fea

Fear roadworks will cause 'chaos' before Christmas

Somerset Council says the upgrade work on Hurdle Way is vital for pedestrians and cyclists.




fea

Paralympian fears farm building may scare horses

Sir Lee Pearson says he fears noise emanating from a new storage building will impact his training.




fea

Kerosene leak continues, sparking pollution fears

Councillor Ruth Houghton says the kerosene in the drains is "still flowing" after 10 days.




fea

Town residents fear for future of treasured hotel

The Royal Victoria Hotel, which closed in 2015, is due to undergo emergency repairs.




fea

The flooded families living in fear of the rain

Residents say they are scared by wet weather after their homes flood multiple times.




fea

Hospital bosses were 'disbelieving of Letby fears'

Managers were "disbelieving" of concerns that nurse Lucy Letby could be harming babies, an inquiry hears.




fea

Norwich must 'crack on' despite defeats - Duffy

Norwich City defender Shane Duffy urges the team to learn quickly and "crack on again" following two defeats away from home in the space of four days.




fea

Roblox introduces new safety features, Australia bans Under 16s from social media

Roblox is introducing new safety features for children under the age of 13, following criticism of how it protects younger users. The free online gaming platform, which has around 70 million […]

The post Roblox introduces new safety features, Australia bans Under 16s from social media appeared first on Tech Digest.




fea

Listen to a spooky Halloween electronic music show tonight – that obvs features me

If you are home alone tonight on Halloween and fancy something spooky and electronic to listen to, please allow me to direct you to the annual Homebrew Electronica horrorthon! Promising “spooky bangers, creepy electronica and twisted soundscapes for Halloween night”,...




fea

Document Retrieval Using SIFT Image Features

This paper describes a new approach to document classification based on visual features alone. Text-based retrieval systems perform poorly on noisy text. We have conducted series of experiments using cosine distance as our similarity measure, selecting varying numbers local interest points per page, and varying numbers of nearest neighbour points in the similarity calculations. We have found that a distance-based measure of similarity outperforms a rank-based measure except when there are few interest points. We show that using visual features substantially outperforms textbased approaches for noisy text, giving average precision in the range 0.4-0.43 in several experiments retrieving scientific papers.




fea

An OCR Free Method for Word Spotting in Printed Documents: the Evaluation of Different Feature Sets

An OCR free word spotting method is developed and evaluated under a strong experimental protocol. Different feature sets are evaluated under the same experimental conditions. In addition, a tuning process in the document segmentation step is proposed which provides a significant reduction in terms of processing time. For this purpose, a complete OCR-free method for word spotting in printed documents was implemented, and a document database containing document images and their corresponding ground truth text files was created. A strong experimental protocol based on 800 document images allows us to compare the results of the three feature sets used to represent the word image.




fea

Bio-Inspired Mechanisms for Coordinating Multiple Instances of a Service Feature in Dynamic Software Product Lines

One of the challenges in Dynamic Software Product Line (DSPL) is how to support the coordination of multiple instances of a service feature. In particular, there is a need for a decentralized decision-making capability that will be able to seamlessly integrate new instances of a service feature without an omniscient central controller. Because of the need for decentralization, we are investigating principles from self-organization in biological organisms. As an initial proof of concept, we have applied three bio-inspired techniques to a simple smart home scenario: quorum sensing based service activation, a firefly algorithm for synchronization, and a gossiping (epidemic) protocol for information dissemination. In this paper, we first explain why we selected those techniques using a set of motivating scenarios of a smart home and then describe our experiences in adopting them.




