ev

Indirect Evidence of Bourbon Virus (Thogotovirus, Orthomyxoviridae) Infection in North Carolina

To the Editor—Bourbon virus (Thogotovirus, Orthomyxoviridae) was discovered in 2014 when a patient with history of multiple tick bites in Kansas died from an unknown infection [1]. Human infections from Bourbon virus have now been recognized in several states (i.e., Kansas, Oklahoma, Missouri). The virus was detected in collections of the lone star tick (Amblyomma americanum) in Missouri [2]. A serosurvey of domestic and wild mammals in Missouri noted the presence of Bourbon virus-neutralizing antibodies in serum samples collected from a variety of species, but most frequently in white-tailed deer (Odocoileus virginianus) and raccoon (Procyon lotor) [3]. We report here that neutralizing antibodies against Bourbon virus were detected in white-tailed deer in North Carolina, suggesting that the virus is present in the state. We screened 32 white-tailed deer for the presence of Bourbon virus-specific neutralizing antibodies. Of 20 plasma samples that reacted with the virus, 18 were confirmed with neutralizing antibody titers ranging from 10 to ≥ 320 for a seroprevalence rate of 56% (95% confidence interval 39%–72%). The seropositive samples were from deer killed during the 2014 hunting season from Stanly and New Hanover counties.

The incidence of Bourbon virus infection in humans in North Carolina is unknown. However, given the abundance of the lone star tick in the state, and the notable proportion of deer with evidence of infection, human infections have likely gone unnoticed or possibly misdiagnosed. Human infection with Bourbon virus results in a nonspecific viral syndrome that includes fever, nausea, diarrhea, myalgia (muscle pain), arthralgia...




ev

Why the ABCs Matter More than Ever in Medical Education

Addressing social drivers of health in medical education—through community engagement experiences—is essential for health equity and the development of future physicians. While this was written before the COVID-19 pandemic, these practices will gain even more importance as we come together to better understand its health and community implications in North Carolina and the United States.




ev

Developing a Workforce for Health in North Carolina: Planning for the Future

Among the many trends influencing health and health care delivery over the next decade, three are particularly important: the transition to value-based care and increased focus on population health; the shift of care from acute to community-based settings; and addressing the vulnerability of rural health care systems in North Carolina.




ev

Polygenic risk scores of several subtypes of epilepsies in a founder population

Objective

Polygenic risk scores (PRSs) are used to quantify the cumulative effects of a number of genetic variants, which may individually have a very small effect on susceptibility to a disease; we used PRSs to better understand the genetic contribution to common epilepsy and its subtypes.

Methods

We first replicated previous single associations using 373 unrelated patients. We then calculated PRSs in the same French Canadian patients with epilepsy divided into 7 epilepsy subtypes and population-based controls. We fitted a logistic mixed model to calculate the variance explained by the PRS using pseudo-R2 statistics.

Results

We show that the PRS explains more of the variance in idiopathic generalized epilepsy than in patients with nonacquired focal epilepsy. We also demonstrate that the variance explained is different within each epilepsy subtype.

Conclusions

Globally, we support the notion that PRSs provide a reliable measure to rightfully estimate the contribution of genetic factors to the pathophysiologic mechanism of epilepsies, but further studies are needed on PRSs before they can be used clinically.




ev

Book Review




ev

A new cheiracanthid acanthodian from the Middle Devonian (Givetian) Orcadian Basin of Scotland and its biostratigraphic and biogeographical significance

A number of partial articulated specimens of Cheiracanthus peachi nov. sp. have been collected from the Mey Flagstone Formation and Rousay Flagstone Formation within the Orcadian Basin of northern Scotland. The new, robust-bodied species is mainly distinguished by the scale ornament of radiating grooves rather than ridges. Compared to other Cheiracanthus species in the Orcadian Basin, C. peachi nov. sp. has quite a short range making it a useful zone fossil. As well as describing the general morphology of the specimens, we have also described and figured SEM images of scales and histological sections of all elements, enabling identification of other, isolated remains. Of particular biological interest is the identification of relatively robust, tooth-like gill rakers. Finally, the species has also been identified from isolated scales in Belarus, where it appears earlier and has a longer stratigraphical range, implying the species evolved in the marine deposits of the east and migrated west into the Orcadian Basin via the river systems.




ev

The South Kintyre Basin: its role in the stratigraphical and structural evolution of the Firth of Clyde region during the Devonian-Carboniferous transition

Late Devonian–Early Carboniferous rocks at the southern end of the Kintyre Peninsula closely resemble those of the Kinnesswood and Clyde Sandstone formations in more easterly portions of the Firth of Clyde. For example, a previously unrecognized thick marlstone with pedogenic calcretes is present in the Kinnesswood Formation at the south tip of the peninsula and, on the west coast, south of Machrihanish, a striking cliffed exposure includes massive phreatic calcretes developed from cross-bedded sandstones and red mudstones closely resembling those of the Clyde Sandstone on Great Cumbrae. A similar phreatic calcrete unit is present in the lower part of the Ballagan Formation in south Bute. The presence of vadose and phreatic calcrete provides valuable information concerning palaeoclimatic conditions in southwestern Scotland during the Devonian–Carboniferous transition. Overlying thick volcanic rocks are correlative with the Clyde Plateau Volcanic Formation. The sediments accumulated in the South Kintyre Basin on the west side of the Highland Boundary Fault (HBF). Formation of this basin, and the North East Arran and Cumbraes basins in the northeastern part of the Firth of Clyde, is interpreted as a response to development of a ‘locked zone’ in the HBF during an episode of sinistral faulting.




