odi

Chronic access system for extracorporeal treatment of blood including a continuously wearable hemodialyzer

A patient wearable, continuously operating extracorporeal pump apparatus which accesses the patient's arterial venous pressure differential by applying external pressure to a subcutaneous graft that has been cannualized to modulate blood flow through an extracorporeal circuit and to drive the pump for delivering a medicament, such as an anticoagulant, to the site of an intravenous cannula to prevent clogging thereof and also to move a dialysate through a circuit, including a dialyzer and a dialysate rejuvenating cartridge, whereby kidney failure can be treated without recourse to prior art hemodialysis machines found in most treatment facilities. With slight modification, the present invention can be used to remove excess fluids from CHF patients, to remove toxins from the blood in those suffering from liver failure and to facilitate administration of insulin to diabetics and/or glucose to those having hypoglycemia.




odi

Trajectory modification of a spinning projectile

The invention is a projectile, device and system having a roll control device which may be fixed or deployable, for providing torque counter to the spin of the projectile and providing drag on the projectile. The roll control device includes a guidance collar rotatably attached to the projectile located near a front end of the projectile wherein the guidance collar includes one or more guidance collar aero-surfaces shaped to provide torque counter to the spin on the projectile. The guidance collar aero-surfaces may be controlled by a brake and guidance electronics on the projectile. The invention also includes a body collar fixedly attached to the projectile aft of the guidance collar, wherein the body collar includes one or more body collar aero-surfaces and fixed or deployable drag devices. Another embodiment use only a guidance collar aero-surfaces to orient a fixed drag device relative to an Earth inertial reference frame to create asymmetrical drag on the projectile and thereby altering its trajectory.




odi

System and method for diverting fluids from a wellhead by using a modified horizontal christmas tree

A system for diverting fluids from a wellhead in a subsea environment has a capping stack with a connector suitable for connection or interconnection to the wellhead, a flow base fixedly positioned in the subsea environment, and a conduit connected to the outlet of a diverter line of the capping stack and connected to the inlet of an interior passageway of the flow base. The conduit is suitable for passing fluids from the capping stack toward the flow base. The flow base is a modified horizontal Christmas tree. The interior passageway within the horizontal Christmas tree has a plug therein located a level below the level of the inlet to the flow base. The flow base can be attached to a wellhead or to an anchor pile in the subsea environment.




odi

Cardanol-modified silane coupling agent, cardanol-modified filler, and cellulose resin composition

An exemplary embodiment provides a cardanol-modified silane coupling agent, which can improve strength and toughness by improving adhesion at an interface between a filler and a cellulose resin when being used as a surface-treatment agent, a resin additive, or the like; a cardanol-modified filler subjected to a surface treatment with the cardanol-modified silane coupling agent; and a cellulose resin composition having excellent toughness. More specifically, the exemplary embodiment provides a cardanol-modified silane coupling agent obtained by reacting cardanol or a derivative thereof with an epoxy silane coupling agent or an isocyanate silane coupling agent; a cardanol-modified filler obtained by subjecting a filler to a surface treatment with the cardanol-modified silane coupling agent; a cellulose resin composition comprising the cardanol-modified filler and a cellulose resin; and a cellulose resin composition comprising the cardanol-modified silane coupling agent, a filler and a cellulose resin.




odi

Vibrating machine for producing molded bodies by means of compacting

A vibrating machine for producing a molded body by compacting a granular raw mixture includes an oscillatable vibrating table configured to receive a molding box. A clamping device is produced by at least two clamping closures, each including: a pivot bracket having a lower end being pivotally mounted on the vibrating table and an upper end including a cranking which is directed outward; a double-acting hydraulic pivot cylinder pivotally mounted on the vibrating table; a two-armed rocker arm pivotally connected to the pivot bracket and including an inner part that cooperates with the molding box and an outer part that cooperates with the hydraulic pivot cylinder; and a compression spring disposed between the cranking and the outer part of the rocker arm such that the rocker arm releases from a position closing the respective clamping closure upon a pressure in the hydraulic pivot cylinder being relieved.