fea

Automatically Checking Feature Model Refactorings

A feature model (FM) defines the valid combinations of features, whose combinations correspond to a program in a Software Product Line (SPL). FMs may evolve, for instance, during refactoring activities. Developers may use a catalog of refactorings as support. However, the catalog is incomplete in principle. Additionally, it is non-trivial to propose correct refactorings. To our knowledge, no previous analysis technique for FMs is used for checking properties of general FM refactorings (a transformation that can be applied to a number of FMs) containing a representative number of features. We propose an efficient encoding of FMs in the Alloy formal specification language. Based on this encoding, we show how the Alloy Analyzer tool, which performs analysis on Alloy models, can be used to automatically check whether encoded general and specific FM refactorings are correct. Our approach can analyze general transformations automatically to a significant scale in a few seconds. In order to evaluate the analysis performance of our encoding, we evaluated in automatically generated FMs ranging from 500 to 2,000 features. Furthermore, we analyze the soundness of general transformations.




fea

An Approach for Feature Modeling of Context-Aware Software Product Line

Feature modeling is an approach to represent commonalities and variabilities among products of a product line. Context-aware applications use context information to provide relevant services and information for their users. One of the challenges to build a context-aware product line is to develop mechanisms to incorporate context information and adaptation knowledge in a feature model. This paper presents UbiFEX, an approach to support feature analysis for context-aware software product lines, which incorporates a modeling notation and a mechanism to verify the consistency of product configuration regarding context variations. Moreover, an experimental study was performed as a preliminary evaluation, and a prototype was developed to enable the application of the proposed approach.




fea

Cost-Sensitive Spam Detection Using Parameters Optimization and Feature Selection

E-mail spam is no more garbage but risk since it recently includes virus attachments and spyware agents which make the recipients' system ruined, therefore, there is an emerging need for spam detection. Many spam detection techniques based on machine learning techniques have been proposed. As the amount of spam has been increased tremendously using bulk mailing tools, spam detection techniques should counteract with it. To cope with this, parameters optimization and feature selection have been used to reduce processing overheads while guaranteeing high detection rates. However, previous approaches have not taken into account feature variable importance and optimal number of features. Moreover, to the best of our knowledge, there is no approach which uses both parameters optimization and feature selection together for spam detection. In this paper, we propose a spam detection model enabling both parameters optimization and optimal feature selection; we optimize two parameters of detection models using Random Forests (RF) so as to maximize the detection rates. We provide the variable importance of each feature so that it is easy to eliminate the irrelevant features. Furthermore, we decide an optimal number of selected features using two methods; (i) only one parameters optimization during overall feature selection and (ii) parameters optimization in every feature elimination phase. Finally, we evaluate our spam detection model with cost-sensitive measures to avoid misclassification of legitimate messages, since the cost of classifying a legitimate message as a spam far outweighs the cost of classifying a spam as a legitimate message. We perform experiments on Spambase dataset and show the feasibility of our approaches.




fea

A feature-based model selection approach using web traffic for tourism data

The increased volume of accessible internet data creates an opportunity for researchers and practitioners to improve time series forecasting for many indicators. In our study, we assess the value of web traffic data in forecasting the number of short-term visitors travelling to Australia. We propose a feature-based model selection framework which combines random forest with feature ranking process to select the best performing model using limited and informative number of features extracted from web traffic data. The data was obtained for several tourist attraction and tourism information websites that could be visited by potential tourists to find out more about their destinations. The results of random forest models were evaluated over 3- and 12-month forecasting horizon. Features from web traffic data appears in the final model for short term forecasting. Further, the model with additional data performs better on unseen data post the COVID19 pandemic. Our study shows that web traffic data adds value to tourism forecasting and can assist tourist destination site managers and decision makers in forming timely decisions to prepare for changes in tourism demand.




fea

Feature-aware task offloading and scheduling mechanism in vehicle edge computing environment

With the rapid development and application of driverless technology, the number and location of vehicles, the channel and bandwidth of wireless network are time-varying, which leads to the increase of offloading delay and energy consumption of existing algorithms. To solve this problem, the vehicle terminal task offloading decision problem is modelled as a Markov decision process, and a task offloading algorithm based on DDQN is proposed. In order to guide agents to quickly select optimal strategies, this paper proposes an offloading mechanism based on task feature. In order to solve the problem that the processing delay of some edge server tasks exceeds the upper limit of their delay, a task scheduling mechanism based on buffer delay is proposed. Simulation results show that the proposed method has greater performance advantages in reducing delay and energy consumption compared with existing algorithms.




