odi CBD News: Elizabeth Maruma Mrema, CBD Acting Executive Secretary, welcomes announcement that biodiversity will be theme of the next year's World Environment Day: "We are delighted to see that biodiversity will be the focus of World Environment Da By www.unenvironment.org Published On :: Wed, 11 Dec 2019 00:00:00 GMT Full Article
odi CBD Notification SCBD/SSSF/AS/ML/GD/88414 (2019-114): Tracking Economic Instruments and Finance for Biodiversity: Invitation to contribute data on positive incentives relevant to Aichi Biodiversity Target 3 to the OECD PINE database By www.cbd.int Published On :: Thu, 12 Dec 2019 00:00:00 GMT Full Article
odi CBD Notification SCBD/IMS/JMF/NVW/86292 (2019-117): Follow-up invitation to participate in and/or contribute to the piloting and further development of a methodology for the voluntary peer review of national biodiversity strategies and action plans By www.cbd.int Published On :: Wed, 18 Dec 2019 00:00:00 GMT Full Article
odi CBD Notification SCBD/OES/DC/AC/88568 (2019-115): Submission of views on possible targets and indicators for the post-2020 global biodiversity framework related to the interlinkages and interdependencies between biodiversity and climate change By www.cbd.int Published On :: Thu, 19 Dec 2019 00:00:00 GMT Full Article
odi CBD Notification SCBD/IMS/JMF/ET/CPa/88555 (2020-001): Invitation to provide additional views and suggestions regarding the draft proposals to strengthen technical and scientific cooperation in support of the post-2020 Global Biodiversity Framework By www.cbd.int Published On :: Fri, 03 Jan 2020 00:00:00 GMT Full Article
odi CBD Notification SCBD/IMS/JMF/JBM/88603 (2020-004): Documentation for the Second Meeting of the Open-Ended Working Group on the Post-2020 Global Biodiversity Framework By www.cbd.int Published On :: Tue, 14 Jan 2020 00:00:00 GMT Full Article
odi CBD Notification SCBD/IMS/JMF/JBF/NP/CR/WS/IH/88601 (2020-006): Call for Applications: 2020 Global Youth Biodiversity Summit in Miyazaki By www.cbd.int Published On :: Thu, 16 Jan 2020 00:00:00 GMT Full Article
odi CBD Notification SCBD/SSSF/AS/CC/VA/88615 (2020-009): Thematic Consultation on the Sustainable Use of Biological Diversity for the Post-2020 Global Biodiversity Framework, 30 March - 1 April 2020 - Bern, Switzerland By www.cbd.int Published On :: Mon, 20 Jan 2020 00:00:00 GMT Full Article
odi CBD Notification SCBD/OES/EM/DC/KNM/88511 (2020-011): Peer review of the fifth edition of the Global Biodiversity Outlook By www.cbd.int Published On :: Wed, 22 Jan 2020 00:00:00 GMT Full Article
odi CBD Notification SCBD/SSSF/AS/CR/TM/88642 (2020-013): Regional Capacity-Building Workshop on Biodiversity and Health for the SEARO region By www.cbd.int Published On :: Fri, 24 Jan 2020 00:00:00 GMT Full Article
odi CBD Notification SCBD/OES/EM/DC/JMF/88471 (2020-014): Change in venue: Second meeting of the Working Group on the Post-2020 Global Biodiversity Framework, 24-29 February 2020 - Rome, Italy By www.cbd.int Published On :: Fri, 31 Jan 2020 00:00:00 GMT Full Article
odi CBD Notification SCBD/OES/EM/DC/88471 (2020-017): Updated Information Note for Participants: Second meeting of the Working Group on the Post-2020 Global Biodiversity Framework and related thematic consultations, 24-29 February 2020 - Rome, Italy By www.cbd.int Published On :: Tue, 04 Feb 2020 00:00:00 GMT Full Article
odi CBD Notification SCBD/IMS/JMF/NP/OH/SM/88701 (2020-020): Workshop for Subnational, Regional and Local Governments on the Post-2020 Global Biodiversity Framework, 1-3 April 2020, Edinburgh, Scotland By www.cbd.int Published On :: Fri, 14 Feb 2020 00:00:00 GMT Full Article
odi CBD News: Statement by Ms. Elizabeth Maruma Mrema, Acting Executive Secretary, Convention on Biological Diversity, for the opening of the Second Meeting of the Working Group on the Post-2020 Global Biodiversity Framework, Monday, 24 February 2020, Rome By www.cbd.int Published On :: Mon, 24 Feb 2020 00:00:00 GMT Full Article
odi CBD News: Over 1000 delegates from more than 140 countries started negotiations today at FAO headquarters, Rome on the zero draft of a landmark post-2020 global biodiversity framework and targets for nature to 2030. By www.cbd.int Published On :: Mon, 24 Feb 2020 00:00:00 GMT Full Article
odi CBD Notification SCBD/IMS/JMF/JBF/NP/CR/WS/IH/88601 (2020-023): Postponement of the 2020 Global Youth Biodiversity Summit in Miyazaki By www.cbd.int Published On :: Tue, 25 Feb 2020 00:00:00 GMT Full Article
odi CBD News: Governments advance in the preparation of a New UN Biodiversity Framework; Negotiations in Rome demonstrate engagement across government and society By www.cbd.int Published On :: Sun, 01 Mar 2020 00:00:00 GMT Full Article
odi CBD Notification SCBD/IMS/JMF/NP/CR/IH/88710 (2020-027): Final Call for Nominations for the MIDORI Prize for Biodiversity 2020 By www.cbd.int Published On :: Fri, 06 Mar 2020 00:00:00 GMT Full Article
odi CBD News: Two meetings of the UN Convention on Biological Diversity's (CBD) permanent subsidiary bodies originally scheduled for May 2020 and then rescheduled for August/September 2020 will now take place in August 2020. By www.cbd.int Published On :: Thu, 02 Apr 2020 00:00:00 GMT Full Article