ev

RNA Interference-Based Screen Reveals Concerted Functions of MEKK2 and CRCK3 in Plant Cell Death Regulation

A wide variety of intrinsic and extrinsic cues lead to cell death with unclear mechanisms. The infertility of some death mutants often hurdles the classical suppressor screens for death regulators. We have developed a transient RNA interference (RNAi)-based screen using a virus-induced gene silencing approach to understand diverse cell death pathways in Arabidopsis (Arabidopsis thaliana). One death pathway is due to the depletion of a MAP kinase (MAPK) cascade, consisting of MAPK kinase kinase 1 (MEKK1), MKK1/2, and MPK4, which depends on a nucleotide-binding site Leu-rich repeat (NLR) protein SUMM2. Silencing of MEKK1 by virus-induced gene silencing resembles the mekk1 mutant with autoimmunity and defense activation. The RNAi-based screen toward Arabidopsis T-DNA insertion lines identified SUMM2, MEKK2, and Calmodulin-binding receptor-like cytoplasmic kinase 3 (CRCK3) to be vital regulators of RNAi MEKK1-induced cell death, consistent with the reports of their requirement in the mekk1-mkk1/2-mpk4 death pathway. Similar with MEKK2, overexpression of CRCK3 caused dosage- and SUMM2-dependent cell death, and the transcripts of CRCK3 were up-regulated in mekk1, mkk1/2, and mpk4. MEKK2-induced cell death depends on CRCK3. Interestingly, CRCK3-induced cell death also depends on MEKK2, consistent with the biochemical data that MEKK2 complexes with CRCK3. Furthermore, the kinase activity of CRCK3 is essential, whereas the kinase activity of MEKK2 is dispensable, for triggering cell death. Our studies suggest that MEKK2 and CRCK3 exert concerted functions in the control of NLR SUMM2 activation and MEKK2 may play a structural role, rather than function as a kinase, in regulating CRCK3 protein stability.




ev

Responses of a Newly Evolved Auxotroph of Chlamydomonas to B12 Deprivation

The corrinoid B12 is synthesized only by prokaryotes yet is widely required by eukaryotes as an enzyme cofactor. Microalgae have evolved B12 dependence on multiple occasions, and we previously demonstrated that experimental evolution of the non–B12-requiring alga Chlamydomonas reinhardtii in media supplemented with B12 generated a B12-dependent mutant (hereafter metE7). This clone provides a unique opportunity to study the physiology of a nascent B12 auxotroph. Our analyses demonstrate that B12 deprivation of metE7 disrupts C1 metabolism, causes an accumulation of starch and triacylglycerides, and leads to a decrease in photosynthetic pigments, proteins, and free amino acids. B12 deprivation also caused a substantial increase in reactive oxygen species, which preceded rapid cell death. Survival could be improved without compromising growth by simultaneously depriving the cells of nitrogen, suggesting a type of cross protection. Significantly, we found further improvements in survival under B12 limitation and an increase in B12 use efficiency after metE7 underwent a further period of experimental evolution, this time in coculture with a B12-producing bacterium. Therefore, although an early B12-dependent alga would likely be poorly adapted to coping with B12 deprivation, association with B12-producers can ensure long-term survival whilst also providing a suitable environment for evolving mechanisms to tolerate B12 limitation better.




ev

The Four Arabidopsis Choline/Ethanolamine Kinase Isozymes Play Distinct Roles in Metabolism and Development

Phosphatidylcholine and phosphatidylethanolamine are two major phospholipid classes in eukaryotes. Each biosynthesis pathway starts with the phosphorylation of choline (Cho) or ethanolamine (Etn) catalyzed by either choline or ethanolamine kinase (CEK). Arabidopsis contains four CEK isoforms, but their isozyme-specific roles in metabolism and development are poorly described. Here, we showed that these four CEKs have distinct substrate specificities in vitro. While CEK1 and CEK2 showed substrate preference for Cho over Etn, CEK3 and CEK4 had clear substrate specificity for Cho and Etn, respectively. In vivo, CEK1, CEK2, and CEK3 exhibited kinase activity for Cho but not Etn, although the latter two isoforms showed rather minor contributions to total Cho kinase activity in both shoots and roots. The knockout mutants of CEK2 and CEK3 both affected root growth, and these isoforms had nonoverlapping cell-type-specific expression patterns in the root meristematic zone. In-depth phenotype analysis, as well as chemical and genetic complementation, revealed that CEK3, a Cho-specific kinase, is involved in cell elongation during root development. Phylogenetic analysis of CEK orthologs in Brassicaceae species showed evolutionary divergence between Etn kinases and Cho kinases. Collectively, our results demonstrate the distinct roles of the four CEK isoforms in Cho/Etn metabolism and plant development.