odi

Ceramic collars for active brazing in sodium-based thermal batteries

The present application provides for ceramic collars and metal rings for active brazing in sodium-based thermal batteries. The ceramic collar may be an alpha-alumina collar configured for active brazing, and thereby sealing, to outer and inner Ni rings for use in NaMx cells. The portions of the alpha-alumina collar active brazed to the outer and inner Ni rings may be outwardly facing and include inwardly extending recesses. The portions of the outer and inner Ni rings active brazed to the outwardly facing portions of the collar may be inwardly facing. The alpha-alumina collar may include a greater coefficient of thermal expansion than each of the outer and inner Ni rings, and the alpha-alumina collar and outer and inner Ni rings may be configured such that a portion of the outer and inner Ni rings is deformed into the inwardly extending recesses of the alpha-alumina collar after active brazing thereof.




odi

TEMPORAL MOTION DATA CANDIDATE DERIVATION IN VIDEO CODING

A method for derivation of a temporal motion data (TMD) candidate for a prediction unit (PU) in video encoding or video decoding is provided. The derived TMD candidate is for inclusion in an inter-prediction candidate list for the PU. The method includes determining a primary TMD position relative to a co-located PU in a co-located largest coding unit (LCU), wherein the co-located PU is a block in a reference picture having a same size, shape, and coordinates as the PU, and selecting at least some motion data of a secondary TMD position as the TMD candidate when the primary TMD position is in a bottom neighboring LCU or in a bottom right neighboring LCU of the co-located LCU, wherein the secondary TMD position is determined relative to the co-located PU.




odi

Method and Apparatus for Entropy Coding in Image Compression

A method and apparatus of image coding including adaptive entropy coding are disclosed. According to this method, input pixels associated with a group of symbols generated from image or video data are received. Maximum bit-depth of the group of symbols is then determined. If the maximum bit-depth of the group of symbols is smaller than a first bit-depth threshold, the group of symbols is encoded or decoded using Golomb-Rice coding. If the maximum bit-depth of the group of symbols is greater than or equal to the first bit-depth threshold, the group of symbols is encoded or decoded using second entropy coding, where the second entropy coding is different from the Golomb-Rice coding. Outputs corresponding to encoded or decoded output associated with the group of symbols are provided. The maximum bit-depth of the group of symbols is signaled at the encoder or recovered at the decoder by parsing the bitstream.




odi

Histogram Segmentation Based Local Adaptive Filter for Video Encoding and Decoding

Reconstructed picture quality for a video codec system may be improved by categorizing reconstructed pixels into different histogram bins with histogram segmentation and then applying different filters on different bins. Histogram segmentation may be performed by averagely dividing the histogram into M bins or adaptively dividing the histogram into N bins based on the histogram characteristics. Here M and N may be a predefined, fixed, non-negative integer value or an adaptively generated value at encoder side and may be sent to decoder through the coded bitstream.




odi

INTERLAYER VIDEO DECODING METHOD FOR PERFORMING SUB-BLOCK-BASED PREDICTION AND APPARATUS THEREFOR, AND INTERLAYER VIDEO ENCODING METHOD FOR PERFORMING SUB-BLOCK-BASED PREDICTION AND APPARATUS THEREFOR

Provided is an inter-layer video decoding method including determining a size of a subblock of a current block by comparing at least one of a height and a width of a predetermined minimum size of the subblock with at least one of a height and a width of the current block of a first layer image; determining at least one subblock from the current block according to the size of the subblock of the current block; determining a candidate block that corresponds to the current block and is included in an encoded second layer image; determining a candidate subblock from the candidate block of the second layer image by using the subblock of the current block; determining motion information of the subblock included in the current block by using motion information of the candidate subblock included in the candidate block; and generating a prediction block of the current block by using the motion information of the subblock included in the current block.