odi CBD Notification SCBD/OES/EM/DC/IS/88838 (2020-034): Summit on Biodiversity By www.cbd.int Published On :: Tue, 14 Apr 2020 00:00:00 GMT Full Article
odi Learn to code with these classroom-based UK coding courses By www.techworld.com Published On :: Thu, 23 Jan 2020 13:00:00 GMT Full Article
odi Modified Euler scheme for the weak approximation of stochastic differential equations driven by the Wiener process By www.ams.org Published On :: Mon, 02 Mar 2020 06:58 EST S. V. Bodnarchuk and O. M. Kulyk Theor. Probability and Math. Statist. 99 (2020), 53-65. Abstract, references and article information Full Article
odi Near Soliton Evolution for Equivariant Schrodinger Maps in Two Spatial Dimensions By www.ams.org Published On :: Ioan Bejenaru, University of California, San Diego, and Daniel Tataru, University of California, Berkeley - AMS, 2014, 108 pp., Softcover, ISBN-13: 978-0-8218-9215-2, List: US$76, All AMS Members: US$60.80, MEMO/228/1069 The authors consider the Schrödinger Map equation in (2+1) dimensions, with values into (mathbb{S}^2). This admits a lowest energy steady... Full Article
odi Geometry of Isotropic Convex Bodies By www.ams.org Published On :: Silouanos Brazitikos and Apostolos Giannopoulos, University of Athens, Petros Valettas, Texas A & M University, and Beatrice-Helen Vritsiou, University of Athens - AMS, 2014, 594 pp., Hardcover, ISBN-13: 978-1-4704-1456-6, List: US$134, All AMS Members: US$107.20, SURV/196 The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on... Full Article
odi Semiclassical Standing Waves with Clustering Peaks for Nonlinear Schrodinger Equations By www.ams.org Published On :: Jaeyoung Byeon, KAIST, and Kazunaga Tanaka, Waseda University - AMS, 2013, 89 pp., Softcover, ISBN-13: 978-0-8218-9163-6, List: US$71, All AMS Members: US$56.80, MEMO/229/1076 The authors study the following singularly perturbed problem: (-epsilon^2Delta u+V(x)u = f(u)) in (mathbf{R}^N). Their main result is the... Full Article
odi Development of a novel {beta}-1,6-glucan-specific detection system using functionally-modified recombinant endo-{beta}-1,6-glucanase [Methods and Resources] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 β-1,3-d-Glucan is a ubiquitous glucose polymer produced by plants, bacteria, and most fungi. It has been used as a diagnostic tool in patients with invasive mycoses via a highly-sensitive reagent consisting of the blood coagulation system of horseshoe crab. However, no method is currently available for measuring β-1,6-glucan, another primary β-glucan structure of fungal polysaccharides. Herein, we describe the development of an economical and highly-sensitive and specific assay for β-1,6-glucan using a modified recombinant endo-β-1,6-glucanase having diminished glucan hydrolase activity. The purified β-1,6-glucanase derivative bound to the β-1,6-glucan pustulan with a KD of 16.4 nm. We validated the specificity of this β-1,6-glucan probe by demonstrating its ability to detect cell wall β-1,6-glucan from both yeast and hyphal forms of the opportunistic fungal pathogen Candida albicans, without any detectable binding to glucan lacking the long β-1,6-glucan branch. We developed a sandwich ELISA-like assay with a low limit of quantification for pustulan (1.5 pg/ml), and we successfully employed this assay in the quantification of extracellular β-1,6-glucan released by >250 patient-derived strains of different Candida species (including Candida auris) in culture supernatant in vitro. We also used this assay to measure β-1,6-glucan in vivo in the serum and in several organs in a mouse model of systemic candidiasis. Our work describes a reliable method for β-1,6-glucan detection, which may prove useful for the diagnosis of invasive fungal infections. Full Article
odi Long noncoding RNA pncRNA-D reduces cyclin D1 gene expression and arrests cell cycle through RNA m6A modification [RNA] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 pncRNA-D is an irradiation-induced 602-nt long noncoding RNA transcribed from the promoter region of the cyclin D1 (CCND1) gene. CCND1 expression is predicted to be inhibited through an interplay between pncRNA-D and RNA-binding protein TLS/FUS. Because the pncRNA-D–TLS interaction is essential for pncRNA-D–stimulated CCND1 inhibition, here we studied the possible role of RNA modification in this interaction in HeLa cells. We found that osmotic stress induces pncRNA-D by recruiting RNA polymerase II to its promoter. pncRNA-D was highly m6A-methylated in control cells, but osmotic stress reduced the methylation and also arginine methylation of TLS in the nucleus. Knockdown of the m6A modification enzyme methyltransferase-like 3 (METTL3) prolonged the half-life of pncRNA-D, and among the known m6A recognition proteins, YTH domain-containing 1 (YTHDC1) was responsible for binding m6A of pncRNA-D. Knockdown of METTL3 or YTHDC1 also enhanced the interaction of pncRNA-D with TLS, and results from RNA pulldown assays implicated YTHDC1 in the inhibitory effect on the TLS–pncRNA-D interaction. CRISPR/Cas9-mediated deletion of candidate m6A site decreased the m6A level in pncRNA-D and altered its interaction with the RNA-binding proteins. Of note, a reduction in the m6A modification arrested the cell cycle at the G0/G1 phase, and pncRNA-D knockdown partially reversed this arrest. Moreover, pncRNA-D induction in HeLa cells significantly suppressed cell growth. Collectively, these findings suggest that m6A modification of the long noncoding RNA pncRNA-D plays a role in the regulation of CCND1 gene expression and cell cycle progression. Full Article