ev

Overcoming Algal Vitamin B12 Auxotrophy by Experimental Evolution




ev

Severe Pulmonary Hypertension Management Across Europe (PHAROS): an ERS Clinical Research Collaboration

The past 20 years have seen major advances in the understanding and treatment of pulmonary arterial hypertension (PAH; group 1 of the pulmonary hypertension (PH) clinical classification) [1]. A strong basis of knowledge has been acquired in: 1) large randomised clinical trials for drug development; 2) national registries for epidemiology and outcome; and 3) smaller studies on the pathophysiological mechanisms of the disease. This knowledge has been reviewed at World Symposia on Pulmonary Hypertension (the most recent in 2018 [2]) and summarised in European Respiratory Society (ERS)/European Society of Cardiology (ESC) clinical guidelines (the most recent in 2015 [3, 4]). We are, however, much less knowledgeable on specific aspects such as 1) the implementation of guidelines and access to therapies in different European countries; 2) the management of PH crises and progressive (acute on chronic) heart failure; and 3) other groups of PH, such as PH due to lung diseases. Therapeutic strategies also need to be optimised, in particular regarding the combination of drugs, the use of anticoagulants, the place for new medications targeting different pathophysiological pathways, etc.




ev

Inhaled corticosteroids and COVID-19: a systematic review and clinical perspective

The current coronavirus 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection, raises important questions as to whether pre-morbid use or continued administration of inhaled corticosteroids (ICS) affects the outcomes of acute respiratory infections due to coronavirus. Many physicians are concerned about whether individuals positive for SARS-CoV-2 and taking ICS should continue them or stop them, given that ICS are often regarded as immunosuppressive. A number of key questions arise. Are people with asthma or COPD at increased risk of developing COVID-19? Do ICS modify this risk, either increasing or decreasing it? Do ICS influence the clinical course of COVID-19? (figure 1). Whether ICS modify the risk of developing COVID-19 or the clinical course of COVID-19 in people who do not have lung disease should also be considered (figure 1).




ev

Looking back to go forward: adherence to inhaled therapy before biologic therapy in severe asthma

For decades inhaled corticosteroids have been central to the management of asthma and are proven to be effective in maintaining symptom control, reducing exacerbations and preserving quality of life through mediation of airway inflammation. However, a small minority of patients have disease which is refractory to high dose inhaled corticosteroid (ICS) therapy and require additional oral corticosteroids to achieve acceptable control of symptoms and exacerbations. Severe asthma represents less than 10% of the total asthma population [1] but is the most serious, life-affecting and costly form of the condition [2].




ev

Adherence to corticosteroids and clinical outcomes in mepolizumab therapy for severe asthma

Introduction

Inhaled corticosteroids (ICS) achieve disease control in the majority of asthmatic patients, although adherence to prescribed ICS is often poor. Patients with severe eosinophilic asthma may require treatment with oral corticosteroids (OCS) and/or biologic agents such as mepolizumab. It is unknown if ICS adherence changes on, or alters clinical response to, biologic therapy.

Methods

We examined ICS adherence and clinical outcomes in OCS-dependent severe eosinophilic asthma patients who completed 1 year of mepolizumab therapy. The ICS medicines possession ratio (MPR) was calculated (the number of doses of ICS issued on prescription/expected number) for the year before and the year after biologic initiation. Good adherence was defined as MPR >0.75, intermediate 0.74–0.51 and poor <0.5. We examined outcomes after 12 months of biologic therapy, including OCS reduction and annualised exacerbation rate (AER), stratified by adherence to ICS on mepolizumab.

Results

Out of 109 patients commencing mepolizumab, 91 who had completed 12 months of treatment were included in the final analysis. While receiving mepolizumab, 68% had good ICS adherence, with 16 (18%) having poor ICS adherence. ICS use within the cohort remained similar before (MPR 0.81±0.32) and during mepolizumab treatment (0.82±0.32; p=0.78). Patients with good adherence had greater reductions in OCS dose (median (interquartile range) OCS reduction 100 (74–100)% versus 60 (27–100)%; p=0.031) and exacerbations (AER change –2.1±3.1 versus 0.3±2.5; p=0.011) than those with poor adherence. Good ICS adherence predicted the likelihood of stopping maintenance OCS (adjusted OR 3.19, 95% CI 1.02–9.94; p=0.045).

Conclusion

ICS nonadherence is common in severe eosinophilic asthma patients receiving mepolizumab, and is associated with a lesser reduction in OCS requirements and AER.




ev

Obstructive sleep apnoea treatment and blood pressure: which phenotypes predict a response? A systematic review and meta-analysis

The treatment for obstructive sleep apnoea (OSA) with continuous positive airway pressure (CPAP) or mandibular advancement devices (MADs) is associated with blood pressure (BP) reduction; however, the overall effect is modest. The aim of this systematic review and meta-analysis of randomised controlled trials (RCTs) comparing the effect of such treatments on BP was to identify subgroups of patients who respond best to treatment.

