odi Performing Quiet: Aural Politics in Embodied Arts, Dec. 5 By events.berkeley.edu Published On :: Max Abner and Dahlia Nayar, Ph.D. candidates in performance studies, will present their in-progress dissertation research.Max Abner is a PhD candidate, musician, and curator who hails from Louisville, KY, has deep roots in Chicago, and is currently based in Oakland. Working from an anti-colonial settler positionality, he draws together discourses from sound studies, Indigenous studies, and critical theory to approach what he calls settler sound, a concept that accounts for the ways in which contested relations to colonized land play out in aural aesthetics. His dissertation attends to settler sound in the Bay Area experimental music/sound art scene. He has essays set for publication in Revealing Posthuman Encounters in Performance (Routledge) and Power in Listening: The Sound Out! Reader (NYU Press), his recorded curations can be heard on his music label Pontac Publications, and his live performance curations can be experienced at Beauty Supply Arts in Oakland. Dahlia Nayar’s project studies embodied manifestations of Quiet in multiple mediums of minoritarian performance. Her study curates a constellation of contemporary artists working in dance, theater, sound, and visual art with an attention to how Quiet emerges through bodies in relation to layered contexts and multiple subjectivities. She proposes that, as a minoritarian aesthetic, Quiet activates an ephemeral commons through resonance and attunement that allows expansive possibilities of relationality. Prior to her doctoral studies, Dahlia toured nationally and internationally as a choreographer, performer, and multimedia artist. She is a recipient of the Jacob Javits Fellowship, Massachusetts Cultural Council Fellowship in Choreography, and the National Dance Project Touring Award. Full Article
odi Workshop 30: Jodi Picoult By audioboom.com Published On :: Wed, 02 Nov 2016 10:00:00 -0000 It’s our 30th episode, this time with the phenomenally successful Jodi Picoult. Small Great Things is her 24th novel - and the ninth straight to debut at number one on the New York Times bestseller list. If Picoult has a "thing" it's writing about thorny ethical issues from the perspective of multiple characters...and a twisty ending! She's written in the voice of suicidal teens, rape victims, a school shooter…but until now, never as a black character and never directly confronting race, privilege and inequity - which most people avoid talking about. We caught up with her in the green room at the Music Hall in Portsmouth, New Hampshire before Writers on a New England Stage. Music: “Many Hands” by Poddington Bear Photo: David J. Murray, cleareyephoto.com We are proud to be sponsored by Blue Apron. To receive a free week of meals, visit http://blueapron.com/10minute Learn more about your ad choices. Visit podcastchoices.com/adchoices Full Article
odi Insurance claim tips for Texans with flooding By www.tdi.texas.gov Published On :: Tue, 7 May 2024 00:00:00 CDT The Texas Department of Insurance (TDI) reminds flood victims to document damage and file insurance claims right away. Full Article
odi Man drifts for 67 days in rubber boat with bodies of his two relatives By english.pravda.ru Published On :: Tue, 15 Oct 2024 13:51:00 +0300 A Russian man who had been drifting for two months in the Sea of Okhotsk with the bodies of his relatives was rescued. His boat was discovered by the crew of the fishing vessel "Angel". When the fishermen found the boat, the man was conscious and was even able to shout a few words. The first phrase spoken by the survivor was: "Not enough strength." In response, the crew of the vessel that found the man, a Sakhalin resident, said that they had taken this information into account and promised to save him quickly. Full Article Society
odi Rise in phishing attacks, as commodity campaigns and impersonation attacks escalate By www.retailtechnologyreview.com Published On :: Wed, 13 Nov 8120 17:28:37 +0000 Cybersecurity company, Egress, a KnowBe4 company, has launched its latest Phishing Threat Trends Report (October 2024), which examines the most recent phishing statistics and threat intelligence insights. Full Article Surveillance and Security Critical Issues Cyber Security
odi Plug & Print coding & marking system – just switch it on and start printing By www.retailtechnologyreview.com Published On :: Leibinger introduced what it describes as the world’s first intelligent coding & marking system – the IQJET – on May 3 in Düsseldorf, the day before the opening of the interpack trade show. Full Article Print and Label
odi What Makes Virgo Men So Unique? Zodiac Insights By entertainment.howstuffworks.com Published On :: Fri, 08 Nov 2024 05:15:02 -0500 Explore Virgo men's traits, compatibility, and relationship dynamics. Learn what makes a Virgo man unique in love and if he's the right zodiac match for you. Full Article
odi Zodiac Signs Elements: Discover the Power Behind Each Element By entertainment.howstuffworks.com Published On :: Wed, 13 Nov 2024 05:30:03 -0500 Discover the unique traits of each zodiac element—fire, earth, air, and water. Uncover how these elements shape personalities and compatibility in astrology. Full Article
