mi

Semiconductor device having pull-up circuit and pull-down circuit

To reduce power supply noises occurring in a control circuit unit for controlling an output buffer. A semiconductor device includes unit buffers for driving a data output terminal, impedance control circuits for controlling the unit buffers, and a control circuit unit for controlling the impedance control circuits. The impedance control circuits and the control circuit unit operate by mutually-different power supplies, the control circuit unit supplies pull-up data and pull-down data in mutually reverse phase to the impedance control circuits, and the impedance control circuits convert the pull-up data and the pull-down data from reverse phase to in-phase and supply the same to the unit buffers. Thereby, a noise is difficult to occur in a power supply VDD used for the control circuit unit.




mi

Transmitter having voltage driver and current driver

A circuit includes a first power node at a first voltage level, a second power node at a second voltage level, a first voltage driver, a first current driver, and a control unit. The first voltage driver is configured to electrically couple a first output node to the first power node when a first input signal at the first input node is at a first logic state, and electrically couple a first output node to the second power node when the first input signal is at a second logic state. The first current driver is configured to inject or extract a first adjustment current into or out of a first output node. The control unit is configured to generate a measurement result of the first voltage level, and to set the first adjustment current according to the measurement result.




mi

Semiconductor device and method for driving the same

A semiconductor device including an integrator circuit, in which electric discharge from a capacitor can be reduced to shorten time required for charging the capacitor in the case where supply of power supply voltage is stopped and restarted, and a method for driving the semiconductor device are provided. One embodiment has a structure in which a transistor with small off-state current is electrically connected in series to a capacitor in an integrator circuit. Further, in one embodiment of the present invention, a transistor with small off-state current is electrically connected in series to a capacitor in an integrator circuit; the transistor is on in a period during which power supply voltage is supplied; and the transistor is off in a period during which supply of the power supply voltage is stopped.




mi

Time-to-digital convertor-assisted phase-locked loop spur mitigation

Methods, systems, and apparatuses are described for compensating for an undesired fractional spur due to a PLL in a communication system. The communication system includes a time-to-digital converter (TDC) that is configured to execute in parallel to the PLL. The TDC is configured to determine a phase difference between a reference frequency and an output oscillation signal provided by the PLL. The phase difference is received by a processor to estimate particular characteristics of the undesired fractional spur, and the estimate of the characteristics is used to construct an estimate of the undesired fractional spur.




mi

Semiconductor storage device

A semiconductor storage device which stops and resumes the supply of power supply voltage without the necessity of saving and returning a data signal between a volatile storage device and a nonvolatile storage device is provided. In the nonvolatile semiconductor storage device, the volatile storage device and the nonvolatile storage device are provided without separation. Specifically, in the semiconductor storage device, data is held in a data holding portion connected to a transistor including a semiconductor layer containing an oxide semiconductor and a capacitor. The potential of the data held in the data holding portion is controlled by a data potential holding circuit and a data potential control circuit. The data potential holding circuit can output data without leaking electric charge, and the data potential control circuit can control the potential of the data held in the data holding portion without leaking electric charge by capacitive coupling through the capacitor.




mi

Pulse generation circuit and semiconductor device

Two gate drivers each comprising a shift register and a demultiplexer including single conductivity type transistors are provided on left and right sides of a pixel portion. Gate lines are alternately connected to the left-side and right-side gate drivers in every M rows. The shift register includes k first unit circuits connected in cascade. The demultiplexer includes k second unit circuits to each of which a signal is input from the first unit circuit and to each of which M gate lines are connected. The second unit circuit selects one or more wirings which output an input signal from the first unit circuit among M gate lines, and outputs the signal from the first unit circuit to the selected wiring(s). Since gate signals can be output from an output of a one-stage shift register to the M gate lines, the width of the shift register can be narrowed.