odi

METHOD AND APPARATUS FOR ENTROPY ENCODING USING HIERARCHICAL DATA UNIT, AND METHOD AND APPARATUS FOR DECODING

Provided are video encoding and decoding methods and apparatuses. The video encoding method includes: encoding a video based on data units having a hierarchical structure; determining a context model used for entropy encoding a syntax element of a data unit based on at least one piece of additional information of the data units; and entropy encoding the syntax element by using the determined context model.




odi

Method and Apparatus of Bandwidth Estimation and Reduction for Video Coding

A method and apparatus of reusing reference data for video decoding are disclosed. Motion information associated with motion vectors for coded blocks processed after the current block are derived without storing decoded residuals associated with the coded blocks. Reuse information regarding reference data required for Inter prediction or Intra block copy of the coded blocks is determined based on the motion information. If the current block is coded in the Inter prediction mode or the Intra block copy mode, whether required reference data for the current block are in an internal memory is determined and the reference data are fetched from an external memory to the internal memory if the required reference data are not stored in the internal memory. The reference data in the internal memory is managed according to the reuse information to reduce data transferring between the external memory and the internal memory.




odi

TRANSCODING METHOD AND ELECTRONIC APPARATUS

Disclosed are a transcoding method and electronic apparatus. The method includes: obtaining 16 H.264 video macro blocks; determining encoding type of the 16 H.264 video macro blocks; transcoding the 16 H.264 video macro blocks into a H.265 coding tree unit CTU according to preset intra-frame transcoding correspondence if the encoding type of the 16 H.264 video macro blocks is intra-frame coding; transcoding the 16 H.264 video macro blocks into one H.265 CTU according to preset inter-frame transcoding correspondence if the encoding type of the 16 H.264 video macro blocks is inter-frame coding. The device includes: capturing module, determination module, first transcoding module and second transcoding module. The present invention has no need to decode H.264 video macro blocks to produce original video data, so the transcoding process can speed up and save time.




odi

VIDEO ENCODING METHOD, VIDEO DECODING METHOD, AND DEVICE USING SAME

The present invention relates to a video encoding method, a video decoding method, and a device using the same, and the video encoding method according to the present invention comprises the steps of: specifying a tile and a slice by partitioning an inputted picture; performing encoding on the basis of the tile and the slice; and transmitting the encoded video information, wherein the picture is partitioned into one or more tiles and one or more slices, and the restrictions for parallel processing can be applied to the tiles and the slices.




odi

VIDEO ENCODING AND DECODING APPARATUS, SYSTEM AND METHOD

A video coding apparatus for encoding a compressive sensing signal has a processor. The processor obtains a compressive sensing sampling matrix; andcaptures the compressive sensing signal representing image data based on the compressive sensing sampling matrix, wherein the compressive sensing sampling matrix is non-uniform varied.




odi

MOVING PICTURE ENCODING APPARATUS, MOVING PICTURE DECODING APPARATUS, MOVING PICTURE ENCODING METHOD, MOVING PICTURE DECODING METHOD, MOVING PICTURE ENCODING PROGRAM, AND MOVING PICTURE DECODING PROGRAM

An object of the present invention is to increase efficiency of information compression in coding and decoding. A moving picture encoding apparatus 10 of the present invention has a motion vector predicting part for performing, based on a temporal relation among adjacent reference frame images 703a, 703b, 703c referred to for detecting motion vectors of adjacent blocks adjacent to a coding target block, a target reference frame image 702 referred to for detecting a motion vector of the target block, and a target frame image 701 being the frame image of the coding target, or based on time information thereof, a correction of scaling the motion vectors 751a, 751b, 751c of the adjacent blocks on the basis of the target reference frame image 702; and a determination of an optimum predicted motion vector based on the motion vectors of the adjacent blocks; and thereby predicting the optimum predicted motion vector after the correction.