fea

A robust feature points-based screen-shooting resilient watermarking scheme

Screen-shooting will lead to information leakage. Anti-screen-shooting watermark, which can track the leaking sources and protect the copyrights of images, plays an important role in image information security. Due to the randomness of shooting distance and angle, more robust watermark algorithms are needed to resist the mixed attack generated by screen-shooting. A robust digital watermarking algorithm that is resistant to screen-shooting is proposed in this paper. We use improved Harris-Laplace algorithm to detect the image feature points and embed the watermark into the feature domain. In this paper, all test images are selected on the dataset USC-SIPI and six related common algorithms are used for performance comparison. The experimental results show that within a certain range of shooting distance and angle, this algorithm presented can not only extract the watermark effectively but also ensure the most basic invisibility of watermark. Therefore, the algorithm has good robustness for anti-screen-shooting.




fea

A Realistic Data Warehouse Project: An Integration of Microsoft Access® and Microsoft Excel® Advanced Features and Skills




fea

Investigating the Feasibility of Automatic Assessment of Programming Tasks

Aim/Purpose: The aims of this study were to investigate the feasibility of automatic assessment of programming tasks and to compare manual assessment with automatic assessment in terms of the effect of the different assessment methods on the marks of the students. Background: Manual assessment of programs written by students can be tedious. The assistance of automatic assessment methods might possibly assist in reducing the assessment burden, but there may be drawbacks diminishing the benefits of applying automatic assessment. The paper reports on the experience of a lecturer trying to introduce automated grading. Students’ solutions to a practical Java programming test were assessed both manually and automatically and the lecturer tied the experience to the unified theory of acceptance and use of technology (UTAUT). Methodology: The participants were 226 first-year students registered for a Java programming course. Of the tests the participants submitted, 214 were assessed both manually and automatically. Various statistical methods were used to compare the manual assessment of student’s solutions with the automatic assessment of the same solutions. A detailed investigation of reasons for differences was also carried out. A further data collection method was the lecturer’s reflection on the feasibility of automatic assessment of programming tasks based on the UTAUT. Contribution: This study enhances the knowledge regarding benefits and drawbacks of automatic assessment of students’ programming tasks. The research contributes to the UTAUT by applying it in a context where it has hardly been used. Furthermore, the study is a confirmation of previous work stating that automatic assessment may be less reliable for students with lower marks, but more trustworthy for the high achieving students. Findings: An automatic assessment tool verifying functional correctness might be feasible for assessment of programs written during practical lab sessions but could be less useful for practical tests and exams where functional, conceptual and structural correctness should be evaluated. In addition, the researchers found that automatic assessment seemed to be more suitable for assessing high achieving students. Recommendations for Practitioners: This paper makes it clear that lecturers should know what assessment goals they want to achieve. The appropriate method of assessment should be chosen wisely. In addition, practitioners should be aware of the drawbacks of automatic assessment before choosing it. Recommendation for Researchers: This work serves as an example of how researchers can apply the UTAUT theory when conducting qualitative research in different contexts. Impact on Society: The study would be of interest to lecturers considering automated assessment. The two assessments used in the study are typical of the way grading takes place in practice and may help lecturers understand what could happen if they switch from manual to automatic assessment. Future Research: Investigate the feasibility of automatic assessment of students’ programming tasks in a practical lab environment while accounting for structural, functional and conceptual assessment goals.




fea

Implementation of a novel technique for ordering of features algorithm in detection of ransomware attack