odi S-Palmitoylation of the sodium channel Nav1.6 regulates its activity and neuronal excitability [Cell Biology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 S-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978 S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions. Full Article
odi COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism. Full Article
odi Modification of a PE/PPE substrate pair reroutes an Esx substrate pair from the mycobacterial ESX-1 type VII secretion system to the ESX-5 system [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Bacterial type VII secretion systems secrete a wide range of extracellular proteins that play important roles in bacterial viability and in interactions of pathogenic mycobacteria with their hosts. Mycobacterial type VII secretion systems consist of five subtypes, ESX-1–5, and have four substrate classes, namely, Esx, PE, PPE, and Esp proteins. At least some of these substrates are secreted as heterodimers. Each ESX system mediates the secretion of a specific set of Esx, PE, and PPE proteins, raising the question of how these substrates are recognized in a system-specific fashion. For the PE/PPE heterodimers, it has been shown that they interact with their cognate EspG chaperone and that this chaperone determines the designated secretion pathway. However, both structural and pulldown analyses have suggested that EspG cannot interact with the Esx proteins. Therefore, the determining factor for system specificity of the Esx proteins remains unknown. Here, we investigated the secretion specificity of the ESX-1 substrate pair EsxB_1/EsxA_1 in Mycobacterium marinum. Although this substrate pair was hardly secreted when homologously expressed, it was secreted when co-expressed together with the PE35/PPE68_1 pair, indicating that this pair could stimulate secretion of the EsxB_1/EsxA_1 pair. Surprisingly, co-expression of EsxB_1/EsxA_1 with a modified PE35/PPE68_1 version that carried the EspG5 chaperone-binding domain, previously shown to redirect this substrate pair to the ESX-5 system, also resulted in redirection and co-secretion of the Esx pair via ESX-5. Our results suggest a secretion model in which PE35/PPE68_1 determines the system-specific secretion of EsxB_1/EsxA_1. Full Article
odi Seafloor currents may direct microplastics to biodiversity hotspots of the deep By www.eurekalert.org Published On :: Thu, 30 Apr 2020 00:00:00 EDT (American Association for the Advancement of Science) Microplastic particles entering the sea surface were thought to settle to the seafloor directly below them, but now, a new study reveals that slow-moving currents near the bottom of the ocean direct the flow of plastics, creating microplastic hotpots in sediments of the deep sea. Full Article
odi Multiple flooding sources threaten Honolulu's infrastructure By www.eurekalert.org Published On :: Mon, 04 May 2020 00:00:00 EDT (University of Hawaii at Manoa) In a study published in Scientific Reports, researchers at the University of Hawai'i at Mānoa, found in the next few decades, sea level rise will likely cause large and increasing percentages of land area to be impacted simultaneously by the three flood mechanisms. Further, they found direct marine inundation represents the least extensive--only three percent of the predicted flooding, while groundwater inundation represents the most extensive flood source. Full Article
odi COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism. Full Article
odi The DNA sensor cGAS is decorated by acetylation and phosphorylation modifications in the context of immune signaling By feedproxy.google.com Published On :: 2020-04-28 Bokai SongApr 28, 2020; 0:RA120.001981v1-mcp.RA120.001981Research Full Article
odi Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-capture Microdissected FFPE Tissue By feedproxy.google.com Published On :: 2020-05-01 Eva GriesserMay 1, 2020; 19:839-851Research Full Article
odi Radiation dosimetry and biodistribution of 68Ga-FAPI-46 PET imaging in cancer patients By jnm.snmjournals.org Published On :: 2019-12-13T13:35:10-08:00 Background: Targeting cancer-associated fibroblasts (CAFs) has become an attractive goal for diagnostic imaging and therapy as they can constitute as much as 90% of tumor mass. The serine protease fibroblast activation protein (FAP) is overexpressed selectively in CAFs, drawing interest in FAP as a stromal target. The quinoline-based FAP-inhibitor PET tracer, 68Ga-FAPI-04, has been previously shown to yield high tumor-to-background ratios (TBR) in patients with various cancers. Recent developments towards an improved compound for therapeutic application have identified FAPI-46 as a promising agent due to a longer tumor retention time in comparison with FAPI-04. Here we present a PET biodistribution and radiation dosimetry study of 68Ga-FAPI-46 in cancer patients. Methods: Six patients with different