odi GraphT–T (V1.0Beta), a program for embedding and visualizing periodic graphs in 3D Euclidean space By journals.iucr.org Published On :: 2024-04-29 Following the work of Day & Hawthorne [Acta Cryst. (2022), A78, 212–233] and Day et al. [Acta Cryst. (2024), A80, 258–281], the program GraphT–T has been developed to embed graphical representations of observed and hypothetical chains of (SiO4)4− tetrahedra into 2D and 3D Euclidean space. During embedding, the distance between linked vertices (T–T distances) and the distance between unlinked vertices (T⋯T separations) in the resultant unit-distance graph are restrained to the average observed distance between linked Si tetrahedra (3.06±0.15 Å) and the minimum separation between unlinked vertices is restrained to be equal to or greater than the minimum distance between unlinked Si tetrahedra (3.713 Å) in silicate minerals. The notional interactions between vertices are described by a 3D spring-force algorithm in which the attractive forces between linked vertices behave according to Hooke's law and the repulsive forces between unlinked vertices behave according to Coulomb's law. Embedding parameters (i.e. spring coefficient, k, and Coulomb's constant, K) are iteratively refined during embedding to determine if it is possible to embed a given graph to produce a unit-distance graph with T–T distances and T⋯T separations that are compatible with the observed T–T distances and T⋯T separations in crystal structures. The resultant unit-distance graphs are denoted as compatible and may form crystal structures if and only if all distances between linked vertices (T–T distances) agree with the average observed distance between linked Si tetrahedra (3.06±0.15 Å) and the minimum separation between unlinked vertices is equal to or greater than the minimum distance between unlinked Si tetrahedra (3.713 Å) in silicate minerals. If the unit-distance graph does not satisfy these conditions, it is considered incompatible and the corresponding chain of tetrahedra is unlikely to form crystal structures. Using GraphT–T, Day et al. [Acta Cryst. (2024), A80, 258–281] have shown that several topological properties of chain graphs influence the flexibility (and rigidity) of the corresponding chains of Si tetrahedra and may explain why particular compatible chain arrangements (and the minerals in which they occur) are more common than others and/or why incompatible chain arrangements do not occur in crystals despite being topologically possible. Full Article text
odi The impact of exchanging the light and heavy chains on the structures of bovine ultralong antibodies By journals.iucr.org Published On :: 2024-07-01 The third complementary-determining regions of the heavy-chain (CDR3H) variable regions (VH) of some cattle antibodies are highly extended, consisting of 48 or more residues. These `ultralong' CDR3Hs form β-ribbon stalks that protrude from the surface of the antibody with a disulfide cross-linked knob region at their apex that dominates antigen interactions over the other CDR loops. The structure of the Fab fragment of a naturally paired bovine ultralong antibody (D08), identified by single B-cell sequencing, has been determined to 1.6 Å resolution. By swapping the D08 native light chain with that of an unrelated antigen-unknown ultralong antibody, it is shown that interactions between the CDR3s of the variable domains potentially affect the fine positioning of the ultralong CDR3H; however, comparison with other crystallographic structures shows that crystalline packing is also a major contributor. It is concluded that, on balance, the exact positioning of ultralong CDR3H loops is most likely to be due to the constraints of crystal packing. Full Article text
odi Ternary structure of Plasmodium vivax N-myristoyltransferase with myristoyl-CoA and inhibitor IMP-0001173 By journals.iucr.org Published On :: 2024-09-18 Plasmodium vivax is a major cause of malaria, which poses an increased health burden on approximately one third of the world's population due to climate change. Primaquine, the preferred treatment for P. vivax malaria, is contraindicated in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, a common genetic cause of hemolytic anemia, that affects ∼2.5% of the world's population and ∼8% of the population in areas of the world where P. vivax malaria is endemic. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) conducted a structure–function analysis of P. vivax N-myristoyltransferase (PvNMT) as part of efforts to develop alternative malaria drugs. PvNMT catalyzes the attachment of myristate to the N-terminal glycine of many proteins, and this critical post-translational modification is required for the survival of P. vivax. The first step is the formation of a PvNMT–myristoyl–CoA binary complex that can bind to peptides. Understanding how inhibitors prevent protein binding will facilitate the development of PvNMT as a viable drug target. NMTs are secreted in all life stages of malarial parasites, making them attractive targets, unlike current antimalarials that are only effective during the plasmodial erythrocytic stages. The 2.3 Å resolution crystal structure of the ternary complex of PvNMT with myristoyl-CoA and a novel inhibitor is reported. One asymmetric unit contains two monomers. The structure reveals notable differences between the PvNMT and human enzymes and similarities to other plasmodial NMTs that can be exploited to develop new antimalarials. Full Article text
odi Mapping domain structures near a grain boundary in a lead zirconate titanate ferroelectric film using X-ray nanodiffraction By journals.iucr.org Published On :: Direct measurements have been taken of nanoscale domain structure in ferroelectric lead zirconate titanate around a grain boundary. Characterizing the evolution of this structure under an electric field is critical for predicting dielectric and piezoelectric response. Full Article text