mi

Semiconductor device and communication interface circuit

A semiconductor device prevents recognition failure in mutual recognition between a host and a device compliant with USB Specifications. The semiconductor device includes: an interterminal opening/closing section having a plurality of first conductivity type MOS transistors, the respective sources or drains of which are cascaded, in which the source or drain of a first-stage MOS transistor among the cascaded MOS transistors is used as a first terminal, the source or drain of a final-stage MOS transistor among the cascaded MOS transistors is used as a second terminal, and the respective gates of the cascaded MOS transistors receive a control signal for controlling the opening or short-circuiting between the first and second terminals; and a current bypass section that reduces a current flowing into either one connection node coupling the respective sources or drains of the cascaded MOS transistors.




mi

Power semiconductor device

A transistor being one of an IGBT and a MOSFET and arranged near a gate control circuit applies a gate control signal from the gate control circuit to the gate of a transistor arranged far from the gate control circuit. A gate control signal is applied via a resistive element to the transistor arranged near the gate control circuit.




mi

Method and semiconductor apparatus for reducing power when transmitting data between devices in the semiconductor apparatus

A semiconductor apparatus is provided herein for reducing power when transmitting data between a first device and a second device in the semiconductor apparatus. Additional circuitry is added to the semiconductor apparatus to create a communication system that decreases a number of state changes for each signal line of a data bus between the first device and the second device for all communications. The additional circuitry includes a decoder coupled to receive and convert a value from the first device for transmission over the data bus to an encoder that provides a recovered (i.e., re-encoded) version of the value to the second device. One or more multiplexers may also be included in the additional circuitry to support any number of devices.




mi

Apparatus and methods for ultrasound transmit switching

Apparatus and methods for ultrasound transmit switching are provided. In certain implementations, a transmit switch includes a bias polarity control circuit, a bias circuit, a first high voltage field effect transistor (HVFET), and a second HVFET. The sources of the first and second HVFETs are connected to one another at a source node, the gates of the first and second HVFETs are connected to one another at a gate node, and the drains of the first and second HVFETs are connected to an input terminal and an output terminal, respectively. The bias circuit and the bias polarity control circuit are each electrically connected between the source node and the gate node. The bias polarity control circuit can turn on or off the HVFETs by controlling a polarity of a bias voltage across the bias circuit, such as by controlling a direction of current flow through the bias circuit.




mi

Differential creepage control system for optimizing adhesion of locomotives

This invention concerns a creepage control system for locomotives that optimizes adhesion while minimizing wasted energy, rail/wheel wear and shock loading on the drive train. The basis of the invention is to always maintain a small but positive value of the slope of the wheel-rail adhesion creep curve (or differential of adhesion versus creep) for all traction axles of the locomotive through microprocessor control. The value of the differential of adhesion versus creep is used to define an operating window for control and operation of motors continually in the optimum domain when high adhesion is demanded. When, due to a sudden increase in rail contamination, the value of the control function becomes negative, the microprocessor control reduces the generator excitation in stages until the function becomes positive and inside the operating window again. The microprocessor controls a rail cleaning system which is turned on or off depending on the cleanliness of the rail. It also controls a rail sanding system which is turned on or off depending on the magnitude of wheel creep.




mi

Locomotive adhesion enhancing material mixtures

The adhesion between a locomotive drive wheel and supporting rail can be substantially increased by application of a powder mixture that contains a hard particle constituent preferably including alumina, a soft particle constituent preferably including titania, and an iron oxide constituent. The mixture may be in the form of a dry powder, a paste with water or alcohol vehicle, or a metal composite that includes the powder.




mi

Method and system of limiting the application of sand to a railroad rail

A method and computer program product of limiting sand use in a railroad locomotive sanding system applying sand to railroad rails to enhance adhesion of wheels of a railroad locomotive on a track having a pair of railroad rails, the sanding system including a plurality of sand applicators for each rail for directing sand flow toward the rail and with the locomotive having two trucks carrying the wheels for supporting and propelling the locomotive along the track. The method and computer program product may include steps of automatically controlling a flow of sand applied to the rail by the locomotive sanding system to limit the application of sand to situations in which applying sand to the rail would be effective to increase the adhesion of at least one of the railroad locomotive wheels on the rail by a predetermined incremental amount. The operation of each of the plurality of sand applicators may be independently controlled for selectively operating those sand applicators whose operation will result in at least the predetermined incremental increase in adhesion of the locomotive wheels on the rail, while not operating the other sand applicators so as to limit the amount of sand applied to the track.