cancers underwent serial 68Ga-FAPI-46 PET/CT scans at three time points following radiotracer injection: 10 minutes, 1 hour, and 3 hours. The source organs consisted of the kidneys, bladder, liver, heart, spleen, bone marrow, uterus, and body remainder. OLINDA/EXM v.1.1 software was used to fit and integrate the kinetic organ activity data to yield total body and organ time-integrated activity coefficients/residence times and finally organ absorbed doses. Standardized uptake values (SUV) and TBR were generated from the contoured tumor and source organ volumes. Spherical volumes in muscle and blood pool were also obtained for TBR (Tumor SUVmax / Organ SUVmean). Results: At all timepoints, the highest organ SUVmax was observed in the liver. Tumor and organ mean SUVs decreased whereas TBRs in all organs but the uterus increased with time. The highest TBRs at 3 hours were observed with the bone marrow (31.1), muscle (22.8), heart (19.1), and spleen (19.0). Organs with the highest effective doses were the bladder wall (2.41E-03 mSv/MBq), followed by ovaries (1.15E-03 mSv/MBq) and red marrow (8.49E-04mSv/MBq). The average effective total body dose was 7.80E-03 mSv/MBq. Thus for administration of 200 MBq 68Ga-FAPI-46 the effective total body dose is 1.56 mSv ± 0.26 mSv, in addition to approximately 3.7 mSv from one low-dose CT scan done for attenuation correction. Conclusion: 68Ga-FAPI-46 PET/CT has a favorable dosimetry profile with an estimated whole body dose of 5.3 mSv for an administration of 200 MBq (5.4 mCi) of 68Ga-FAPI-46 (1.56± 0.26 mSv from the PET tracer and 3.7 mSv from one low-dose CT scan). The biodistribution study showed high TBRs increasing over time, suggesting high diagnostic performance and favorable tracer kinetics for potential therapeutic applications. Full Article
odi High Resolution Depth-Encoding PET Detector Module with Prismatoid Light Guide Array By jnm.snmjournals.org Published On :: 2020-02-28T13:52:17-08:00 Depth-encoding detectors with single-ended readout provide a practical, cost-effective approach for constructing high resolution and high sensitivity PET scanners. However, the current iteration of such detectors utilizes a uniform glass light guide to achieve depth-encoding, resulting in non-uniform performance throughout the detector array due to suboptimal intercrystal light sharing. We introduce Prism-PET, a single-ended readout PET detector module with a segmented light guide composed of an array of prismatoids that introduces enhanced, deterministic light sharing. Methods: High resolution PET detector modules were fabricated with single-ended readout of polished multicrystal lutetium yttrium orthosilicate (LYSO) scintillator arrays directly coupled 4-to-1 and 9-to-1 to arrays of 3.2 x 3.2 mm2 silicon photomultiplier pixels. Each scintillator array was coupled at the non-readout side to a light guide (one 4-to-1 module with a uniform glass light guide, one 4-to-1 Prism-PET module and one 9-to-1 Prism-PET module) to introduce intercrystal light sharing, which closely mimics the behavior of dual-ended readout with the additional benefit of improved crystal identification. Flood histogram data was acquired using a 3 MBq Na-22 source to characterize crystal identification and energy resolution. Lead collimation was used to acquire data at specific depths to determine depth-of-interaction (DOI) resolution. Results: The flood histogram measurements showed excellent and uniform crystal separation throughout the Prism-PET modules while the uniform glass light guide module had performance degradation at the edges and corners. A DOI resolution of 5.0 mm full width at half maximum (FWHM) and energy resolution of 13% were obtained in the uniform glass light guide module. By comparison, the 4-to-1 coupled Prism-PET module achieved 2.5 mm FWHM DOI resolution and 9% energy resolution. Conclusion: PET scanners based on our Prism-PET modules with segmented prismatoid light guide arrays can achieve high and uniform spatial resolution (9-to-1 coupling with ~ 1 mm crystals), high sensitivity, good energy and timing resolutions (using polished crystals and after applying DOI-correction), and compact size (depth-encoding eliminates parallax error and permits smaller ring-diameter). Full Article
odi Biokinetics of Radiolabeled Monoclonal Antibody BC8: Differences in Biodistribution and Dosimetry among Hematologic Malignancies. By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 We reviewed 111In-DOTA-anti-CD45 antibody (BC8) imaging and bone marrow biopsy measurements to ascertain biodistribution and biokinetics of the radiolabeled antibody and to investigate differences based on type of hematologic malignancy. Methods: Serial whole-body scintigraphic images (4 time-points) were obtained after infusion of the 111In-DOTA-BC8 (176-406 MBq) in 52 adult patients with hematologic malignancies (lymphoma, multiple myeloma, acute myeloid leukemia and myelodysplastic syndrome). Counts were obtained for the regions of interest for spleen, liver, kidneys, testicles (in males), and two marrow sites (acetabulum and sacrum) and correction for attenuation and background was made. Bone marrow biopsies were obtained 14-24 hours post-infusion and percent of administered