odi Mapping domain structures near a grain boundary in a lead zirconate titanate ferroelectric film using X-ray nanodiffraction By journals.iucr.org Published On :: 2024-10-29 The effect of an electric field on local domain structure near a 24° tilt grain boundary in a 200 nm-thick Pb(Zr0.2Ti0.8)O3 bi-crystal ferroelectric film was probed using synchrotron nanodiffraction. The bi-crystal film was grown epitaxially on SrRuO3-coated (001) SrTiO3 24° tilt bi-crystal substrates. From the nanodiffraction data, real-space maps of the ferroelectric domain structure around the grain boundary prior to and during application of a 200 kV cm−1 electric field were reconstructed. In the vicinity of the tilt grain boundary, the distributions of densities of c-type tetragonal domains with the c axis aligned with the film normal were calculated on the basis of diffracted intensity ratios of c- and a-type domains and reference powder diffraction data. Diffracted intensity was averaged along the grain boundary, and it was shown that the density of c-type tetragonal domains dropped to ∼50% of that of the bulk of the film over a range ±150 nm from the grain boundary. This work complements previous results acquired by band excitation piezoresponse force microscopy, suggesting that reduced nonlinear piezoelectric response around grain boundaries may be related to the change in domain structure, as well as to the possibility of increased pinning of domain wall motion. The implications of the results and analysis in terms of understanding the role of grain boundaries in affecting the nonlinear piezoelectric and dielectric responses of ferroelectric materials are discussed. Full Article text
odi Periodic diffraction from an aperiodic monohedral tiling – the Spectre tiling. Addendum By journals.iucr.org Published On :: 2024-10-08 This article describes the diffraction pattern (2-periodic Fourier transform) from the vertices of a large patch of the recently discovered `Spectre' tiling – a strictly chiral aperiodic monotile. It was reported recently that the diffraction pattern of the related weakly chiral aperiodic `Hat' monotile was 2-periodic with chiral plane-group symmetry p6 [Kaplan et al. (2024). Acta Cryst. A80, 72–78]. The diffraction periodicity arises because the Hat tiling is a systematic aperiodic deletion of vertices from the 2-periodic hexagonal mta tiling. Despite the similarity of the Hat and Spectre tilings, the Spectre tiling is not aligned with a 2-periodic lattice, and its diffraction pattern is non-periodic with chiral point symmetry 6 about the origin. Full Article text
odi In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy By journals.iucr.org Published On :: 2024-01-01 The use of hard X-ray transmission nano- and microdiffraction to perform in situ stress and strain measurements during deformation has recently been demonstrated and used to investigate many thin film systems. Here a newly commissioned sample environment based on a commercially available nanoindenter is presented, which is available at the NanoMAX beamline at the MAX IV synchrotron. Using X-ray nanoprobes of around 60–70 nm at 14–16 keV and a scanning step size of 100 nm, we map the strains, stresses, plastic deformation and fracture during nanoindentation of industrial coatings with thicknesses in the range of several micrometres, relatively strong texture and large grains. The successful measurements of such challenging samples illustrate broad applicability. The sample environment is openly accessible for NanoMAX beamline users through the MAX IV sample environment pool, and its capability can be further extended for specific purposes through additional available modules. Full Article text
odi L3-edge X-ray spectroscopy of rhodium and palladium compounds By journals.iucr.org Published On :: 2024-06-26 L3-edge high-energy-resolution fluorescence-detection X-ray absorption near-edge structure (XANES) spectra for palladium and rhodium compounds are presented, with focus on their electronic structures. The data are compared with transmission XANES spectra recorded at the K-edge. A correlation between the absorption edge energy and the metal ion oxidation state is not observed. Despite the different filling of the 4d orbitals and different local coordination, the Rh and Pd compounds show remarkably similar spectral shapes. Calculation of the density of states and of the L3-XANES data reproduce the experimental results. Full Article text
odi In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy. Corrigendum By journals.iucr.org Published On :: 2024-08-06 Errors in variable subscripts, equations and Fig. 8 in Section 3.2 of the article by Lotze et al. [(2024). J. Synchrotron Rad. 31, 42–52] are corrected. Full Article text
odi A second crystalline modification of 2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene}hydrazinecarbothioamide By journals.iucr.org Published On :: 2023-11-30 A second crystalline modification of the title compound, C12H19N3S [common name: cis-jasmone thiosemicarbazone] was crystallized from tetrahydrofurane at room temperature. There is one crystallographic independent molecule in the asymmetric unit, showing disorder in the cis-jasmone chain [site-occupancy ratio = 0.590 (14):0.410 (14)]. The thiosemicarbazone entity is approximately planar, with the maximum deviation from the mean plane through the N/N/C/S/N atoms being 0.0463 (14) Å [r.m.s.d. = 0.0324 Å], while for the five-membered ring of the jasmone fragment, the maximum deviation from the mean plane through the carbon atoms amounts to 0.0465 (15) Å [r.m.s.d. = 0.0338 Å]. The molecule is not planar due to the dihedral angle between these two fragments, which is 8.93 (1)°, and due to the sp3-hybridized carbon atoms in the jasmone fragment chain. In the crystal, the molecules are connected by N—H⋯S and C—H⋯S interactions, with graph-set motifs R22(8) and R21(7), building mono-periodic hydrogen-bonded ribbons along [010]. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are H⋯H (67.8%), H⋯S/S⋯H (15.0%), H⋯C/C⋯H (8.5%) and H⋯N/N⋯H (5.6%) [only non-disordered atoms and those with the highest s.o.f. were considered]. This work reports the second crystalline modification of the cis-jasmone thiosemicarbazone structure, the first one being published recently [Orsoni et al. (2020). Int. J. Mol. Sci. 21, 8681–8697] with the crystals obtained in ethanol at 273 K. Full Article text
odi (4-Butyl-1-ethyl-1,2,4-triazol-5-ylidene)[(1,2,5,6-η)-cycloocta-1,5-diene](triphenylphosphane)rhodium(I) tetrafluoridoborate By journals.iucr.org Published On :: 2024-01-26 In the title triazole-based N-heterocyclic carbene rhodium(I) cationic complex with a tetrafluoridoborate counter-anion, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4, which crystallizes with two cations and two anions in the asymmetric unit, the Rh center has a distorted square-planar coordination geometry with expected bond distances. Several nonclassical C—H⋯F hydrogen-bonding interactions help to consolidate the packing. Two of the F atoms of one of the anions are disordered over adjacent sites in a 0.814 (4):0.186 (4) ratio. Full Article text