In today's world, malware has become a part and threat to our computer systems. All electronic devices are very susceptible/vulnerable to various threats like different types of malware. There is one subset of malware called ransomware, which is majorly used to have large financial gains. The attacker asks for a ransom amount to regain access to the system/data. When dynamic technique using machine learning is used, it is very important to select the correct set of features for the detection of a ransomware attack. In this paper, we present two novel algorithms for the detection of ransomware attacks. The first algorithm is used to assign the time stamp to the features (API calls) for the ordering and second is used for the ordering and ranking of the features for the early detection of a ransomware attack.




fea

Investigation of user perception of software features for software architecture recovery in object-oriented software

A well-documented architecture can greatly improve comprehension and maintainability. However, shorter release cycles and quick delivery patterns results in negligence of architecture. In such situations, the architecture can be recovered from its current implementation based on considering dependency relations. In literature, structural and semantic dependencies are commonly used software features, and directory information along with co-change/change history information are among rarely utilised software features. But, they are found to help improve architecture recovery. Therefore, we consider investigating various features that may further improve the accuracy of existing architecture recovery techniques and evaluate their feasibility by considering them in different pairs. We compared five state-of-the-art methods under different feature subsets. We identified that two of them commonly outperform others but surprisingly with low accuracy in some evaluations. Further, we propose a new subset of features that reflects more accurate user perceptions and hence, results in improving the accuracy of architecture recovery techniques.




fea

A Comparative Analysis of Common E-Portfolio Features and Available Platforms




fea

Name-display Feature for Self-disclosure in an Instant Messenger Program: A Qualitative Study in Taiwan




fea

A Novel Telecom Customer Churn Analysis System Based on RFM Model and Feature Importance Ranking

Aim/Purpose: In this paper, we present an RFM model-based telecom customer churn system for better predicting and analyzing customer churn. Background: In the highly competitive telecom industry, customer churn is an important research topic in customer relationship management (CRM) for telecom companies that want to improve customer retention. Many researchers focus on a telecom customer churn analysis system to find out the customer churn factors for improving prediction accuracy. Methodology: The telecom customer churn analysis system consists of three main parts: customer segmentation, churn prediction, and churn factor identification. To segment the original dataset, we use the RFM model and K-means algorithm with an elbow method. We then use RFM-based feature construction for customer churn prediction, and the XGBoost algorithm with SHAP method to obtain a feature importance ranking. We chose an open-source customer churn dataset that contains 7,043 instances and 21 features. Contribution: We present a novel system for churn analysis in telecom companies, which encompasses customer churn prediction, customer segmentation, and churn factor analysis to enhance business strategies and services. In this system, we leverage customer segmentation techniques for feature construction, which enables the new features to improve the model performance significantly. Our experiments demonstrate that the proposed system outperforms current advanced customer churn prediction methods in the same dataset, with a higher prediction accuracy. The results further demonstrate that this churn analysis system can help telecom companies mine customer value from the features in a dataset, identify the primary factors contributing to customer churn, and propose suitable solution strategies. Findings: Simulation results show that the K-means algorithm gets better results when the original dataset is divided into four groups, so the K value is selected as 4. The XGBoost algorithm achieves 79.3% and 81.05% accuracy on the original dataset and new data with RFM, respectively. Additionally, each cluster has a unique feature importance ranking, allowing for specialized strategies to be provided to each cluster. Overall, our system can help telecom companies implement effective CRM and marketing strategies to reduce customer churn. Recommendations for Practitioners: More accurate churn prediction reduces misjudgment of customer churn. The acquisition of customer churn factors makes the company more convenient to analyze the reasons for churn and formulate relevant conservation strategies. Recommendation for Researchers: The research achieves 81.05% accuracy for customer churn prediction with the Xgboost and RFM algorithms. We believe that more enhancements algorithms can be attempted for data preprocessing for better prediction. Impact on Society: This study proposes a more accurate and competitive customer churn system to help telecom companies conserve the local markets and reduce capital outflows. Future Research: The research is also applicable to other fields, such as education, banking, and so forth. We will make more new attempts based on this system.