odi

MOTION VECTOR ENCODING/DECODING METHOD AND DEVICE AND IMAGE ENCODING/DECODING METHOD AND DEVICE USING SAME

The present disclosure relates to a method and apparatus for encoding/decoding a motion vector and a method and apparatus for encoding/decoding video using same. The motion vector encoding method includes selecting a predicted motion vector candidate set including one or more predicted motion vector candidates for a block; determining one or more search ranges for predicted motion vector candidate set; selecting one predicted motion vector candidate among one or more predicted motion vector candidates as predicted motion vector for each search point with respect to each search point within search range by first determination criterion prearranged with video decoding apparatus; selecting one predicted motion vector among the predicted motion vectors for each search point by a second determination criterion not prearranged with the video decoding apparatus, and determining predicted motion vector, differential motion vector, and current motion vector; and generating and encoding the differential motion vector as motion information.




odi

MOVING PICTURE ENCODING DEVICE, MOVING PICTURE ENCODING METHOD AND MOVING PICTURE ENCODING PROGRAM AS WELL AS MOVING PICTURE DECODING DEVICE, MOVING PICTURE DECODING METHOD AND MOVING PICTURE DECODING PROGRAM

A first vector predictor candidate list generating unit generates a first motion vector predictor candidate list from motion vectors of encoded neighboring blocks to blocks to be encoded. A second vector predictor candidate list generating unit generates a second motion vector predictor candidate list from motion vectors of blocks at the same positions as the blocks to be encoded in an encoded image and neighboring blocks to the blocks at the same positions. A combination determining unit determines whether to generate a third vector predictor candidate list combining the first and second vector predictor candidate lists by comparison of a block size of the blocks to be encoded and a threshold size. A vector predictor candidate list deciding unit generates the third vector predictor candidate list from the first vector predictor candidate list.




odi

MOVING PICTURE ENCODING DEVICE, MOVING PICTURE ENCODING METHOD AND MOVING PICTURE ENCODING PROGRAM AS WELL AS MOVING PICTURE DECODING DEVICE, MOVING PICTURE DECODING METHOD AND MOVING PICTURE DECODING PROGRAM

A first vector predictor candidate list generating unit generates a first motion vector predictor candidate list from motion vectors of encoded neighboring blocks to blocks to be encoded. A second vector predictor candidate list generating unit generates a second motion vector predictor candidate list from motion vectors of blocks at the same positions as the blocks to be encoded in an encoded image and neighboring blocks to the blocks at the same positions. A combination determining unit determines whether to generate a third vector predictor candidate list combining the first and second vector predictor candidate lists by comparison of a block size of the blocks to be encoded and a threshold size. A vector predictor candidate list deciding unit generates the third vector predictor candidate list from the first vector predictor candidate list.




odi

PARSING FRIENDLY AND ERROR RESILIENT MERGE FLAG CODING IN VIDEO CODING

Methods and apparatus for parsing friendly and error resilient merge flag coding in video coding are provided. In some methods, in contrast to merging candidate list size dependent coding of the merge flag in the prior art, a merge flag is always encoded in the encoded bit stream for each inter-predicted prediction unit (PU) that is not encoded using skip mode. In some methods, in contrast to the prior art that allowed the merging candidate list to be empty, one or more zero motion vector merging candidates formatted according to the prediction type of the slice containing a PU are added to the merging candidate list if needed to ensure that the list is not empty and/or to ensure that the list contains a maximum number of merging candidates.




odi

METHOD AND APPARATUS FOR ENCODING/DECODING THE MOTION VECTORS OF A PLURALITY OF REFERENCE PICTURES, AND APPARATUS AND METHOD FOR IMAGE ENCODING/DECODING USING SAME

A video decoding method using an inter prediction, includes: reconstructing a first differential motion vector and a second differential motion vector of a current block by decoding encoded data; deriving a first predicted motion vector and a second predicted motion vector of the current block from one or more neighboring blocks of the current block; generating a first motion vector of the current block by adding the first candidate motion vector to the first differential motion vector, and a second motion vector of the current block by adding the second candidate motion vector to the second differential motion vector; generating a predicted block of the current block by using the first and second motion vectors; reconstructing a residual block by decoding residual signals included in the encoded data; and adding each pixel value of the predicted block to a corresponding pixel value of the residual block.