The article search was performed in three different databases with specific search terms and selection criteria. From 2289 articles, we included 68 RCTs that compared CPAP or MADs with either passive or active treatment. When all the studies were pooled together, CPAP and MADs were associated with a mean BP reduction of –2.09 (95% CI –2.78– –1.40) mmHg for systolic BP and –1.92 (95% CI –2.40– –1.43) mmHg for diastolic BP and –1.27 (95% CI –2.34– –0.20) mmHg for systolic BP and –1.11 (95% CI –1.82– –0.41) mmHg for diastolic BP, respectively. The subgroups of patients who showed a greater response were those aged <60 years (systolic BP –2.93 mmHg), with uncontrolled BP at baseline (systolic BP –4.14 mmHg) and with severe oxygen desaturations (minimum arterial oxygen saturation measured by pulse oximetry <77%) at baseline (24-h systolic BP –7.57 mmHg).

Although this meta-analysis shows that the expected reduction of BP by CPAP/MADs is modest, it identifies specific characteristics that may predict a pronounced benefit from CPAP in terms of BP control. These findings should be interpreted with caution; however, they are particularly important in identifying potential phenotypes associated with BP reduction in patients treated for OSA.




ev

Levodopa-induced dyskinesia in dementia with Lewy bodies and Parkinson disease with dementia

Objective

To investigate the frequency of levodopa-induced dyskinesia in dementia with Lewy bodies (DLBs) and Parkinson disease with dementia (PDD) and compare these frequencies with patients with incident Parkinson disease (PD) through a population-based cohort study.

Methods

We identified all patients with DLB, PDD, and PD without dementia in a 1991–2010 population-based parkinsonism-incident cohort, in Olmsted County, Minnesota. We abstracted information about levodopa-induced dyskinesia. We compared patients with DLB and PDD with dyskinesia with patients with PD from the same cohort.

Results

Levodopa use and dyskinesia data were available for 141/143 (98.6%) patients with a diagnosis of either DLB or PDD; 87 (61.7%), treated with levodopa. Dyskinesia was documented in 12.6% (8 DLB and 3 PDD) of levodopa-treated patients. Among these patients, median parkinsonism diagnosis age was 74 years (range: 64–80 years); 63.6%, male. The median interval from levodopa initiation to dyskinesia onset was 2 years (range: 3 months–4 years); the median daily levodopa dosage was 600 mg (range: 50–1,600 mg). Dyskinesia severity led to levodopa adjustments in 5 patients, and all improved. Patients with dyskinesia were diagnosed with parkinsonism at a significantly younger age compared with patients without dyskinesia (p < 0.001). Levodopa dosage was unrelated to increased risk of dyskinesias among DLB and PDD. In contrast, 30.1% of levodopa-treated patients with PD developed dyskinesia. In age-, sex-, and levodopa dosage–adjusted models, Patients with DLB and PDD each had lower odds of developing dyskinesia than patients with PD (odds ratio = 0.42, 95% CI 0.21–0.88; p = 0.02).

Conclusions

The dyskinesia risk for levodopa-treated patients with DLB or PDD was substantially less than for levodopa-treated patients with PD.




ev

Cerebral venous thrombosis: Associations between disease severity and cardiac markers

Background

Plasma cardiac troponin (cTn) elevation occurs in acute ischemic stroke and intracranial hemorrhage and can suggest a poor prognosis. Because acute cerebral venous thrombosis (CVT) might lead to venous stasis, which could result in cardiac stress, it is important to evaluate whether cTn elevation occurs in patients with CVT.

Methods

Inpatients at Johns Hopkins Hospital from 2005 to 2015 meeting the following criteria were included: CVT (ICD-9 codes with radiologic confirmation) and available admission electrocardiogram (ECG) and cTn level. In regression models, presence of ECG abnormalities and cTn elevation (>0.06 ng/mL) were evaluated as dependent variables in separate models, with location and severity of CVT involvement as independent variables, adjusted for age, sex, and hypertension.

Results

Of 81 patients with CVST, 53 (66%) met the inclusion criteria. Participants were, on average, aged 42 years, white (71%), and female (66%). The left transverse sinus was most commonly thrombosed (47%), with 66% having >2 veins thrombosed. Twenty-two (41%) had cTn elevation. Odds of cTn elevation increased per each additional vein thrombosed (adjusted OR 2.79, 95% CI [1.08–7.23]). Of those with deep venous involvement, 37.5% had cTn elevation compared with 4.4% without deep clots (p = 0.02). Venous infarction (n = 15) was associated with a higher mean cTn (0.14 vs 0.02 ng/mL, p = 0.009) and was predictive of a higher cTn in adjusted models (β = 0.15, 95% CI [0.06–0.25]).