fea

Enhancing Consumer Value Co-Creation Through Social Commerce Features in China’s Retail Industry

Aim/Purpose: Based on the stimulus-organism-response (SOR) model, the current study investigated social commerce functions as an innovative retailing technological support by selecting the three most appropriate features for the Chinese online shopping environment with respective value co-creation intentions. Background: Social commerce is the customers’ online shopping touchpoint in the latest retail era, which serves as a corporate technological tool to extend specific customer services. Although social commerce is a relatively novel platform, limited theoretical attention was provided to determine retailers’ approaches in employing relevant functions to improve consumer experience and value co-creation. Methodology: A questionnaire was distributed to Chinese customers, with 408 valid questionnaires being returned and analyzed through Structural Equation Modeling (SEM). Contribution: The current study investigated the new retail concept and value co-creation from the consumer’s perspective by developing a theoretical model encompassing new retail traits and consumer value, which contributed to an alternative theoretical understanding of value creation, marketing, and consumer behaviour in the new retail business model. Findings: The results demonstrated that value co-creation intention was determined by customer experience, hedonic experience, and trust. Simultaneously, the three factors were significantly influenced by interactivity, personalisation, and sociability features. Specifically, customers’ perceptions of the new retail idea and the consumer co-creation value were examined. Resultantly, this study constructed a model bridging new retail characteristics with consumer value. Recommendations for Practitioners: Nonetheless, past new retail management practice studies mainly focused on superficial happiness in the process of human-computer interaction, which engendered a computer system design solely satisfying consumers’ sensory stimulation and experience while neglecting consumers’ hidden value demands. As such, a shift from the subjective perspective to the realisation perspective is required to express and further understand the actual meaning and depth of consumer happiness. Recommendation for Researchers: New retailers could incorporate social characteristics on social commerce platforms to improve the effectiveness of marketing strategies while increasing user trust to generate higher profitability. Impact on Society: The new retail enterprises should prioritise consumers’ acquisition of happiness meaning and deep experience through self-realisation, cognitive improvement, identity identification, and other aspects of consumer experiences and purchase processes. By accurately revealing and matching consumers’ fundamental perspectives, new retailers could continuously satisfy consumer requirements in optimally obtaining happiness. Future Research: Future comparative studies could be conducted on diverse companies within the same industry for comprehensive findings. Moreover, other underlying factors with significant influences, such as social convenience, group cognitive ability, individual family environment, and other external stimuli were not included in the present study examinations.




fea

Feature analytics of asthma severity levels for bioinformatics improvement using Gini importance

In the context of asthma severity prediction, this study delves into the feature importance of various symptoms and demographic attributes. Leveraging a comprehensive dataset encompassing symptom occurrences across varying severity levels, this investigation employs visualisation techniques, such as stacked bar plots, to illustrate the distribution of symptomatology within different severity categories. Additionally, correlation coefficient analysis is applied to quantify the relationships between individual attributes and severity levels. Moreover, the study harnesses the power of random forest and the Gini importance methodology, essential tools in feature importance analytics, to discern the most influential predictors in asthma severity prediction. The experimental results bring to light compelling associations between certain symptoms, notably 'runny-nose' and 'nasal-congestion', and specific severity levels, elucidating their potential significance as pivotal predictive indicators. Conversely, demographic factors, encompassing age groups and gender, exhibit comparatively weaker correlations with symptomatology. These findings underscore the pivotal role of individual symptoms in characterising asthma severity, reinforcing the potential for feature importance analysis to enhance predictive models in the realm of asthma management and bioinformatics.




fea

Good Intuition or Fear and Uncertainty: The Effects of Bias on Information Systems Selection Decisions




fea

Ensemble Learning Approach for Clickbait Detection Using Article Headline Features