odi

METHOD AND APPARATUS FOR ENCODING/DECODING THE MOTION VECTORS OF A PLURALITY OF REFERENCE PICTURES, AND APPARATUS AND METHOD FOR IMAGE ENCODING/DECODING USING SAME

A video decoding method using an inter prediction, includes: reconstructing a first differential motion vector and a second differential motion vector of a current block by decoding encoded data; deriving a first predicted motion vector and a second predicted motion vector of the current block from one or more neighboring blocks of the current block; generating a first motion vector of the current block by adding the first candidate motion vector to the first differential motion vector, and a second motion vector of the current block by adding the second candidate motion vector to the second differential motion vector; generating a predicted block of the current block by using the first and second motion vectors; reconstructing a residual block by decoding residual signals included in the encoded data; and adding each pixel value of the predicted block to a corresponding pixel value of the residual block.




odi

METHOD AND DEVICE FOR ENCODING A FRAME AND/OR DECODING A BITSTREAM REPRESENTING A FRAME

The present disclosure generally relates to a method and device for encoding a frame. The method and the device comprises a processor configured for: —encoding (12) a backlight frame determined (11) from the frame; —obtaining (13) at least one component of a residual frame by dividing each component of the frame by a decoded version of the backlight frame; —mapping each component (YRes) of the residual frame (Res) such that the mapping of each pixel (YRes,P) of a component (YRes) of the residual frame Res depends on the pixel value (Balp) of either the backlight frame (Bal) or a decoded version of the backlight frame (Bal), associated with this pixel (p); and—encoding (18) the mapped residual frame. The disclosure further relates to a decoding method and device.




odi

METHOD AND APPARATUS FOR DECODING A VIDEO SIGNAL

The present invention relates to a method for decoding a video signal, comprising the steps of: acquiring a transform size flag of the current macroblock from a video signal; checking the number of non-zero transform coefficients at each pixel position in a first transform block which corresponds to the transform size flag; changing a scan order of the first transform block by prioritizing the position of the pixel having the greatest number of the non-zero transform coefficients in the first transform block; determining the number of the non-zero transform coefficients at each pixel position in a second transform block, and setting the changed scan order of the first transform block as an initialized scan order of the second transform block; adding the number of the non-zero transform coefficients at each pixel position in the first transform block and the number of the non-zero transform coefficients at each pixel position in the second transform block, and changing the scan order of the second transform block by prioritizing the position of the pixel having the greatest number of the non-zero transform coefficients; and decoding the transform coefficients arranged in the scan order changed in the previous step, wherein the first transform block and the second transform block have sizes corresponding to the transform size flag, and are contained in the current macroblock.




odi

IMAGE DECODING METHOD, IMAGE CODING METHOD, IMAGE DECODING APPARATUS, IMAGE CODING APPARATUS, AND IMAGE CODING AND DECODING APPARATUS

The image decoding method includes: determining a context for use in a current block to be processed, from among a plurality of contexts; and performing arithmetic decoding on a bit sequence corresponding to the current block, using the determined context, wherein in the determining: the context is determined under a condition that control parameters of neighboring blocks of the current block are used, when the signal type is a first type, the neighboring blocks being a left block and an upper block of the current block; and the context is determined under a condition that the control parameter of the upper block is not used, when the signal type is a second type, and the second type is “inter_pred_flag”.




odi

Puncture resistant, optionally cut and abrasion resistant, knit garment made with modified knit structure

A knit fabric having a modified knit structure, having a front layer of knit fabric and a back layer of knit fabric, wherein the front layer and back layer are joined together by rows of tuck stitches formed from a yarn having no more than 3% elongation and wherein the knit fabric is puncture resistant, and optionally cut and/or abrasion resistant, and a protective garment made therefrom.