activity was determined. Radiation absorbed doses were calculated. Results: Initial uptake in liver averaged 32% ± 8.4% (S.D.) of administered activity (52 patients), which cleared monoexponentially with biological half-time of 293 ± 157 hours (33 patients) or did not clear (19 patients). Initial uptake in spleen averaged 22% ± 12% and cleared with a biological half-time 271 ± 185 hours (36 patients) or longer (6 patients). Initial uptake in kidney averaged 2.4% ± 2.0% and cleared with a biological half-time of 243 ± 144 hours (27 patients) or longer (9 patients). Initial uptake in red marrow averaged 23% ± 11% and cleared with half-times of 215 ± 107 hours (43 patients) or longer (5 patients). Whole-body retention half-times averaged 198 ± 75 hours. Splenic uptake was higher in the AML/MDS group when compared to the lymphoma group (p ≤ 0.05) and to the multiple myeloma group (p ≤ 0.10). Liver represented the dose-limiting organ. For liver uptake, no significant differences were observed between the three malignancy groups. Average calculated radiation absorbed doses per unit administered activity for a therapy infusions of 90Y-DOTA-BC8 were for red marrow: 470 ± 260 cGy/MBq, liver 1100 ± 330 cGy/MBq, spleen 4120 ± 1950 cGy/MBq, total body 7520 ± 20 cGy/MBq, osteogenic cells 290 ± 200 cGy/MBq, and kidneys 240 ± 200 cGy/MBqR. Conclusion: 111In-DOTA-BC8 had long retention time in liver, spleen, kidneys, and red marrow, and the highest absorbed doses were calculated for spleen and liver. Few differences were observed by malignancy type. The exception was greater splenic uptake among leukemia/MDS group when compared to lymphoma and multiple myeloma groups. Full Article
odi Biodistribution of a CD3/EpCAM bispecific T-cell engager is driven by the CD3 arm By jnm.snmjournals.org Published On :: 2020-04-13T14:09:24-07:00 BiTE® (Bispecific T-cell engager) molecules are designed to engage and activate cytotoxic T-cells to kill tumor cells. Little is known about their biodistribution in immunocompetent settings. To explore their pharmacokinetics and the role of the immune cells, BiTE molecules were radiolabeled with positron emission tomography (PET) isotope zirconium-89 (89Zr) and studied in immunocompetent and immunodeficient mouse models. PET images and ex-vivo biodistribution in immunocompetent mice with 89Zr-muS110, targeting mouse CD3 (Kd = 2.9 nM) and mouse EpCAM (Kd = 21 nM), and 89Zr-hyS110, targeting only mouse CD3 (Kd = 2.9 nM), showed uptake in tumor, spleen and other lymphoid organs, while the human-specific control BiTE 89Zr-AMG 110 showed similar tumor uptake but lacked spleen uptake. 89Zr-muS110 spleen uptake was lower in immunodeficient than in immunocompetent mice. After repeated administration of non-radiolabeled muS110 to immunocompetent mice 89Zr-muS110 uptake in spleen, and other lymphoid tissues, decreased and was comparable to uptake in immunodeficient mice, indicating saturation of CD3 binding sites. Autoradiography and immunohistochemistry demonstrated colocalization of 89Zr-muS110 and 89Zr-hyS110 with CD3-positive T-cells in the tumor and spleen but not with EpCAM expression. Also, uptake in the duodenum correlated with a high incidence of T-cells. This study shows that in immunocompetent mice the BiTE 89Zr-muS110 distribution is predominantly based on its high affinity CD3 binding arm. Significance: 89Zr-muS110 biodistribution is mainly dependent on the T-cell targeting arm with limited contribution of its second arm, targeting EpCAM. These findings highlight the need for extensive biodistribution studies of novel bispecific constructs as results might have implications for their respective drug development and clinical translation. Full Article
odi PET imaging of phosphodiesterase-4 identifies affected dysplastic bone in McCune-Albright syndrome, a genetic mosaic disorder By jnm.snmjournals.org Published On :: 2020-04-13T14:09:24-07:00 McCune-Albright syndrome (MAS) is a mosaic disorder arising from gain-of-function mutations in the GNAS gene, which encodes the 3', 5'-cyclic adenosine monophosphate (cAMP) pathway-associated G-protein, Gsα. Clinical manifestations of MAS in a given individual, including fibrous dysplasia, are determined by the timing and location of the GNAS mutation during embryogenesis, the tissues involved, and the role of Gsα in the affected tissues. The Gsα mutation results in dysregulation of the cAMP signaling cascade, leading to upregulation of phosphodiesterase type 4 (PDE4), which catalyzes the hydrolysis of cAMP. Increased cAMP levels have been found in vitro in both animal models of fibrous dysplasia and in cultured cells from individuals with MAS, but not in humans with fibrous dysplasia. Positron emission tomography (PET) imaging of PDE4 with 11C-(R)-rolipram has been used successfully to study the in vivo activity of the cAMP cascade. To date, it remains unknown whether fibrous dysplasia and other symptoms of MAS, including neuropsychiatric impairments, are associated with increased PDE4 activity in humans. Methods: 11C-(R)-rolipram whole-body and brain PET scans were performed in six individuals with MAS (three for brain scans and six for whole-body scans) and nine healthy controls (seven for brain scans and six