odi 4-Fluorobenzyl (Z)-2-(2-oxoindolin-3-ylidene)hydrazine-1-carbodithioate By journals.iucr.org Published On :: 2024-03-19 The title compound, C16H12FN3OS, a fluorinated dithiocarbazate imine derivative, was synthesized by the one-pot, multi-component condensation reaction of hydrazine hydrate, carbon disulfide, 4-fluorobenzyl chloride and isatin. The compound demonstrates near-planarity across much of the molecule in the solid state and a Z configuration for the azomethine C=N bond. The Z form is further stabilized by the presence of an intramolecular N—H⋯O hydrogen bond. In the extended structure, molecules are linked into dimers by N—H⋯O hydrogen bonds and further connected into chains along either [2overline{1}0] or [100] by weak C—H⋯S and C—H⋯F hydrogen bonds, which further link into corrugated sheets and in combination form the overall three-dimensional network. Full Article text
odi 4-(1H-2,3-Dihydronaphtho[1,8-de][1,3,2]diazaborinin-2-yl)-1-ethylpyridin-1-ium iodide By journals.iucr.org Published On :: 2024-04-26 The title compound, C17H17BN3I, is a type of diazaborinane featuring substitution at the 1, 2, and 3 positions of the nitrogen–boron six-membered heterocycle. The organic molecule has a planar structure, the dihedral angle between the pyridyl ring and the fused ring system being 3.46 (4)°. In the crystal, molecules are stacked in a head-to-tail manner. The iodide ion makes close contacts with three organic molecules and supports the alternating stack. Full Article text
odi 4-(1H-2,3-Dihydronaphtho[1,8-de][1,3,2]diazaborinin-2-yl)-1-ethylpyridin-1-ium iodide monohydrate By journals.iucr.org Published On :: 2024-04-26 The cation of the title hydrated salt, C17H17BN3+·I−·H2O, is a diazaborinane featuring substitution at the 1, 2, and 3 positions in the nitrogen–boron six-membered heterocycle. The cation is approximately planar with a dihedral angle between the pyridyl ring and the diazaborinane ring system of 5.40 (5)°. In the crystal, the cations stack along [100] in an alternating head-to-tail manner, while the iodide ion and water molecule form one-dimensional hydrogen-bonded chains beside the cation stack. The cation stacks and I−–water chains are crosslinked by N—H⋯I and N—H⋯O hydrogen bonds. Full Article text
odi Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I) By journals.iucr.org Published On :: 2024-07-23 A new neutral triazole-based N-heterocyclic carbene rhodium(I) complex [RhCl(C8H12)(C8H15N3)], has been synthesized and structurally characterized. The complex crystallizes with two molecules in the asymmetric unit. The central rhodium(I) atom has a distorted square-planar coordination environment, formed by a cycloocta-1,5-diene (COD) ligand, an N-heterocyclic carbene (NHC) ligand, and a chlorido ligand. The bond lengths are unexceptional. A weak intermolecular non-standard hydrogen-bonding interaction exists between the chlorido and NHC ligands. Full Article text
odi [(1,2,5,6-η)-Cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)(triphenylphosphane)rhodium(I) tetrafluoridoborate By journals.iucr.org Published On :: 2024-08-02 A new, cationic N-heterocyclic carbene RhI complex with a tetrafluoridoborate counter-anion, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4, has been synthesized and structurally characterized. There are two independent ion pairs in the asymmetric unit. Each complex cation exhibits a distorted square-planar conformation around the RhI atom. Bond lengths and bond angles are as expected for an Rh–NHC complex. There are several close, non-standard C—H⋯F hydrogen-bonding interactions between the ions. One of the tetrafluoridoborate anions shows statistical disorder of the F atoms. Full Article text
odi Methyl 2-[(Z)-5-bromo-2-oxoindolin-3-ylidene]hydrazinecarbodithioate By journals.iucr.org Published On :: 2024-08-16 The title compound, C10H8BrN3OS2, a brominated dithiocarbazate imine derivative, was obtained from the condensation reaction of S-methyldithiocarbazate (SMDTC) and 5-bromoisatin. The essentially planar molecule exhibits a Z configuration, with the dithiocarbazate and 5-bromoisatin fragments located on the same sides of the C=N azomethine bond, which allows for the formation of an intramolecular N—H⋯Ob (b = bromoisatin) hydrogen bond generating an S(6) ring motif. In the crystal, adjacent molecules are linked by pairs of N—H⋯O hydrogen bonds, forming dimers characterized by an R22(8) loop motif. In the extended structure, molecules are linked into a three-dimensional network by C—H⋯S and C—H⋯Br hydrogen bonds, C—Br⋯S halogen bonds and aromatic π–π stacking. Full Article text
odi Methyl 2-[(Z)-5-methyl-2-oxoindolin-3-ylidene]hydrazinecarbodithioate By journals.iucr.org Published On :: 2024-10-08 The title dithiocarbazate imine, C11H11N3OS2, was obtained from the condensation reaction of S-methyldithiocarbazate (SMDTC) and 5-methylisatin. It shows a Z configuration about the imine C=N bond, which is associated with an intramolecular N—H⋯O hydrogen bond that closes an S(6) ring. In the crystal, inversion dimers linked by pairwise N—H⋯O hydrogen bonds generate R22(8) loops. The extended structure features C—H⋯S contacts as well as reciprocal carbonyl–carbonyl (C=O⋯C=O) interactions. Full Article text