odi

EBOLA MONOCLONAL ANTIBODIES

The present disclosure provides antibodies, and antigen-binding fragments thereof that bind to EBOV glycoprotein. The present disclosure further provides hybridoma cell lines and methods for making and using the compositions provided herein.




odi

IMMUNE-STIMULATING MONOCLONAL ANTIBODIES AGAINST HUMAN INTERLEUKIN-2

The invention relates to a human Interleukin-2 (hIL-2) specific monoclonal antibody (mAb), or antigen binding fragment thereof, the binding of which to hIL-2 inhibits binding of hIL-2 to CD25 and the antibody is characterized by any of the parameters: the variable chain of the mAb comprises the amino acid sequence of SEQ ID NO 005 or SEQ ID NO 006; the binding to hIL-2 is characterized by a dissociation constant (KD)≦7.5 nmol/L; the binding to hIL-2 is characterized by an off-rate (Koff)≦1×10−4 s−1 and/or the antibody displays no measurable cross-reactivity to murine IL-2.




odi

MODIFIED J-CHAIN

The present invention concerns modified recombinant J-chain polypeptides, binding molecules, such as antibodies, comprising the same, and their uses.




odi

Cysteine engineered antibodies for site-specific conjugation

Cysteine engineered antibodies useful for the site-specific conjugation to a variety of agents are provided. Methods for the design, preparation, screening, selection and use of such antibodies are also provided.




odi

ANTIBODIES TO OPGL

Antibodies that interact with osteoprotegerin ligand (OPGL) are described. Methods of treating osteopenic disorders by administering a pharmaceutically effective amount of antibodies to OPGL are described. Methods of detecting the amount of OPGL in a sample using antibodies to OPGL are described.




odi

METHOD OF DETECTING HUMAN MATRIX METALLOPROTEINASE 9 USING ANTIBODIES

The present disclosure provides compositions and methods of use involving binding proteins, e.g., antibodies and antigen-binding fragments thereof, that bind to the matrix metalloproteinase-9 (MMP9) protein (MMP9 is also known as gelatinase-B), such as where the binding proteins comprise an immunoglobulin (Ig) heavy chain (or functional fragment thereof) and an Ig light chain (or functional fragment thereof).




odi

EXOSOMAL LOADING USING HYDROPHOBICALLY MODIFIED OLIGONUCLEOTIDES

In one aspect, the invention relates to a method of loading exosomes with oligonucleotide cargo, by incubating an oligonucleotide comprising one or more hydrophobic modifications with a population of exosomes for a period of time sufficient to allow loading of the exosomes with the oligonucleotide. Exosomes loaded with hydrophobic ally modified oligonucleotide cargo, and uses thereof, are also provided.




odi

COMPOSITIONS AND METHODS FOR MODIFYING A PREDETERMINED TARGET NUCLEIC ACID SEQUENCE

Provided herein are compositions and methods for modifying a predetermined nucleic acid sequence. A programmable nucleoprotein molecular complex containing a polypeptide moiety and a specificity conferring nucleic acid (SCNA) which assembles in-vivo, in a target cell, and is capable of interacting with the predetermined target nucleic acid sequence is provided. The programmable nucleoprotein molecular complex is capable of specifically modifying and/or editing a target site within the target nucleic acid sequence and/or modifying the function of the target nucleic acid sequence.




odi

Monoclonal Antibodies That Specifically Block Biological Activity Of A Tumor Antigen

This invention relates to novel monoclonal antibodies that specifically bind to the alpha-folate receptor. In some embodiments, the antibodies inhibit a biological activity of folate receptor-α (FR-α). The antibodies are useful in the treatment of certain cancers, particularly cancers that have increased cell surface expression of the alpha-folate receptor (“FR-α”), such as ovarian, breast, renal, colorectal, lung, endometrial, or brain cancer. The invention also relates to cells expressing the monoclonal antibodies, antibody derivatives, such as chimeric and humanized monoclonal antibodies, antibody fragments, and methods of detecting and treating cancer using the antibodies, derivatives, and fragments.