Conclusions

In this single-center cohort study, markers of CVT severity were associated with increased odds of cTn elevation; further investigation is needed to elucidate causality and significance.




ev

Nickel Allergic Contact Dermatitis: Identification, Treatment, and Prevention

Nickel is a ubiquitous metal added to jewelry and metallic substances for its hardening properties and because it is inexpensive. Estimates suggest that at least 1.1 million children in the United States are sensitized to nickel. Nickel allergic contact dermatitis (Ni-ACD) is the most common cutaneous delayed-type hypersensitivity reaction worldwide. The incidence among children tested has almost quadrupled over the past 3 decades. The associated morbidities include itch, discomfort, school absence, and reduced quality of life. In adulthood, individuals with Ni-ACD may have severe disabling hand eczema. The increasing rate of Ni-ACD in children has been postulated to result from early and frequent exposure to metals with high amounts of nickel release (eg, as occurs with ear piercing or with products used daily in childhood such as toys, belt buckles, and electronics).

To reduce exposure to metal sources with high nickel release by prolonged and direct contact with human skin, Denmark and the European Union legislated a directive several decades ago with the goal of reducing high nickel release and the incidence of Ni-ACD. Since then, there has been a global reduction in incidence of Ni-ACD in population-based studies of adults and studies of children and young adults being tested for allergic contact dermatitis. These data point to nickel exposure as a trigger for elicitation of Ni-ACD and, further, provide evidence that legislation can have a favorable effect on the economic and medical health of a population.

This policy statement reviews the epidemiology, history, and appearances of Ni-ACD. Examples of sources of high nickel release are discussed to highlight how difficult it is to avoid this metal in modern daily lives. Treatments are outlined, and avoidance strategies are presented. Long-term epidemiological interventions are addressed. Advocacy for smarter nickel use is reviewed. The American Academy of Pediatrics supports US legislation that advances safety standards (as modeled by the European Union) that protect children from early and prolonged skin exposure to high–nickel-releasing items. Our final aim for this article is to aid the pediatric community in developing nickel-avoidance strategies on both individual and global levels.




ev

Children With Intellectual and Developmental Disabilities as Organ Transplantation Recipients

The demand for transplantable solid organs far exceeds the supply of deceased donor organs. Patient selection criteria are determined by individual transplant programs; given the scarcity of solid organs for transplant, allocation to those most likely to benefit takes into consideration both medical and psychosocial factors. Children with intellectual and developmental disabilities have historically been excluded as potential recipients of organ transplants. When a transplant is likely to provide significant health benefits, denying a transplant to otherwise eligible children with disabilities may constitute illegal and unjustified discrimination. Children with intellectual and developmental disabilities should not be excluded from the potential pool of recipients and should be referred for evaluation as recipients of solid organ transplants.




ev

Ahmed A, Fend PI, Gaensbauer JT, Reves RR, Khurana R, Salcedo K, Punnoose R, Katz DJ, for the TUBERCULOSIS EPIDEMIOLOGIC STUDIES CONSORTIUM. Interferon-{gamma} Release Assays in Children <15 Years of Age. Pediatrics. 2020:145(1):e20191930




ev

Every Child Counts: The Importance of the 2020 Census for Pediatric Health Equity




ev

Providing the Evidence for Managing Depression in Pregnancy




ev

E-cigarette or Vaping Product Use-Associated Lung Injury (EVALI) Without Respiratory Symptoms

Electronic cigarette or vaping product use–associated lung injury (EVALI) is a newly emerging diagnosis in the United States, yet the incidence has surged greatly in the past year. With the trend of using electronic cigarettes (e-cigarettes) and vaping rising at an alarming rate among teenagers, many are resorting to friends, illicit drug dealers, and other informal sources to obtain their e-cigarettes, which is greatly contributing to the national outbreak of EVALI. The incidence of adolescents presenting with the constellation of respiratory, gastrointestinal, and constitutional symptoms characteristic of EVALI has been widely reported within the nation. We present one such case of an adolescent boy with a 2-year history of daily vaping who presented with nausea, vomiting, weight loss, and fever but lacked the respiratory symptoms that have been reported in the majority of EVALI cases reported thus far. Computed tomography scan of the abdomen and pelvis revealed an incidental finding of lung pathology characteristic of EVALI, prompting further workup and diagnosis of EVALI. In this case, it is demonstrated that the presentation of EVALI can be variable and is still poorly defined. The rising morbidity and mortality from EVALI reveal the importance of considering EVALI in all patients with a history of vaping or e-cigarette use, regardless of the presence or absence of respiratory symptoms.




ev

In Utero Antidepressants and Neurodevelopmental Outcomes in Kindergarteners

OBJECTIVES:

To determine if in utero selective serotonin reuptake inhibitor (SSRI) or selective serotonin norepinephrine inhibitor (SNRI) exposure is associated with developmental vulnerability in kindergarten among children whose mothers were diagnosed with prenatal mood or anxiety disorder.

METHODS:

Linkable administrative data were used to create a population-based cohort of 266 479 mother-child dyads of children born in Manitoba, Canada, between 1996 and 2014, with follow-up through 2015. The sample was restricted to mothers who had a mood or anxiety disorder diagnosis between 90 days before conception (N = 13 818). Exposed women had ≥2 SSRI or SNRI dispensations during pregnancy (n = 2055); unexposed mothers did not have a dispensation of an SSRI or SNRI during pregnancy (n = 10 017). The Early Development Instrument (EDI) was used to assess developmental health in kindergarten children. The EDI is a 104-component kindergarten teacher-administered questionnaire, encompassing 5 developmental domains.