mi

Light guide plate having uniform light emission and manufacturing method thereof

A light guide plate includes a main body and a number of micro protrusions. The main body includes a light emitting surface, a bottom surface, and a light incident surface. The bottom surface is opposite to the light emitting surface. The light incident surface connects the light emitting surface and the bottom surface. The protrusions are randomly positioned on the light emitting surface, and are used for reflecting light rays towards random directions.




mi

Organic electroluminescent device

The invention provides an OLED device with improved light out-coupling, which can be manufactured easy and reliable at low costs, which comprises an electroluminescent layer stack (2, 3, 4) on top of a substrate (1), where the electroluminescent layer stack (2, 3, 4) comprises an organic light-emitting layer stack (3) with one or more organic layers sandwiched between a first electrode (2) facing towards the substrate (1) and a 10 second electrode (4), where the second electrode (4) comprises a layer stack of at least a transparent conductive protection layer (41) on top of the organic light-emitting layer stack (3), a transparent organic conductive buckling layer (42) on top of the protection layer (41) having a glass transition temperature lower than the lowest glass transition temperature of the organic layers within the organic light-emitting layer stack (3) and a stress inducing layer 15 (43) on top of the buckling layer (42) to introduce stress to the buckling layer (42). The invention further relates to a method to manufacture such OLED devices with heating the electroluminescent layer (2, 3, 4) stack to a temperature, which is above the glass transition temperature of the buckling layer (42) and below the lowest glass transition temperature of the organic layers within the organic light-emitting layer stack (3) for a time period sufficient 20 to obtain buckles (B) within the buckling layer (42).




mi

Organic light emitting display device and method of manufacturing the same

An organic light emitting display device and a method of manufacturing the same are provided. The organic light emitting display device includes: a substrate including a display portion displaying an image as a plurality of sub-pixels that are arranged, and a non-display portion extending at an edge of the display portion; and a sealant formed along a periphery of the display portion, wherein an organic film having an emissive layer is formed on the plurality of sub-pixels, and an emissive layer storage unit storing an emissive layer coated on the non-display portion is formed between the display portion and the sealant. By forming the emissive layer storage unit by removing at least a part of a pixel defining layer on an edge of the substrate, a raw material of the emissive layer coated on the non-display portion on the substrate is easily processed via the emissive layer storage unit.




mi

Organic luminescence display device having getter pattern and method of manufacturing the same

Provided is a method of manufacturing an organic luminescence display device, the method including: bringing a getter powder into direct contact with a first surface of an encapsulation substrate; irradiating a laser to a second surface of the encapsulation substrate correspondingly to a getter pattern area to melt the second surface of the encapsulation substrate; and bonding the getter powder to the molten second surface of the encapsulation substrate to form a getter pattern corresponding to the getter pattern area. Since the getter powder is directly bonded to the encapsulation substrate by laser irradiation, a fine getter pattern may be formed.




mi

Organic light-emitting display device with frit seal and reinforcing structure

Disclosed is an organic light-emitting display device in which the substrate and the encapsulation substrate are attached to each other by using a frit. The organic light-emitting display device includes a first substrate including a pixel region in which an organic light-emitting diode is formed, and a non-pixel region. The organic light-emitting diode includes an organic light-emitting layer between a first electrode and a second electrode. A second substrate attached to the first substrate. A frit is provided between the non-pixel region of the first substrate and the second substrate to attach the first substrate and the second substrate. A reinforcement material of resin is formed outside the frit.




mi

Light emitting display device and method of fabricating the same

A light emitting display device and a method of fabricating the same are disclosed. The light emitting display device comprises: a substrate comprising an active region in which a plurality of active pixels for displaying images are formed and a first dummy region disposed outside the active region and in which a plurality of first dummy pixels is formed; a first electrode formed on the substrate in each pixel; a pixel defining layer having an opening that exposes the first electrode; a surface treatment layer formed on the first electrode and having a plurality of grooves in each of the first dummy pixels; a light emitting layer formed on the surface treatment layer; and a second electrode formed on the light emitting layer in each of the active pixels.