odi Formation of extended polyiodides at large cation templates By journals.iucr.org Published On :: 2024-05-13 By studying the structures of (μ-1,4,10,13-tetrathia-7,16-diazacyclooctadecane)bis[iodidopalladium(II)] diiodide penta(diiodine), [Pd2I2(C12H26N2S4)](I)2·5I2 or [Pd2I2([18]aneN2S4)](I)2·(I2)5, and 4,7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane triiodide iodide hemipenta(diiodine) dichloromethane monosolvate, C18H38N2O62+·I3−·I−·2.5I2·CH2Cl2 or [H2([2.2.2]cryptand)](I3)(I)(I2)2.5·CH2Cl2, we confirm the structural variety of extended polyiodides achievable upon changing the shape, charge and dimensions of the cation template, by altering the synthetic strategy adopted and/or the experimental conditions. Although it is still often difficult to characterize discrete [I2m+n]n− polyiodides higher than I3− on the basis of structural parameters, such as I—I bond distances, FT–Raman spectroscopy appears to identify them as aggregates of I2, I− and (symmetric or slightly asymmetric) I3− building blocks linked by I⋯I interactions of varying strengths. However, because FT–Raman spectroscopy carries no information about the topological features of extended polyiodides, the two techniques should therefore be applied in combination to enhance the analysis of this kind of compounds. Full Article text
odi Post-translational modifications in the Protein Data Bank By journals.iucr.org Published On :: 2024-08-29 Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein–protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference. Full Article text
odi A modified phase-retrieval algorithm to facilitate automatic de novo macromolecular structure determination in single-wavelength anomalous diffraction By journals.iucr.org Published On :: 2024-06-21 The success of experimental phasing in macromolecular crystallography relies primarily on the accurate locations of heavy atoms bound to the target crystal. To improve the process of substructure determination, a modified phase-retrieval algorithm built on the framework of the relaxed alternating averaged reflection (RAAR) algorithm has been developed. Importantly, the proposed algorithm features a combination of the π-half phase perturbation for weak reflections and enforces the direct-method-based tangent formula for strong reflections in reciprocal space. The proposed algorithm is extensively demonstrated on a total of 100 single-wavelength anomalous diffraction (SAD) experimental datasets, comprising both protein and nucleic acid structures of different qualities. Compared with the standard RAAR algorithm, the modified phase-retrieval algorithm exhibits significantly improved effectiveness and accuracy in SAD substructure determination, highlighting the importance of additional constraints for algorithmic performance. Furthermore, the proposed algorithm can be performed without human intervention under most conditions owing to the self-adaptive property of the input parameters, thus making it convenient to be integrated into the structural determination pipeline. In conjunction with the IPCAS software suite, we demonstrated experimentally that automatic de novo structure determination is possible on the basis of our proposed algorithm. Full Article text
odi Comprehensive encoding of conformational and compositional protein structural ensembles through the mmCIF data structure By journals.iucr.org Published On :: 2024-06-25 In the folded state, biomolecules exchange between multiple conformational states crucial for their function. However, most structural models derived from experiments and computational predictions only encode a single state. To represent biomolecules accurately, we must move towards modeling and predicting structural ensembles. Information about structural ensembles exists within experimental data from X-ray crystallography and cryo-electron microscopy. Although new tools are available to detect conformational and compositional heterogeneity within these ensembles, the legacy PDB data structure does not robustly encapsulate this complexity. We propose modifications to the macromolecular crystallographic information file (mmCIF) to improve the representation and interrelation of conformational and compositional heterogeneity. These modifications will enable the capture of macromolecular ensembles in a human and machine-interpretable way, potentially catalyzing breakthroughs for ensemble–function predictions, analogous to the achievements of AlphaFold with single-structure prediction. Full Article text
odi Unity gives strength: combining Bertaut's and Belov's concepts and the formalism of aperiodic crystals to solve magnetic structures of unprecedented complexity By journals.iucr.org Published On :: 2024-10-29 Full Article text
odi Crystal structures of sixteen phosphane chalcogenide complexes of gold(I) chloride, bromide and iodide By journals.iucr.org Published On :: 2024-01-01 The structures of 16 phosphane chalcogenide complexes of gold(I) halides, with the general formula R13-nR2nPEAuX (R1 = t-butyl; R2 = isopropyl; n = 0 to 3; E = S or Se; X = Cl, Br or I), are presented. The eight possible chlorido derivatives are: 1a, n = 3, E = S; 2a, n = 2, E = S; 3a, n = 1, E = S; 4a, n = 0, E = S; 5a, n = 3, E = Se; 6a, n = 2, E = Se; 7a, n = 1, E = Se; and 8a, n = 0, E = Se, and the corresponding bromido derivatives are 1b–8b in the same order. However, 2a and 2b were badly disordered and 8a was not obtained. The iodido derivatives are 2c, 6c and 7c (numbered as for the series a and b). All structures are solvent-free and all have Z' = 1 except for 6b and 6c (Z' = 2). All molecules show the expected linear geometry at gold and approximately tetrahedral angles P—E—Au. The presence of bulky ligands forces some short intramolecular contacts, in particular H⋯Au and H⋯E. The Au—E bond lengths have a slight but consistent tendency to be longer when trans to a softer X ligand, and vice versa. The five compounds 1a, 5a, 6a, 1b and 5b form an isotypic set, despite the different alkyl groups in 6a. Compounds 3a/3b, 4b/8b and 6b/6c form isotypic pairs. The crystal packing can be analysed in terms of various types of secondary interactions, of which the most frequent are `weak' hydrogen bonds from methine hydrogen atoms to the halogenido ligands. For the structure type 1a, H⋯X and H⋯E contacts combine to form a layer structure. For 3a/3b, the packing is almost