Aim/Purpose: The aim of this paper is to propose an ensemble learners based classification model for classification clickbaits from genuine article headlines. Background: Clickbaits are online articles with deliberately designed misleading titles for luring more and more readers to open the intended web page. Clickbaits are used to tempted visitors to click on a particular link either to monetize the landing page or to spread the false news for sensationalization. The presence of clickbaits on any news aggregator portal may lead to an unpleasant experience for readers. Therefore, it is essential to distinguish clickbaits from authentic headlines to mitigate their impact on readers’ perception. Methodology: A total of one hundred thousand article headlines are collected from news aggregator sites consists of clickbaits and authentic news headlines. The collected data samples are divided into five training sets of balanced and unbalanced data. The natural language processing techniques are used to extract 19 manually selected features from article headlines. Contribution: Three ensemble learning techniques including bagging, boosting, and random forests are used to design a classifier model for classifying a given headline into the clickbait or non-clickbait. The performances of learners are evaluated using accuracy, precision, recall, and F-measures. Findings: It is observed that the random forest classifier detects clickbaits better than the other classifiers with an accuracy of 91.16 %, a total precision, recall, and f-measure of 91 %.




fea

BiConvNet: Integrating Spatial Details and Deep Semantic Features in a Bilateral-Branch Image Segmentation Network

Zhigang WU,Yaohui ZHU, Vol.E107-D, No.11, pp.1385-1395
This article focuses on improving the BiSeNet v2 bilateral branch image segmentation network structure, enhancing its learning ability for spatial details and overall image segmentation accuracy. A modified network called “BiconvNet” is proposed. Firstly, to extract shallow spatial details more effectively, a parallel concatenated strip and dilated (PCSD) convolution module is proposed and used to extract local features and surrounding contextual features in the detail branch. Continuing on, the semantic branch is reconstructed using the lightweight capability of depth separable convolution and high performance of ConvNet, in order to enable more efficient learning of deep advanced semantic features. Finally, fine-tuning is performed on the bilateral guidance aggregation layer of BiSeNet v2, enabling better fusion of the feature maps output by the detail branch and semantic branch. The experimental part discusses the contribution of stripe convolution and different sizes of empty convolution to image segmentation accuracy, and compares them with common convolutions such as Conv2d convolution, CG convolution and CCA convolution. The experiment proves that the PCSD convolution module proposed in this paper has the highest segmentation accuracy in all categories of the Cityscapes dataset compared with common convolutions. BiConvNet achieved a 9.39% accuracy improvement over the BiSeNet v2 network, with only a slight increase of 1.18M in model parameters. A mIoU accuracy of 68.75% was achieved on the validation set. Furthermore, through comparative experiments with commonly used autonomous driving image segmentation algorithms in recent years, BiConvNet demonstrates strong competitive advantages in segmentation accuracy on the Cityscapes and BDD100K datasets.
Publication Date: 2024/11/01




fea

Alphacool Apex Pro Skeleton Carbon Case Featured Build and more @ NT Compatible

...




fea

Google Flights Just Announced a New Feature To Find Cheap Flights

Google Flights has released a new feature that allows travelers worldwide to find the best possible airfare deal with one click. The feature is currently being rolled out and should be available globally over the next two weeks. Google Flights Introduces “Cheapest” Tab Look for the new “Cheapest” tab (next to the “Best” tab) to […]

The post Google Flights Just Announced a New Feature To Find Cheap Flights appeared first on Clark Howard.




fea

Di-O-Matic technologies featured in...




fea

Apple's iPhone 16 struggles with AI features delay, increasing Huawei competition