mi

Organic light emitting display

An OLED device is disclosed that enhances display quality by minimizing capacitance deviation between data lines of the OLED device. The capacitance deviation may be minimized by utilizing an expansion portion of a power line of the OLED device. The capacitance deviation may also by minimized by utilizing an overlap pattern that overlaps a plurality of the data lines.




mi

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Manufacturing method for organic electroluminescent panel and organic electroluminescent panel manufactured using the same

A simple manufacturing method for an organic electroluminescent panel in which organic electroluminescent elements are arranged and sealed by a sealing adhesive. The electroluminescent panel has excellent sealing properties and excellent durability as a result of the organic electroluminescent elements being adhered to one another by a heat-curable adhesive. The manufacturing method is for an organic electroluminescent panel in which at least a first electrode, an organic functional layer containing a light-emitting layer, an organic electroluminescent element having a second electrode, and a sealing substrate are bonded together on a substrate by the heat-curable adhesive. The method includes forming a heat-curable adhesive layer on the sealing substrate, subjecting the heat-curable adhesive layer formed on the sealing substrate to pre-heating treatment, bonding the pre-heated heat-curable adhesive layer to the organic electroluminescent element, and subjecting the heat-curable adhesive layer to heat curing, in the given order.




mi

Light-emitting device, lighting device including the light-emitting device, and method of manufacturing the light-emitting device

A light-emitting device includes a light-emitting element with a pair of element electrodes as a first element electrode and a second element electrode positioned at the lower surface of the light-emitting element; a phosphor plate disposed on the upper surface of the light-emitting element; a first resin covering the lower surface and the peripheral side surface of the light-emitting element with the first element electrode and the second element electrode partly appearing from the first resin; and a second resin provided in the phosphor plate.




mi

Organic light emitting display apparatus and manufacturing method thereof

An organic light emitting display apparatus includes a pixel part including a pixel electrode, a light emitting layer and an opposite electrode, and a contact part in which the opposite electrode contacts a power line, wherein a first thickness of the opposite electrode in the pixel part is different from a second thickness of the opposite electrode in the contact part.




mi

Organic luminescent display device and method of manufacturing at organic luminescent display device

An organic EL display device of the invention includes: a first substrate; a second substrate disposed above the first substrate and having a display area and a non-display area; and a light-emitting layer disposed between the display area and the first substrate, wherein a first alignment mark having the light-emitting layer is disposed between the non-display area and the first substrate, and a second alignment mark is disposed on the second substrate at a position corresponding to the first alignment mark.




mi

Organic light-emitting device having light-emitting pattern, method and apparatus for preparing the same

Disclosed is a method of producing an organic light emitting device, an organic light emitting device produced by using the method, and an apparatus used in the method. The method includes preparing a first electrode, forming one or more organic material layers on the first electrode, and forming a second electrode on the organic material layers, wherein the method includes changing functions of predetermined pattern regions of one or more layers of the organic material layers or the electrodes.




mi

Light emitting device, electronic appliance, and method for manufacturing light emitting device

To provide a light emitting device that has a structure in which a light emitting element is sandwiched by two substrates to prevent moisture from penetrating into the light emitting element, and a method for manufacturing thereof. In addition, a gap between the two substrates can be controlled precisely. In the light emitting device according to the present invention, an airtight space surrounded by a sealing material with a closed pattern is kept under reduced pressure by attaching the pair of substrates under reduced pressure. A columnar or wall-shaped structure is formed between light emitting regions inside of the sealing material, in a region overlapping with the sealing material, or in a region outside of the sealing material so that the gap between the pair of substrates can be maintained precisely.




mi

Composition for forming electron emission source, electron emission source including the composition, method of preparing the electron emission source, and field emission device including the electron emission source

An electron emission source includes nano-sized acicular materials and a cracked portion formed in at least one portion of the electron emission source. The acicular materials are exposed between inner walls of the cracked portion. A method for preparing the electron emission source, a field emission device including the electron emission source, and a composition for forming the electron emission source are also provided in the present invention.