featureless, but can be described in terms of a double-layer structure involving borderline H⋯Cl/Br and H⋯S contacts. In 4a and 4b/8b, which lack methine groups, Cmethyl—H⋯X contacts combine to form layer structures. In 7a/7b, short C—H⋯X interactions form chains of molecules that are further linked by association of short Au⋯Se contacts to form a layer structure. The packing of compound 6b/6c can conveniently be analysed for each independent molecule separately, because they occupy different regions of the cell. Molecule 1 forms chains in which the molecules are linked by a Cmethine⋯Au contact. The molecules 2 associate via a short Se⋯Se contact and a short H⋯X contact to form a layer structure. The packing of compound 2c can be described in terms of two short Cmethine—H⋯I contacts, which combine to form a corrugated ribbon structure. Compound 7c is the only compound in this paper to feature Au⋯Au contacts, which lead to twofold-symmetric dimers. Apart from this, the packing is almost featureless, consisting of layers with only translation symmetry except for two very borderline Au⋯H contacts. Full Article text
odi {[(E)-(1,3-Benzodioxol-5-yl)methylidene]amino}thiourea By journals.iucr.org Published On :: 2024-01-09 The synthesis and crystallographic analysis of the title compound, C9H9N3O2S, are reported. The compound crystallizes in the monoclinic space group P21/c, revealing characteristic bond lengths and angles typical of thiosemicarbazone groups. The supramolecular organization primarily arises from hydrogen bonding and π–π stacking interactions, leading to distinctive dimeric formations. Full Article text
odi Synthesis, crystal structure and Hirshfeld surface analysis of sodium bis(malonato)borate monohydrate By journals.iucr.org Published On :: 2024-01-26 In the title salt, poly[aqua[μ4-bis(malonato)borato]sodium], {[Na(C6H4BO8)]·H2O}n or Na+·[B(C3H2O4)2]−·H2O, the sodium cation exhibits fivefold coordination by four carbonyl O atoms of the bis(malonato)borate anions and a water O atom. The tetrahedral B atom at the centre of the anion leads to the formation of a polymeric three-dimensional framework, which is consolidated by C—H⋯O and O—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are H⋯O/O⋯H (49.7%), Na⋯O/O⋯Na (16.1%), O⋯O (12.6%), H⋯H (10.7%) and C⋯O/O⋯C (7.3%). Full Article text
odi Structural characterization of a new samarium–sodium heterometallic coordination polymer By journals.iucr.org Published On :: 2024-02-06 Lanthanide-containing materials are of interest in the field of crystal engineering because of their unique properties and distinct structure types. In this context, a new samarium–sodium heterometallic coordination polymer, poly[tetrakis(μ2-2-formyl-6-methoxyphenolato)samarium(III)sodium(I)], {[SmNa(C8H7O3)4]·solvent}n (Sm-1), was synthesized and crystallized via slow evaporation from a mixture of ethanol and acetonitrile. The compound features alternating SmIII and NaI ions, which are linked by ortho-vanillin (o-vanillin) ligands to form a mono-periodic chain-like coordination polymer. The chains propagate along the [001] direction. Residual electron density of disordered solvent molecules in the void space could not be reasonably modeled, thus the SQUEEZE function was applied. The structural, vibrational, and optical properties are reported. Full Article text
odi Crystal structure of the sodium salt of mesotrione: a triketone herbicide By journals.iucr.org Published On :: 2024-02-16 The crystal structure of the sodium salt of mesotrione, namely, catena-poly[[sodium-μ3-2-[(4-methanesulfonyl-2-nitrophenyl)carbonyl]-3-oxocyclohex-1-en-1-olato] ethanol monosolvate], {[Na(C14H12NO7S)]C2H5OH}n, is described. The X-ray structural analysis results reveal that the coordination sphere is established by two chelating O atoms, the O atom of the coordinated ethanol molecule, and an O atom from the methylsulfonyl group of a neighboring molecule. Simultaneously, an O atom of the cyclohexane fragment serves as a bridge to a neighboring sodium ion, forming a flat Na–O–Na–O quadrangle, thereby forming a mono-periodic polymer. The structure displays O—H⋯O hydrogen bonds and C—H⋯O short contacts. Thermogravimetric analysis (TGA) data indicate that the sodium salt of mesotrione decomposes in four stages. Full Article text
odi Crystal structure and Hirshfeld surface analysis of 8-benzyl-1-[(4-methylphenyl)sulfonyl]-2,7,8,9-tetrahydro-1H-3,6:10,13-diepoxy-1,8-benzodiazacyclopentadecine ethanol hemisolvate By journals.iucr.org Published On :: 2024-03-26 The asymmetric unit of the title compound, 2C31H28N2O4S·C2H6O, contains a parent molecule and a half molecule of ethanol solvent. The main compound stabilizes its molecular conformation by forming a ring with an R12(7) motif with the ethanol solvent molecule. In the crystal, molecules are connected by C—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π interactions also strengthen the molecular packing. Full Article text
odi Lithium and sodium 3-(3,4-dihydroxyphenyl)propenoate hydrate By journals.iucr.org Published On :: 2024-03-26 Treatment of 3-(3,4-dihydroxyphenyl)propenoic acid (caffeic acid or 3,4-dihydroxycinnamic acid) with the alkali hydroxides MOH (M = Li, Na) in aqueous solution led to the formation of poly[aqua[μ-3-(3,4-dihydroxyphenyl)propenoato]lithium], [Li(C9H7O4)(H2O)]n, 1, and poly[aqua[μ-3-(3,4-dihydroxyphenyl)propenoato]sodium], [Na(C9H7O4)(H2O)]n, 2. The crystal structure of 1 consists of a lithium cation that is coordinated nearly tetrahedrally by three carboxylate oxygen atoms and a water molecule. The carboxylate groups adopt a μ3-κ3O:O':O' coordination mode that leads to a chain-like catenation of Li cations and carboxylate units parallel to the b axis. Moreover, the lithium carboxylate chains are connected by hydrogen bonds between water molecules attached to lithium and catechol OH groups. The crystal structure of 2 shows a sevenfold coordination of the sodium cation by one water molecule, two monodentately binding carboxylate groups and four oxygen atoms from two catechol groups. The coordination polyhedra are linked by face- and edge-sharing into chains extending parallel to the b axis. The chains are interlinked by the bridging 3-(3,4-dihydroxyphenyl)propenoate units and by intermolecular hydrogen bonds to form the tri-periodic network. Full Article text