for whole-body scans). Results: 11C-(R)-rolipram binding correlated with known locations of fibrous dysplasia in the periphery of individuals with MAS; no uptake was observed in the bones of healthy controls. In peripheral organs and the brain, no difference in 11C-(R)-rolipram uptake was noted between participants with MAS and healthy controls. Conclusion: This study is the first to find evidence for increased cAMP activity in areas of fibrous dysplasia in vivo. No differences in brain uptake between MAS participants and controls were detected, which could be due to several reasons, including the limited anatomic resolution of PET. Nevertheless, the results confirm the usefulness of PET scans with 11C-(R)-rolipram to indirectly measure increased cAMP pathway activation in human disease. Full Article
odi Radioiodine Ablation of Remaining Thyroid Lobe in Patients with Differentiated Thyroid Cancer Treated by Lobectomy. A systematic review and meta-analysis. By jnm.snmjournals.org Published On :: 2020-04-24T14:33:41-07:00 Purpose: We aimed to conduct a systematic review and meta-analysis of studies reporting the performance of radioactive iodine therapy (131-I therapy) in differentiating thyroid cancer (DTC) patients requiring a completion treatment following lobectomy. We also evaluated the response to 131-I therapy according to 2015ATA guidelines and the adverse events. Methods: A specific search strategy was designed to find articles evaluating the use of I-131 in patients with evidence of DTC after lobectomy. PubMed, CENTRAL, Scopus and Web of Science were searched. The search was updated until January 2020, without language restriction. Data were cross-checked and any discrepancy discussed. A proportion meta-analysis (with 95%CI) was performed using the random-effects model. Meta-regressions on I-131 success were attempted. Results: The pooled success ablation rate was 69% with better results in patients receiving a single administration of about 3.7 GBq; high heterogeneity was found (I2 85%), and publication bias was absent (Egger test: P = 0.57). Incomplete structural responses were recorded in only 14 of 695 (2%) patients enrolled in our analysis. Incomplete biochemical responses were observed in 8 to 24% of patients, with higher rates (24%) in patients receiving low radioiodine activities (~1.1 GBq) and lower rates (from 8 to 18%) in patients receiving higher activities of radioiodine (~3.7 Gbq). Neck pain due to thyroiditis was reported in up to 18% of patients but, in most cases, symptoms resolved after oral paracetamol or a short course of prednisone. Conclusion: Lobar ablation with 131-I is effective especially when high 131I activities are used. However, the rate of incomplete biochemical response to initial treatment appears to be slightly higher than the classical scheme of initial treatment of DTC. "Radioisotopic lobectomy" should be considered for patients with low-to-intermediate risk DTC requiring completion treatment after lobectomy due to specific individual risk factors and/or patient’s preferences. Full Article
odi Unexplained Hyperthyroglobulinemia in Differentiated Thyroid Cancer Patients Indicates Radioiodine Adjuvant Therapy: A Prospective Multicenter Study By jnm.snmjournals.org Published On :: 2020-05-01T11:16:58-07:00 Background: The management for totally thyroidectomized differentiated thyroid cancer (TT-DTC) patients with unexplained hyperthyroglobulinemia remains indeterminate due to evidence scarcity. This multicenter study aimed at prospectively evaluating the response to radioiodine (131I) adjuvant therapy (RAT) and its potential role in risk stratification and causal clarification. Methods: TT-DTC patients with stimulated serum thyroglobulin (Tgoff) levels > 10 ng/mL but no structurally evident disease were consecutively enrolled in five tertiary care institutions. After the administration of 5.55 GBq of 131I, the risk of presence of persistent/recurrent/metastatic DTC (prmDTC) was compared to that before RAT. The causes of hyperthyroglobulinemia were explored and the response to RAT was assessed 6-12 months post RAT. The change in suppressed thyroglobulin (Tgon) level was reported. Results: A cohort of 254 subjects with a median Tgoff of 27.1 ng/mL was enrolled for the analyses. Immediately after RAT, low-, intermediate-, and high-risk were identified in 5.9%, 88.6%, and 5.5% patients, respectively, with no significant difference in risk stratification compared with that before RAT (P = 0.952). During the follow-up (median, 10.6 months), hyperthyroglobulinemia was ultimately attributed to thyroid remnant, biochemical disease, and structural/functional disease in 17.3%, 54.3%, and 28.3% of subjects, respectively. In addition, excellent, indeterminate, biochemical incomplete, and structural/functional incomplete responses were achieved in 18.1%, 27.2%, 36.2%, and 18.5% of patients, respectively. Notably, distribution for either cause of hyperthyroglobulinemia or response to RAT was comparable among the three postoperative risk groups. Tgon levels in patients who merely received RAT declined significantly over time. Conclusion: Our study demonstrated that over 90% of TT-DTC patients with unexplained hyperthyroglobulinemia are stratified as intermediate-high risk, and RAT using 5.55 GBq of 131I reveals biochemical/functional/structural disease and yields non-structural/functional incomplete response in more than 80% patients, suggesting TT-DTC patients with unexplained hyperthyroglobulinemia as explicit candidates for RAT. Full Article