mi

Organic light emitting diode device and manufacturing method thereof

An organic light emitting diode device can have an enhanced thin film encapsulation layer for preventing moisture from permeating from the outside. The thin film encapsulation layer can have a multilayered structure in which one or more inorganic layers and one or more organic layers are alternately laminated. A barrier can be formed outside of a portion of the substrate on which the organic light emitting diode is formed. The organic layers of the thin film encapsulation layer can be formed inside an area defined by the barrier.




mi

Manufacturing method of light emitting devices

A manufacturing method of light emitting devices, comprises a substrate-forming step of forming a planar-shaped substrate, a frame-forming step of forming a closed frame on the substrate, an element-mounting step of mounting multiple light emitting elements in an inside of the frame, a sealing step of injecting a liquid material that is to be a sealing member to the inside of the frame so as to seal the multiple light emitting elements, and a dividing step of dividing the multiple light emitting elements together with the substrate and the sealing member so as to obtain multiple light emitting devices with the sealing member exposed from a side surface thereof.




mi

Thin film semiconductor device and organic light-emitting display apparatus

An apparatus and a method of manufacturing a thin film semiconductor device having a thin film transistor with improved electrical properties in organic light-emitting display apparatus are described.




mi

Manufacturing method for organic electroluminescent panel and organic electroluminescent panel manufactured using the same

A simple manufacturing method for an organic electroluminescent panel in which organic electroluminescent elements are arranged and sealed by a sealing adhesive. The electroluminescent panel has excellent sealing properties and excellent durability as a result of the organic electroluminescent elements being adhered to one another by a heat-curable adhesive. The manufacturing method is for an organic electroluminescent panel in which at least a first electrode, an organic functional layer containing a light-emitting layer, an organic electroluminescent element having a second electrode, and a sealing substrate are bonded together on a substrate by the heat-curable adhesive. The method includes forming a heat-curable adhesive layer on the sealing substrate, subjecting the heat-curable adhesive layer formed on the sealing substrate to pre-heating treatment, bonding the pre-heated heat-curable adhesive layer to the organic electroluminescent element, and subjecting the heat-curable adhesive layer to heat curing, in the given order.




mi

Porous silica material and optical microphone using the same

A porous silica material in which silica particles are connected to one another three-dimensionally, wherein: the porous silica material includes a through hole including first pores smaller than a mean free path of an air, and second pores larger than the first pores; the porous silica material has a density of 100 kg/m3 or more and 300 kg/m3 or less; and an isobutyl group is bound to silicon of silica of the silica particles.




mi

Process to produce lithium carbonate directly from the aluminosilicate mineral

Process for obtaining lithium carbonate directly from the mineral containing silicium, aluminum, lithium and other metal oxides without the need to dissolve previously all oxides in sulphuric acid or alkaline hydroxides at high temperatures and pressures, by using carbon dioxide and water at supercritical or near supercritical conditions acting directly on the fine powder of the mineral.




mi

Method for producing hydrogen with reduced CO2 emissions

The present invention relates to a method for producing hydrogen, with reduced carbon dioxide emissions, from a hydrocarbon mixture. In said method, the hydrocarbon mixture is reformed so as to produce a synthetic gas that is cooled, then treated in a shift reactor so as to be enriched with H2 and CO2. Optionally dried, said mixture is treated in a PSA hydrogen purification unit in order to produce hydrogen. The residue is treated by means of partial condensation with a view to capturing CO4 before said residue is sent as fuel to reforming.




mi

Catalytic reactor including one cellular area having controlled macroporosity and a controlled microstructure and one area having a standard microstructure

The invention relates to a catalytic reactor including: at least one first architecture/microstructure including a ceramic and/or metal cellular architecture having a pore size of 2 to 80 ppi and a macroporosity of more than 85%, and a microstructure having a grain size of 100 nm to 5 microns, and skeleton densification of more than 95%, and a catalytic layer; and at least one second architecture/microstructure including a spherical or cylindrical architecture having a pore size of 0.1 to 100 μm and a macroporosity of less than 60%, and a microstructure having a grain size of 20 nm to 10 μm and a skeleton densification of 20% to 90%, and a catalytic layer; the first and second architecture/microstructure being stacked inside said reactor.