odi Crystal structure of 4,4'-(disulfanediyl)dipyridinium chloride triiodide By journals.iucr.org Published On :: 2024-05-21 4,4'-(Disulfanediyl)dipyridinium chloride triiodide, C10H10N2S22+·Cl−·I3−, (1) was synthesized by reaction of 4,4'-dipyridyldisulfide with ICl in a 1:1 molar ratio in dichloromethane solution. The structural characterization of 1 by SC-XRD analysis was supported by elemental analysis, FT–IR, and FT–Raman spectroscopic measurements. Full Article text
odi Synthesis and structural characterization of a hydrated sodium–caesium tetracosatungstate(VI), Na5Cs19[W24O84]·21H2O By journals.iucr.org Published On :: 2024-05-31 Crystal formation of pentasodium nonadecacesium tetracosatungstate(VI) heneikosahydrate, Na5Cs19[W24O84]·21H2O, was successfully achieved by the conversion of [H2W12O42]10− through the addition of excess Cs+. The crystal structure comprising the toroidal isopolyoxidometalate is presented, as well as its Raman spectrum. Na5Cs19(H2O)21W24O84 crystallizes in the rhombohedral space group Roverline{3} with an obverse centering. The title compound represents the addition of a new member to the isopolytungstate family with mixed alkali counter-ions and contains rarely observed five-coordinate tungsten(VI) atoms in the [W24O84]24− anion (site symmetry C3i) arising from the conversion mediated by Cs+ counter-ions. Full Article text
odi Synthesis, crystal structure and thermal properties of a new polymorphic modification of diisothiocyanatotetrakis(4-methylpyridine)cobalt(II) By journals.iucr.org Published On :: 2024-05-31 The title compound, [Co(NCS)2(C6H7N)4] or Co(NCS)2(4-methylpyridine)4, was prepared by the reaction of Co(NCS)2 with 4-methylpyridine in water and is isotypic to one of the polymorphs of Ni(NCS)2(4-methylpyridine)4 [Kerr & Williams (1977). Acta Cryst. B33, 3589–3592 and Soldatov et al. (2004). Cryst. Growth Des. 4, 1185–1194]. Comparison of the experimental X-ray powder pattern with that calculated from the single-crystal data proves that a pure phase has been obtained. The asymmetric unit consists of one CoII cation, two crystallographically independent thiocyanate anions and four independent 4-methylpyridine ligands, all located in general positions. The CoII cations are sixfold coordinated to two terminally N-bonded thiocyanate anions and four 4-methylpyridine coligands within slightly distorted octahedra. Between the complexes, a number of weak C—H⋯N and C—H⋯S contacts are found. This structure represent a polymorphic modification of Co(NCS)2(4-methylpyridine)4 already reported in the CCD [Harris et al. (2003). NASA Technical Reports, 211890]. In contrast to this form, the crystal structure of the new polymorph shows a denser packing, indicating that it is thermodynamically stable at least at low temperatures. Thermogravimetric and differential thermoanalysis reveal that the title compound starts to decomposes at about 100°C and that the coligands are removed in separate steps without any sign of a polymorphic transition before decomposition. Full Article text
odi Crystal structure of polymeric bis(3-amino-1H-pyrazole)cadmium diiodide By journals.iucr.org Published On :: 2024-07-05 The reaction of cadmium iodide with 3-aminopyrazole (3-apz) in ethanolic solution leads to tautomerization of the ligand and the formation of crystals of the title compound, catena-poly[[diiodidocadmium(II)]-bis(μ-3-amino-1H-pyrazole)-κ2N2:N3;κ2N3:N2], [CdI2(C3H5N3)2]n or [CdI2(3-apz)2]n. Its asymmetric unit consists of a half of a Cd2+ cation, an iodide anion and a 3-apz molecule. The Cd2+ cations are coordinated by two iodide anions and two 3-apz ligands, generating trans-CdN4I2 octahedra, which are linked into chains by pairs of the bridging ligands. In the crystal, the ligand molecules and iodide anions of neighboring chains are linked through interchain hydrogen bonds into a di-periodic network. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative quantitative contributions of the weak intermolecular contacts. Full Article text
odi Synthesis and crystal structure of sodium (ethane-1,2-diyl)bis[(3-methoxypropyl)phosphinodithiolate] octahydrate By journals.iucr.org Published On :: 2024-10-08 The title compound, catena-poly[[triaquasodium]-di-μ-aqua-[triaquasodium]-μ-(ethane-1,2-diyl)bis[(3-methoxypropyl)phosphinodithiolato]], [Na2(C10H22O2P2S4)(H2O)8]n, crystallizes in the triclinic space group P1. The dianionic [CH3O(CH2)3P(=S)(S—)CH2CH2P(=S)(S—)(CH2)3OCH3]2− ligand fragments are joined by a dicationic [Na2(H2O)8]2+ cluster that includes the oxygen of the methoxypropyl unit of the ligand to form infinite chains. Full Article text
odi Synthesis, crystal structure and absolute configuration of (3aS,4R,5S,7aR)-7-(but-3-en-1-yn-1-yl)-2,2-dimethyl-3a,4,5,7a-tetrahydro-2H-1,3-benzodioxole-4,5-diol By journals.iucr.org Published On :: 2024-10-11 The absolute configuration of the title compound, C13H16O4, determined as 1S,2R,3S,4R based on the synthetic pathway, was confirmed by single-crystal X-ray diffraction. The molecule is a relevant intermediary for the synthesis of speciosins, epoxyquinoides or their analogues. The molecule contains fused five- and six-membered rings with two free hydroxyl groups and two protected as an isopropylidenedioxo ring. The packing is directed by hydrogen bonds that define double planes of molecules laying along the ab plane and van der Waals interactions between aliphatic chains that point outwards of the planes. Full Article text
