may be readily processed by existing data-analysis pipelines. Intensities and error estimates of one-dimensional patterns obtained from the radial average of the two-dimensional images exhibit the same statistical properties as observed with actual experimental data. With initial input on an absolute scale, [cm−1]/c[mg ml−1], the simulated data frames may also be scaled to absolute scale such that the forward scattering after subtraction of the background is proportional to the molecular weight of the solute. The effects of changes of concentration, exposure time, flux, wavelength, sample–detector distance, detector dimensions, pixel size, and the mask as well as incident beam position can be considered for the simulation. The simulated data may be used in method development, for educational purposes, and also to determine the most suitable beamline setup for a project prior to the application and use of the actual beamtime. IMSIM is available as part of the ATSAS software package (3.0.0) and is freely available for academic use (http://www.embl-hamburg.de/biosaxs/download.html).