RESULTS:

Of the 3048 children included in the study who met inclusion criteria and had an EDI, 21.43% of children in the exposed group were assessed as vulnerable on 2 or more domains versus 16.16% of children in the unexposed group (adjusted odds ratio = 1.43; 95% confidence interval 1.08–1.90). Children in the exposed group also had a significant risk of being vulnerable in language and/or cognition (adjusted odds ratio = 1.40; 95% confidence interval 1.03–1.90).

CONCLUSIONS:

Exposure to SSRIs or SNRIs during pregnancy was associated with an increased risk of developmental vulnerability and an increased risk of deficits in language and/or cognition. Replication of results is necessary before clinical implications can be reached.




ev

Developmental Support for Infants With Genetic Disorders

As the technical ability for genetic diagnosis continues to improve, an increasing number of diagnoses are made in infancy or as early as the neonatal period. Many of these diagnoses are known to be associated with developmental delay and intellectual disability, features that would not be clinically detectable at the time of diagnosis. Others may be associated with cognitive impairment, but the incidence and severity are yet to be fully described. These neonates and infants with genetic diagnoses therefore represent an emerging group of patients who are at high risk for neurodevelopmental disabilities. Although there are well-established developmental supports for high-risk infants, particularly preterm infants, after discharge from the NICU, programs specifically for infants with genetic diagnoses are rare. And although previous research has demonstrated the positive effect of early developmental interventions on outcomes among preterm infants, the impact of such supports for infants with genetic disorders who may be born term, remains to be understood. We therefore review the literature regarding existing developmental assessment and intervention approaches for children with genetic disorders, evaluating these in the context of current developmental supports postdischarge for preterm infants. Further research into the role of developmental support programs for early assessment and intervention in high-risk neonates diagnosed with rare genetic disorders is needed.




ev

The Genetics of Mating Song Evolution Underlying Rapid Speciation: Linking Quantitative Variation to Candidate Genes for Behavioral Isolation [Corrigendum]




ev

Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean [Genetics of Complex Traits]

Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for > 70 years in the United States and Canada, consisting of 20–50 entries each year at 10–20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement.




ev

Space is the Place: Effects of Continuous Spatial Structure on Analysis of Population Genetic Data [Population and Evolutionary Genetics]

Real geography is continuous, but standard models in population genetics are based on discrete, well-mixed populations. As a result, many methods of analyzing genetic data assume that samples are a random draw from a well-mixed population, but are applied to clustered samples from populations that are structured clinally over space. Here, we use simulations of populations living in continuous geography to study the impacts of dispersal and sampling strategy on population genetic summary statistics, demographic inference, and genome-wide association studies (GWAS). We find that most common summary statistics have distributions that differ substantially from those seen in well-mixed populations, especially when Wright’s neighborhood size is < 100 and sampling is spatially clustered. "Stepping-stone" models reproduce some of these effects, but discretizing the landscape introduces artifacts that in some cases are exacerbated at higher resolutions. The combination of low dispersal and clustered sampling causes demographic inference from the site frequency spectrum to infer more turbulent demographic histories, but averaged results across multiple simulations revealed surprisingly little systematic bias. We also show that the combination of spatially autocorrelated environments and limited dispersal causes GWAS to identify spurious signals of genetic association with purely environmentally determined phenotypes, and that this bias is only partially corrected by regressing out principal components of ancestry. Last, we discuss the relevance of our simulation results for inference from genetic variation in real organisms.




ev

Toward an Evolutionarily Appropriate Null Model: Jointly Inferring Demography and Purifying Selection [Population and Evolutionary Genetics]

The question of the relative evolutionary roles of adaptive and nonadaptive processes has been a central debate in population genetics for nearly a century. While advances have been made in the theoretical development of the underlying models, and statistical methods for estimating their parameters from large-scale genomic data, a framework for an appropriate null model remains elusive. A model incorporating evolutionary processes known to be in constant operation, genetic drift (as modulated by the demographic history of the population) and purifying selection, is lacking. Without such a null model, the role of adaptive processes in shaping within- and between-population variation may not be accurately assessed. Here, we investigate how population size changes and the strength of purifying selection affect patterns of variation at "neutral" sites near functional genomic components. We propose a novel statistical framework for jointly inferring the contribution of the relevant selective and demographic parameters. By means of extensive performance analyses, we quantify the utility of the approach, identify the most important statistics for parameter estimation, and compare the results with existing methods. Finally, we reanalyze genome-wide population-level data from a Zambian population of Drosophila melanogaster, and find that it has experienced a much slower rate of population growth than was inferred when the effects of purifying selection were neglected. Our approach represents an appropriate null model, against which the effects of positive selection can be assessed.




ev

Identifying and Classifying Shared Selective Sweeps from Multilocus Data [Population and Evolutionary Genetics]