Apple’s shares fell 1.7 per cent on Tuesday, a day after the US tech giant unveiled its new iPhones with AI




fea

SpaceX achieves unprecedented feat in commercial space travel

Mission Polaris Dawn sees two private astronauts step into orbit, paving the way for future space missions to Mars





fea

UFC Vegas 97: Brady defeats Burns by unanimous decision

Natalia Silva, Steve Garcia, Cody Durden, and Yanal Ashmouz also secure victories at the MMA event




fea

Instagram might launch new AI-powered feature for generating profile pictures

Facebook, TikTok, Twitter, YouTube and Instagram apps are seen on a smartphone in this illustration taken, July 13, 2021.— Reuters

Meta-owned Instagram might be working to add a new AI-backed feature that will allow users to create profile pictures using Meta’s artificial...




fea

WhatsApp set to revamp muting feature for group chat notifications

A representational image shows an illustration of the WhatsApp logo. — Unsplash

WhatsApp is set to revamp its feature for muting notifications from group chats in an upcoming update, making it simpler for users to better understand how this feature works.




fea

Shadow x Subrosa IDK BMX Video feat. Miguel





The dudes from Shadow/Subrosa are often on the road doing what they do best. As is the case, a lot of clips are stacked during these times. Bjarki Hardarson has now taken on all of the unpublished material and came up with a small but fine edit. Our Bro Miguel Smajli is also included by the way ;-)

Have fun with the video, your kunstform BMX Shop Team!

Video: Bjarki Hardarson

Related links:




fea

Senior PTI leaders fear backfire amid Imran Khan's do-or-die protest demand

Former prime minister Imran Khan gestures as he addresses supporters during a rally in Karachi, April 16, 2022. — ReutersSome PTI leaders sitting abroad pressing for do-or-die protest. Some firebrand leaders fear it may damage party and its cause.PTI info secy admits to presence...




fea

Pakistan's undefeated baseball team wins Arab Classic Dubai 2024 championship

An undated image shows Pakistan's baseball team poses with national flag Arab Classic Dubai 2024 championship. — APP/File

DUBAI: Pakistan’s baseball team clinched the Arab Classic Dubai 2024 championship as the team trampled the hosts United Arab Emirates with an...




fea

Macy's Thanksgiving Parade will feature Ariana Madix, T-Pain, 'Gabby's Dollhouse' and pasta

A eclectic group of stars - including reality TV's Ariana Madix, Broadway belter Idina Menzel, hip-hop's T-Pain, members of the WNBA champions New York Liberty and country duo Dan + Shay - will feature in this year's Macy's Thanksgiving Day Parade.




fea

Villanova hands Georgetown 12th straight defeat

TJ Bamba scored 14 points and Villanova beat Georgetown 70-54 on Friday night, handing the Hoyas their 12th straight loss.




fea

Candidates who win are often the ones who most fear losing

"Deep inside, all candidates think about winning and losing -- but the latter is suppressed. This unleashes a lot of energy. It's also the time where candidates stop sleeping and campaign day and night. It's another way of dealing with the fear of losing that you don't want to leave any stone unturned," campaign consultant Louis Perron said in a written statement shared with Inside the Beltway.




fea

Future of school choice unclear after state ballot defeats

Voters in Colorado, Kentucky and Nebraska on Tuesday rejected school choice ballot measures that would have let parents spend state education dollars on private and public charter schools.




fea

Democrat Angela Alsobrooks defeats popular ex-Gov. Larry Hogan in Maryland Senate race

Democrat Angela Alsobrooks won the Senate race in deep-blue Maryland on Tuesday over Republican Larry Hogan, a former two-term governor who failed to convert his popularity into an upset win.




fea

Work In Fear And Faith

Learn the rolls fear and faith play in the work we do and the financial blessings we receive from God.




fea

In Fear And Faith

Learn why we Christians live in both fear and faith, how to understand this relationship and use it to accomplish our mission for Christ.




fea

Undefeated and new look Indiana provides Maryland's biggest challenge to date

Last season, Maryland beat Indiana so bad that the Hoosiers fired their offensive coordinator less than 24 hours later. How much things can change in just one year, as Indiana is at 4-0 in 2024 as they await the Terrapins on Saturday.