odi

DEVICE AND METHOD FOR ENCODING WRITTEN INFORMATION

Disclosed is a device for encoding information written on a readable surface, the device including a device housing containing at least one ink reservoir, an ink dispensing tip in communication with said at least one ink reservoir; and ink stored in the at least one ink reservoir and configured to flow from the ink dispensing tip, the ink being encodable to include supplemental encoded information, the supplemental encoded information being detectable by at least one detecting sensor when dispensed on the readable surface, wherein the readable surface is any surface that will accept the ink.




odi

DEVICE AND METHOD FOR ENCODING WRITTEN INFORMATION

Disclosed is a device for encoding information written on a readable surface, the device including a device housing containing at least one ink reservoir, an ink dispensing tip in communication with said at least one ink reservoir; and ink stored in the at least one ink reservoir and configured to flow from the ink dispensing tip, the ink being encodable to include supplemental encoded information, the supplemental encoded information being detectable by at least one detecting sensor when dispensed on the readable surface, wherein the readable surface is any surface that will accept the ink.




odi

Strap handle for a piece of luggage that has been modified to have the strap handle added thereon

A strap handle for a piece of luggage that has been modified to have the strap handle added thereon. The strap handle includes a strap, and apparatus for having the strap handle added onto the piece of luggage. The apparatus sits within the piece of luggage. The strap engages into the apparatus.




odi

Production of conductive nanodiamond by dynamic synthesis approaches

In certain implementations, a method of manufacturing electrically conductive nanodiamond particles involves providing at least one type of carbon-containing explosive material and at least one type of non-explosive material; wherein the non-explosive material contains at least one or more than one element or species other than nitrogen that serve as a nanodiamond dopant; mixing the carbon containing explosive material with the non-explosive material; detonating the mixture under conditions of negative oxygen balance in the presence of a cooling medium; purifying the product of detonation from incombustible impurities; and carrying out additional processing for activation or enhancement of electrical conductance. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.




odi

Ballistic modification and solventless double base propellant, and process thereof

A double base propellant modifier uses a lead-tin component with a defined amount of lead and a copper component with a defined surface area to effect super-rate burning of double base propellants with defined plateau and mesa burning rate characteristics.




odi

Ballistic modifier formulation for double base propellant

A double base propellant modifier uses a combination of a lead component, a tin component and a copper component in physical contact to effect super-rate burning of double base propellants with defined plateau and mesa burning rate characteristics.




odi

Family of modifiable high performance electrically controlled propellants and explosives

A composition capable of producing either solid propellant grains, liquid or gel monopropellants, all of which are electrically ignitable and capable of sustained controllable combustion at ambient pressure. Additional compositions capable of sustained controllable combustion at elevated pressures are described. Applications for the compositions disclosed herein are provided, and include among other applications use in small micro thrusters, large core-burning solid propellant gains, shaped explosives charges for military application, and pumpable liquids and gel monopropellants or explosives for military, commercial mining or gas and oil recovery. In alternative embodiments the above compositions may also incorporate an energetic nitrate polymer, bum rate modifiers, and/or metal fuel(s). The HIPEP formulation makes it possible to ignite and sustain combustion at ambient and vacuum conditions (a) without continuous electrical power and (b) while providing faster bum rates.




odi

Binary exploding target, package process and product

A binary exploding target package, a process of forming an exploding target from the contents of the binary exploding target package, and the exploding target formed therefrom. The binary exploding target package includes a first, target container and a second container. An oxidizer composition is contained within one of the containers and a catalyst composition is contained within the other container. An exploding target is formed by mixing the oxidizer and catalyst compositions, and introducing the mixture into the target container to form an exploding target just prior to using the exploding target as a target for a shooting exercise.