odi Crystal structure and Hirshfeld surface analysis of the salt 2-iodoethylammonium iodide – a possible side product upon synthesis of hybrid perovskites By journals.iucr.org Published On :: 2024-10-31 The title organic–inorganic hybrid salt, C2H7IN+·I−, is isotypic with its bromine analog, C2H7BrN+·Br− [Semenikhin et al. (2024). Acta Cryst. E80, 738–741]. Its asymmetric unit consists of one 2-iodoethylammonium cation and one iodide anion. The NH3+ group of the organic cation forms weak hydrogen bonds with four neighboring iodide anions, leading to the formation of supramolecular layers propagating parallel to the bc plane. Hirshfeld surface analysis reveals that the most important contribution to the crystal packing is from N—H⋯I interactions (63.8%). The crystal under investigation was twinned by a 180° rotation around [001]. Full Article text
odi Laue microdiffraction on polycrystalline samples above 1500 K achieved with the QMAX-µLaue furnace By journals.iucr.org Published On :: 2024-03-31 X-ray Laue microdiffraction aims to characterize microstructural and mechanical fields in polycrystalline specimens at the sub-micrometre scale with a strain resolution of ∼10−4. Here, a new and unique Laue microdiffraction setup and alignment procedure is presented, allowing measurements at temperatures as high as 1500 K, with the objective to extend the technique for the study of crystalline phase transitions and associated strain-field evolution that occur at high temperatures. A method is provided to measure the real temperature encountered by the specimen, which can be critical for precise phase-transition studies, as well as a strategy to calibrate the setup geometry to account for the sample and furnace dilation using a standard α-alumina single crystal. A first application to phase transitions in a polycrystalline specimen of pure zirconia is provided as an illustrative example. Full Article text
odi Subperiodic groups, line groups and their applications By journals.iucr.org Published On :: 2024-05-31 Understanding the symmetries described by subperiodic groups – frieze, rod and layer groups – has been instrumental in predicting various properties (band structures, optical absorption, Raman spectra, diffraction patterns, topological properties etc.) of `low-dimensional' crystals. This knowledge is crucial in the tailored design of materials for specific applications across electronics, photonics and materials engineering. However, there are materials that have the property of being periodic only in one direction and whose symmetry cannot be described by the subperiodic rod groups. Describing the symmetry of these materials necessitates the application of line group theory. This paper gives an overview of subperiodic groups while briefly introducing line groups in order to acquaint the crystallographic community with these symmetries and direct them to pertinent literature. Since line groups are generally not subperiodic, they have thus far remained outside the realm of symmetries traditionally considered in crystallography, although there are numerous `one-dimensional' crystals (i.e. monoperiodic structures) possessing line group symmetry. Full Article text
odi Pushing the limits of accessible length scales via a modified Porod analysis in small-angle neutron scattering on ordered systems By journals.iucr.org Published On :: 2024-08-27 Small-angle neutron scattering is a widely used technique to study large-scale structures in bulk samples. The largest accessible length scale in conventional Bragg scattering is determined by the combination of the longest available neutron wavelength and smallest resolvable scattering angle. A method is presented that circumvents this limitation and is able to extract larger length scales from the low-q power-law scattering using a modification of the well known Porod law connecting the scattered intensity of randomly distributed objects to their specific surface area. It is shown that in the special case of a highly aligned domain structure the specific surface area extracted from the modified Porod law can be used to determine specific length scales of the domain structure. The analysis method is applied to study the micrometre-sized domain structure found in the intermediate mixed state of the superconductor niobium. The analysis approach allows the range of accessible length scales to be extended from 1 µm to up to 40 µm using a conventional small-angle neutron scattering setup. Full Article text
odi Characterization of sub-micrometre-sized voids in fixed human brain tissue using scanning X-ray microdiffraction By journals.iucr.org Published On :: 2024-10-01 Using a 5 µm-diameter X-ray beam, we collected scanning X-ray microdiffraction in both the small-angle (SAXS) and the wide-angle (WAXS) regimes from thin sections of fixed human brain tissue from Alzheimer's subjects. The intensity of scattering in the SAXS regime of these patterns exhibits essentially no correlation with the observed intensity in the WAXS regime, indicating that the structures responsible for these two portions of the diffraction patterns, which reflect different length scales, are distinct. SAXS scattering exhibits a power-law behavior in which the log of intensity decreases linearly with the log of the scattering angle. The slope of the log–log curve is roughly proportional to the intensity in the SAXS regime and, surprisingly, inversely proportional to the intensity in the WAXS regime. We interpret these observations as being due to the presence of sub-micrometre-sized voids formed during dehydration of the fixed tissue. The SAXS intensity is due largely to scattering from these voids, while the WAXS intensity derives from the secondary structures of macromolecular material surrounding the voids. The ability to detect and map the presence of voids within thin sections of fixed tissue has the potential to provide novel information on the degradation of human brain tissue in neurodegenerative diseases. Full Article text
odi MODIFI obtains USD 15 million from SMBC Asia Rising Fund By thepaypers.com Published On :: Fri, 08 Nov 2024 12:51:00 +0100 Germany-based fintech MODIFI has announced... Full Article