Positive selection causes beneficial alleles to rise to high frequency, resulting in a selective sweep of the diversity surrounding the selected sites. Accordingly, the signature of a selective sweep in an ancestral population may still remain in its descendants. Identifying signatures of selection in the ancestor that are shared among its descendants is important to contextualize the timing of a sweep, but few methods exist for this purpose. We introduce the statistic SS-H12, which can identify genomic regions under shared positive selection across populations and is based on the theory of the expected haplotype homozygosity statistic H12, which detects recent hard and soft sweeps from the presence of high-frequency haplotypes. SS-H12 is distinct from comparable statistics because it requires a minimum of only two populations, and properly identifies and differentiates between independent convergent sweeps and true ancestral sweeps, with high power and robustness to a variety of demographic models. Furthermore, we can apply SS-H12 in conjunction with the ratio of statistics we term and to further classify identified shared sweeps as hard or soft. Finally, we identified both previously reported and novel shared sweep candidates from human whole-genome sequences. Previously reported candidates include the well-characterized ancestral sweeps at LCT and SLC24A5 in Indo-Europeans, as well as GPHN worldwide. Novel candidates include an ancestral sweep at RGS18 in sub-Saharan Africans involved in regulating the platelet response and implicated in sudden cardiac death, and a convergent sweep at C2CD5 between European and East Asian populations that may explain their different insulin responses.




ev

Development of the Proximal-Anterior Skeletal Elements in the Mouse Hindlimb Is Regulated by a Transcriptional and Signaling Network Controlled by Sall4 [Developmental and Behavioral Genetics]

The vertebrate limb serves as an experimental paradigm to study mechanisms that regulate development of the stereotypical skeletal elements. In this study, we simultaneously inactivated Sall4 using Hoxb6Cre and Plzf in mouse embryos, and found that their combined function regulates development of the proximal-anterior skeletal elements in hindlimbs. The Sall4; Plzf double knockout exhibits severe defects in the femur, tibia, and anterior digits, distinct defects compared to other allelic series of Sall4; Plzf. We found that Sall4 regulates Plzf expression prior to hindlimb outgrowth. Further expression analysis indicated that Hox10 genes and GLI3 are severely downregulated in the Sall4; Plzf double knockout hindlimb bud. In contrast, PLZF expression is reduced but detectable in Sall4; Gli3 double knockout limb buds, and SALL4 is expressed in the Plzf; Gli3 double knockout limb buds. These results indicate that Plzf, Gli3, and Hox10 genes downstream of Sall4, regulate femur and tibia development. In the autopod, we show that Sall4 negatively regulates Hedgehog signaling, which allows for development of the most anterior digit. Collectively, our study illustrates genetic systems that regulate development of the proximal-anterior skeletal elements in hindlimbs.




ev

Pits and CtBP Control Tissue Growth in Drosophila melanogaster with the Hippo Pathway Transcription Repressor Tgi [Developmental and Behavioral Genetics]

The Hippo pathway is an evolutionarily conserved signaling network that regulates organ size, cell fate, and tumorigenesis. In the context of organ size control, the pathway incorporates a large variety of cellular cues, such as cell polarity and adhesion, into an integrated transcriptional response. The central Hippo signaling effector is the transcriptional coactivator Yorkie, which controls gene expression in partnership with different transcription factors, most notably Scalloped. When it is not activated by Yorkie, Scalloped can act as a repressor of transcription, at least in part due to its interaction with the corepressor protein Tgi. The mechanism by which Tgi represses transcription is incompletely understood, and therefore we sought to identify proteins that potentially operate together with Tgi. Using an affinity purification and mass-spectrometry approach we identified Pits and CtBP as Tgi-interacting proteins, both of which have been linked to transcriptional repression. Both Pits and CtBP were required for Tgi to suppress the growth of the Drosophila melanogaster eye and CtBP loss suppressed the undergrowth of yorkie mutant eye tissue. Furthermore, as reported previously for Tgi, overexpression of Pits repressed transcription of Hippo pathway target genes. These findings suggest that Tgi might operate together with Pits and CtBP to repress transcription of genes that normally promote tissue growth. The human orthologs of Tgi, CtBP, and Pits (VGLL4, CTBP2, and IRF2BP2) have previously been shown to physically and functionally interact to control transcription, implying that the mechanism by which these proteins control transcriptional repression is conserved throughout evolution.




ev

Alcohol Causes Lasting Differential Transcription in Drosophila Mushroom Body Neurons [Developmental and Behavioral Genetics]

Repeated alcohol experiences can produce long-lasting memories for sensory cues associated with intoxication. These memories can problematically trigger relapse in individuals recovering from alcohol use disorder (AUD). The molecular mechanisms by which ethanol changes memories to become long-lasting and inflexible remain unclear. New methods to analyze gene expression within precise neuronal cell types can provide further insight toward AUD prevention and treatment. Here, we used genetic tools in Drosophila melanogaster to investigate the lasting consequences of ethanol on transcription in memory-encoding neurons. Drosophila rely on mushroom body (MB) neurons to make associative memories, including memories of ethanol-associated sensory cues. Differential expression analyses revealed that distinct transcripts, but not genes, in the MB were associated with experiencing ethanol alone compared to forming a memory of an odor cue associated with ethanol. Adult MB-specific knockdown of spliceosome-associated proteins demonstrated the necessity of RNA-processing in ethanol memory formation. These findings highlight the dynamic, context-specific regulation of transcription in cue-encoding neurons, and the lasting effect of ethanol on transcript usage during memory formation.