odi

Device for transporting vehicle bodies

A device for transporting vehicle bodies, on which standardized holding components are provided. A guide device is provided for at least one continuous drive train which having a driving side and a slack side, and having a first return element and at least one second return element around which the at least one continuous drive train circulates. The at least one continuous drive train supports a plurality of coupling elements which are arranged and aligned in such a manner that they can work together with the standardized holding components provided on the vehicle body.




odi

MEMORY DEVICE COMMAND RECEIVING AND DECODING METHODS

Systems, devices and methods are disclosed. In an embodiment of one such method, a method of decoding received command signals, the method comprises decoding the received command signals in combination with a signal provided to a memory address node at a first clock edge of a clock signal to generate a plurality of memory control signals. The received command signals, in combination with the signal provided to the memory address node at the first clock edge of the clock signal, represent a memory command. Furthermore, the signal provided to the memory address node at a second clock edge of the clock signal is not decoded in combination with the received command signals. The memory command may be a reduced power command and/or a no operation command.




odi

Periodic permanent magnet focused klystron

A periodic permanent magnet (PPM) klystron has beam transport structures and RF cavity structures, each of which has permanent magnets placed substantially equidistant from a beam tunnel formed about the central axis, and which are also outside the extent of a cooling chamber. The RF cavity sections also have permanent magnets which are placed substantially equidistant from the beam tunnel, but which include an RF cavity coupling to the beam tunnel for enhancement of RF carried by an electron beam in the beam tunnel.




odi

ION IMPLANTATION MODIFICATION OF ARCHWIRES

Techniques and methods for utilizing ion implantation to modify dental archwires are provided. An example of a method of ion implanting a wire target includes providing the wire target in an ion implant system, implanting ions into the wire target such that a color of the wire target material after the implanting exhibits a changed appearance from the color of the wire target material before the implanting, and removing the wire target from the ion implant system. An example of a copper-aluminum-nickel (CuAlNi) wire includes an ion implanted atomic species wherein a color of an implanted CuAlNi wire is white, off-white and/or silver and further wherein the implanted CuAlNi wire exhibits mechanical properties of an unimplanted CuAlNi wire.




odi

Modified cellulose fibers and cellulose composite thereof

An object of the invention is to provide cellulose fibers which can give a cellulose composite that renders high transparency, a reduction in linear expansion coefficient, and a high modulus of elasticity possible. The invention relates to: a process for producing modified cellulose fibers which includes a modification reaction step of reacting cellulose with an aromatic compound in an organic acid to thereby modify the cellulose with an aromatic-ring-containing substituent; cellulose fibers modified with aromatic-ring-containing substituent; a dispersion of the cellulose fibers; and a cellulose fiber composite obtained from the same.




odi

POSITIVE ELECTRODE ACTIVE MATERIAL FOR SODIUM SECONDARY BATTERY, AND METHOD FOR PREPARING SAME

The present invention relates to a positive electrode active material for a sodium secondary battery, and a method for preparing the same. The positive electrode active material for the sodium secondary battery according to the present invention is structurally more stable by replacing a part of the transition metal with Li, and accordingly, the thermal stability and life characteristics of the sodium battery including the positive electrode active material are greatly improved.




odi

ELECTROLYTE SOLUTION COMPRISING SULFUR DIOXIDE-BASED IONIC LIQUID ELECTROLYTE, AND SODIUM-SULFUR DIOXIDE SECONDARY BATTERY HAVING SAME

The described technology relates to an electrolyte solution comprising a sulfur dioxide-based ionic liquid electrolyte, and a sodium-sulfur dioxide (Na—SO2) secondary battery having same, one purpose of the described technology being to enhance the storage characteristics of sulfur dioxide gas in an electrolyte solution. The sodium-sulfur dioxide secondary battery includes a negative electrode which is formed from an inorganic material and which contains sodium. The battery also includes a positive electrode which is formed from a carbon material and a sulfur dioxide-based inorganic electrolyte solution. Here, the electrolyte solution contains a sulfur dioxide-based ionic liquid electrolyte prepared by injecting SO2 gas in an ionic liquid.