odi The effects of monosodium glutamate on PSMA radiotracer uptake in men with recurrent prostate cancer: a prospective, randomized, double-blind, placebo-controlled intra-individual imaging study. By jnm.snmjournals.org Published On :: 2020-05-08T13:18:58-07:00 The prostate-specific membrane antigen (PSMA) is an excellent target for theranostic applications in prostate cancer (PCa). However, PSMA-targeted radioligand therapy can cause undesirable effects due to high accumulation of PSMA radiotracers in salivary glands and kidneys. This study assessed orally administered monosodium glutamate (MSG) as a potential means of reducing kidney and salivary gland radiation exposure using a PSMA targeting radiotracer. Methods: This prospective, double-blind, placebo-controlled study enrolled 10 biochemically recurrent PCa patients. Each subject served as his own control. [18F]DCFPyl PET/CT imaging sessions were performed 3 – 7 days apart, following oral administration of either 12.7 g of MSG or placebo. Data from the two sets of images were analyzed by placing regions of interest on lacrimal, parotid and submandibular glands, left ventricle, liver, spleen, kidneys, bowel, urinary bladder, gluteus muscle and malignant lesions. The results from MSG and placebo scans were compared by paired analysis of the ROI data. Results: A total of 142 pathological lesions along with normal tissues were analyzed. As hypothesized a priori, there was a significant decrease in maximal standardized uptake values corrected for lean body mass (SULmax) on images obtained following MSG administration in the parotids (24 ± 14%, P = 0.001), submandibular glands (35 ± 11%, P<0.001) and kidneys (23 ± 26%, P = 0.014). Significant decreases were also observed in lacrimal glands (49 ± 13%, P<0.001), liver (15 ± 6%, P<0.001), spleen (28 ± 13%, P = 0.001) and bowel (44 ± 13%, P<0.001). Mildly lower blood pool SULmean was observed after MSG administration (decrease of 11 ± 13%, P = 0.021). However, significantly lower radiotracer uptake in terms of SULmean, SULpeak, and SULmax was observed in malignant lesions on scans performed after MSG administration compared to the placebo studies (SULmax median decrease 33%, range -1 to 75%, P<0.001). No significant adverse events occurred and vital signs were stable following placebo or MSG administration. Conclusion: Orally administered MSG significantly decreased salivary gland, kidney and other normal organ PSMA radiotracer uptake in human subjects, using [18F]DCFPyL as an exemplar. However, MSG caused a corresponding reduction in tumor uptake, which may limit the benefits of this approach for diagnostic and therapeutic applications. Full Article
odi Thorough Performance Evaluation of 213 nm Ultraviolet Photodissociation for Top-down Proteomics [Technological Innovation and Resources] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications. Full Article
odi Multi-omic Characterization of the Mode of Action of a Potent New Antimalarial Compound, JPC-3210, Against Plasmodium falciparum [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 The increasing incidence of antimalarial drug resistance to the first-line artemisinin combination therapies underpins an urgent need for new antimalarial drugs, ideally with a novel mode of action. The recently developed 2-aminomethylphenol, JPC-3210, (MMV 892646) is an erythrocytic schizonticide with potent in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum lines, low cytotoxicity, potent in vivo efficacy against murine malaria, and favorable preclinical pharmacokinetics including a lengthy plasma elimination half-life. To investigate the impact of JPC-3210 on biochemical pathways within P. falciparum-infected red blood cells, we have applied a "multi-omics" workflow based on high resolution orbitrap mass spectrometry combined with biochemical approaches. Metabolomics, peptidomics and hemoglobin fractionation analyses revealed a perturbation in hemoglobin metabolism following JPC-3210 exposure. The metabolomics data demonstrated a specific depletion of short hemoglobin-derived peptides, peptidomics analysis revealed a depletion of longer hemoglobin-derived peptides, and the hemoglobin fractionation assay demonstrated decreases in hemoglobin, heme and hemozoin levels. To further elucidate the mechanism responsible for inhibition of hemoglobin metabolism, we used in vitro β-hematin polymerization assays and showed JPC-3210 to be an intermediate inhibitor of β-hematin polymerization, about 10-fold less potent then the quinoline antimalarials, such as chloroquine and mefloquine. Further, quantitative proteomics analysis showed that JPC-3210 treatment results in a distinct proteomic signature compared with other known antimalarials. While JPC-3210 clustered closely with mefloquine in the metabolomics and proteomics analyses, a key differentiating signature for JPC-3210 was the significant enrichment of parasite proteins involved in regulation of translation. These studies revealed that the mode of action for JPC-3210 involves inhibition of the hemoglobin digestion pathway and elevation of regulators of protein translation. Importantly, JPC-3210 demonstrated rapid parasite killing kinetics compared with other quinolones, suggesting that JPC-3210 warrants further investigation as a potentially long acting partner drug for malaria treatment. Full Article