mi

Alkanolamine CO2 scrubbing process

A CO2 amine scrubbing process uses an absorbent mixture consisting of an alkanolamine CO2 sorbent in combination with a non-nucleophilic base. The alkanolamine has oxygen and nitrogen sites capable of nucleophilic attack at the CO2 carbon atom. The nucleophilic addition is promoted in the presence of the non-nucleophilic, relatively stronger base, acting as a proton acceptor. The non-nucleophilic base promoter, which may also act as a solvent for the alkanolamine, can promote reaction with the CO2 at each of the reactive hydroxyl and nucleophilic amine group(s) of the alkanolamines. In the case of primary amino alkanolamines the CO2 may be taken up by a double carboxylation reaction in which two moles of CO2 are taken up by the reacting primary amine groups.




mi

Process for preparing hydrocyanic acid by catalytic dehydration of gaseous formamide—direct heating

Process for preparing hydrocyanic acid by catalytic dehydration of gaseous formamide, wherein the dehydration of formamide is coupled with an exothermic reaction by the reactor used in the dehydration comprising two separate fluid paths which are separated by a common reactor wall, with one fluid path being provided for the dehydration of formamide and the second fluid path being provided for the exothermic reaction.




mi

Catalyzed SCR filter and emission treatment method

Provided is a catalyst article for simultaneously remediating the nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The catalyst article has a soot filter coated with a material effective in the Selective Catalytic Reduction (SCR) of NOx by a reductant, e.g., ammonia.




mi

System and method for renewable resource production, for example, hydrogen production by microbial electrolysis, fermentation, and/or photosynthesis

System and method for sustainable economic development which includes hydrogen extracted from substances, for example, sea water, industrial waste water, agricultural waste water, sewage, and landfill waste water. The hydrogen extraction is accomplished by thermal dissociation, electrical dissociation, optical dissociation, and magnetic dissociation. The hydrogen extraction further includes operation in conjunction with energy addition from renewable resources, for example, solar, wind, moving water, geothermal, or biomass resources.




mi

Graphite thermal decontamination with reducing gases

Providing a roaster that operates at temperatures in the range of 800° Celsius to 2000° Celsius with inert, optional oxidizing and reducing gases to treat graphite contaminated with radionuclides including tritium, carbon-14, and chlorine-36. The combination of temperatures and gases allow for the removal of most to substantially all the carbon-14 within the graphite while substantially limiting gasifying the bulk graphite.




mi

Semi continuous process for the synthesis of a catalyst for use in the manufacture of polyolefins

A semi-continuous process and system thereof, for the synthesis of a narrow particle size distribution Zeigler Natta procatalyst for use in the manufacture of polyolefins. The process comprises: (a) mixing a reaction mixture containing a titanium compound; (b) charging a first reactor with said reaction mixture; (c) removing excess reactants from said first reactor as a filtrate; (d) feeding said filtrate to at least one further reactor; and continuously removing excess reactants from said at least further reactor.




mi

Alkali metal salt of fluorosulfonyl imide, and production method therefor

The present invention provides an alkali metal salt of fluorosulfonyl imide having favorable heat resistance and a reduced content of specific impurities and a water content, and provides a method for producing an alkali metal salt of fluorosulfonyl imide, which is capable of easily removing a solvent from a reaction solution. An alkali metal salt of fluorosulfonyl imide of the present invention is represented by the following general formula (I) and has a mass loss rate of 2% or less when the alkali metal salt of fluorosulfonyl imide is kept at 100° C. for 8 hours under an air current. A method for producing an alkali metal salt of fluorosulfonyl imide of the present invention comprises a step of concentrating a solution of the alkali metal salt of fluorosulfonyl imide by bubbling a gas into a reaction solution containing the alkali metal salt of fluorosulfonyl imide, and/or concentrating a solution of the alkali metal salt of fluorosulfonyl imide by thin layer distillation.