odi Advances in Tools to Determine the Glycan-Binding Specificities of Lectins and Antibodies [Reviews] By feedproxy.google.com Published On :: 2020-02-01T00:05:29-08:00 Proteins that bind carbohydrate structures can serve as tools to quantify or localize specific glycans in biological specimens. Such proteins, including lectins and glycan-binding antibodies, are particularly valuable if accurate information is available about the glycans that a protein binds. Glycan arrays have been transformational for uncovering rich information about the nuances and complexities of glycan-binding specificity. A challenge, however, has been the analysis of the data. Because protein-glycan interactions are so complex, simplistic modes of analyzing the data and describing glycan-binding specificities have proven inadequate in many cases. This review surveys the methods for handling high-content data on protein-glycan interactions. We contrast the approaches that have been demonstrated and provide an overview of the resources that are available. We also give an outlook on the promising experimental technologies for generating new insights into protein-glycan interactions, as well as a perspective on the limitations that currently face the field. Full Article
odi Proteomic Analysis of Salmonella-modified Membranes Reveals Adaptations to Macrophage Hosts [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Systemic infection and proliferation of intracellular pathogens require the biogenesis of a growth-stimulating compartment. The gastrointestinal pathogen Salmonella enterica commonly forms highly dynamic and extensive tubular membrane compartments built from Salmonella-modified membranes (SMMs) in diverse host cells. Although the general mechanism involved in the formation of replication-permissive compartments of S. enterica is well researched, much less is known regarding specific adaptations to different host cell types. Using an affinity-based proteome approach, we explored the composition of SMMs in murine macrophages. The systematic characterization provides a broader landscape of host players to the maturation of Salmonella-containing compartments and reveals core host elements targeted by Salmonella in macrophages as well as epithelial cells. However, we also identified subtle host specific adaptations. Some of these observations, such as the differential involvement of the COPII system, Rab GTPases 2A, 8B, 11 and ER transport proteins Sec61 and Sec22B may explain cell line-dependent variations in the pathophysiology of Salmonella infections. In summary, our system-wide approach demonstrates a hitherto underappreciated impact of the host cell type in the formation of intracellular compartments by Salmonella. Full Article
odi Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-capture Microdissected FFPE Tissue [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Laser-capture microdissection (LCM) allows the visualization and isolation of morphologically distinct subpopulations of cells from heterogeneous tissue specimens. In combination with formalin-fixed and paraffin-embedded (FFPE) tissue it provides a powerful tool for retrospective and clinically relevant studies of tissue proteins in a healthy and diseased context. We first optimized the protocol for efficient LCM analysis of FFPE tissue specimens. The use of SDS containing extraction buffer in combination with the single-pot solid-phase-enhanced sample preparation (SP3) digest method gave the best results regarding protein yield and protein/peptide identifications. Microdissected FFPE human substantia nigra tissue samples (~3,000 cells) were then analyzed, using tandem mass tag (TMT) labeling and LC-MS/MS, resulting in the quantification of >5,600 protein groups. Nigral proteins were classified and analyzed by abundance, showing an enrichment of extracellular exosome and neuron-specific gene ontology (GO) terms among the higher abundance proteins. Comparison of microdissected samples with intact tissue sections, using a label-free shotgun approach, revealed an enrichment of neuronal cell type markers, such as tyrosine hydroxylase and alpha-synuclein, as well as proteins annotated with neuron-specific GO terms. Overall, this study provides a detailed protocol for laser-capture proteomics using FFPE tissue and demonstrates the efficiency of LCM analysis of distinct cell subpopulations for proteomic analysis using low sample amounts. Full Article
odi COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism. Full Article
odi Circulating oxidized LDL increased in patients with acute myocardial infarction is accompanied by heavily modified HDL. By feedproxy.google.com Published On :: 2020-04-14 Naoko SawadaApr 14, 2020; 0:jlr.RA119000312v1-jlr.RA119000312Research Articles Full Article