mi

Terminal unit

The terminal unit includes a main board, electronic components implemented on the main board, a sub-board covering above the electronic components and a frame member so disposed between the main board and the sub-board as to surround the electronic components. A flexible printed circuit covers an outer side of a wall portion of the frame member and is so wound around the frame member from upper and lower sides of the wall portion as to cover at least part of an inner side of the wall portion. A wiring pattern formed on the flexible printed circuit is electrically connected to the electronic components, and information to be protected that is stored on the electronic components becomes unreadable if the wiring pattern is cut off or short-circuited.




mi

Light-emitting element, light-emitting device, and electronic device

It is an object of the present invention to provide a light-emitting element with high light emission efficiency and with a long lifetime. A light-emitting device comprises a first electrode, a second electrode, a light-emitting layer, a first layer, and a second layer, wherein the first layer is provided between the light-emitting layer and the first electrode, the second layer is provided between the light-emitting layer and the second electrode, the first layer is a layer for controlling the hole transport, the second layer is a layer for controlling the electron transport, and light emission from the light-emitting layer is obtained when voltage is applied to the first electrode and the second electrode so that potential of the first electrode is higher than potential of the second electrode.




mi

Easy open and reclosable package with discrete laminate with die-cut

An easy-open and reclosable package includes a pouch including a discrete laminate including a base strip, a panel section, and a die cut defining a die cut segment; a first and second anchor seal; the base strip including a sealing segment, backing segment, and intermediate layer including a pressure sensitive adhesive; and a product disposed in the pouch. The die cut segment is so arranged that when the package is opened, the sealing segment is partially removed from the base strip, the pressure sensitive adhesive is partially exposed, and the package can thereafter be reclosed by adhering any of the first side panel, second side panel, and panel section to the pressure sensitive adhesive. Methods of making the package, and a pouch, are also disclosed.




mi

Single-dose package for transdermal therapeutic system or sheet-like administration forms

In the case of a package (1) for single-dose films (2) containing active substances, comprising an upper packaging material element (3) and a lower packaging material element (4) which are connected together by a peripheral seal area or respectively sealing seam (5) such that a cavity (6) for holding the film (2) is formed, said cavity being enclosed on all sides, wherein the upper packaging material element (3) and the lower packaging material element (4) each have at least one cut (7, 8) in the region of the seal area or respectively, the sealing seam (5), said cuts being congruent, andat least one cut (7, 8) is crossed by a folding or bending line (10), the folding or bending line (10) is formed in a weakened manner.




mi

Multiple chamber container with mistake proof administration system

The present disclosure provides a multiple chamber container that includes a container body sealed around a peripheral edge and having an outlet. The container also includes a first peel seal having a projecting portion and a second peel seal that isolates the outlet. The second peel seal may also include a projecting portion. The first and second peel seals may be configured to define a symmetrical chamber. The chamber may include an axis of symmetry extending between the first and second projecting portions. The chamber geometry of the container ensures a correct sequential opening of the first and second peel seals.




mi

Packaging material and method for microwave and steam cooking of food products

A packaging device allowing for the distribution, storage and cooking of various food products, such as perishable or frozen food product(s). The packaging device includes a plurality of micro-perforations that may promote the extended shelf-life of the perishable food product and the maintenance of the quality of the perishable food product or be configured to maintain the integrity of a frozen food product. The packaging device also includes a venting system that allows the cooking of the perishable or frozen food products within the packaging device.




mi

Optimization of face cone element for spiral bevel and hypoid gears

A method of determining an optimized face cone element for spiral bevel and hypoid gears. The form of the root fillet of one member of a gear pair is determined and that from is transferred to the tip of the other member of the gear pair. With the inventive method, tooth root-tip clearance is optimized and the contact ratio is maximized while avoiding root-tip interference between mating gear members.




mi

Automatic method for milling complex channel-shaped cavities

Methods and devices for milling a channel-shaped cavity by a five-axis computer numerical control (CNC) machine by selecting a workpiece to be machined, determining cutting tool flow along the channel-shaped cavity, determining cutting tool in-depth penetration, determining a trochoid path, and determining auxiliary movements.