ev

Topoisomerases Modulate the Timing of Meiotic DNA Breakage and Chromosome Morphogenesis in Saccharomyces cerevisiae [Genome Integrity and Transmission]

During meiotic prophase, concurrent transcription, recombination, and chromosome synapsis place substantial topological strain on chromosomal DNA, but the role of topoisomerases in this context remains poorly defined. Here, we analyzed the roles of topoisomerases I and II (Top1 and Top2) during meiotic prophase in Saccharomyces cerevisiae. We show that both topoisomerases accumulate primarily in promoter-containing intergenic regions of actively transcribing genes, including many meiotic double-strand break (DSB) hotspots. Despite the comparable binding patterns, top1 and top2 mutations have different effects on meiotic recombination. TOP1 disruption delays DSB induction and shortens the window of DSB accumulation by an unknown mechanism. By contrast, temperature-sensitive top2-1 mutants exhibit a marked delay in meiotic chromosome remodeling and elevated DSB signals on synapsed chromosomes. The problems in chromosome remodeling were linked to altered Top2 binding patterns rather than a loss of Top2 catalytic activity, and stemmed from a defect in recruiting the chromosome remodeler Pch2/TRIP13 to synapsed chromosomes. No chromosomal defects were observed in the absence of TOP1. Our results imply independent roles for Top1 and Top2 in modulating meiotic chromosome structure and recombination.




ev

Development of IFN-Stimulated Gene Expression from Embryogenesis through Adulthood, with and without Constitutive MDA5 Pathway Activation [INNATE IMMUNITY AND INFLAMMATION]

Key Points

  • The augmented ISG profile of RdRP mice develops largely postnatally.

  • Elevated ISG expression is then maintained through adulthood.

  • The ISG signature in adults requires persistent type I IFN signaling.




    ev

    Development and Characterization of an Avirulent Leishmania major Strain [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • Virulent and avirulent parasites significantly differ in their proteome profiles.

  • Avirulent parasites fail to inhibit CD40 signaling.

  • Avirulent parasite strain is a potential antileishmanial vaccine candidate.




    ev

    Molecular Drivers of Lymphocyte Organization in Vertebrate Mucosal Surfaces: Revisiting the TNF Superfamily Hypothesis [IMMUNOGENETICS]

    Key Points

  • Lymphotoxin axis is not essential for formation of O-MALT in ectotherms and birds.

  • Vertebrate O-MALT structures are enriched in neuroactive ligand/receptor genes.

  • Mammalian PPs and LNs are enriched in genes involved in olfactory transduction.




    ev

    GRASP55 Is Dispensable for Normal Hematopoiesis but Necessary for Myc-Dependent Leukemic Growth [IMMUNE SYSTEM DEVELOPMENT]

    Key Points

  • Golgi morphology and Grasp55 expression are regulated during hematopoiesis.

  • Hematopoiesis is not affected in Grasp55-deficient mice.

  • Grasp55 regulates Myc-transformed leukemic cell survival.




    ev

    Innate-like CD27+CD45RBhigh {gamma}{delta} T Cells Require TCR Signaling for Homeostasis in Peripheral Lymphoid Organs [IMMUNE SYSTEM DEVELOPMENT]

    Key Points

  • E4 is an enhancer element that regulates transcriptions of TCR genes.

  • E4–/– mice have fewer CD27+CD45RBhigh V2+ T cells in peripheral organs.

  • Attenuation of TCR signal impairs homeostasis of T cells in peripheral organs.




    ev

    Serine Phosphorylation of the STAT1 Transactivation Domain Promotes Autoreactive B Cell and Systemic Autoimmunity Development [AUTOIMMUNITY]

    Key Points

  • STAT1-pS727 is required for SLE-associated AFC, GC, and autoantibody responses.

  • STAT1-pS727 in B cells promotes autoimmune AFC, GC, and autoantibody responses.

  • STAT1-pS727 is not required for foreign Ag– or gut microbiota–driven responses.




    ev

    Genome Topology Control of Antigen Receptor Gene Assembly [BRIEF REVIEWS]

    The past decade has increased our understanding of how genome topology controls RAG endonuclease-mediated assembly of lymphocyte AgR genes. New technologies have illuminated how the large IgH, Ig, TCRα/, and TCRβ loci fold into compact structures that place their numerous V gene segments in similar three-dimensional proximity to their distal recombination center composed of RAG-bound (D)J gene segments. Many studies have shown that CTCF and cohesin protein–mediated chromosome looping have fundamental roles in lymphocyte lineage- and developmental stage–specific locus compaction as well as broad usage of V segments. CTCF/cohesin–dependent loops have also been shown to direct and restrict RAG activity within chromosome domains. We summarize recent work in elucidating molecular mechanisms that govern three-dimensional chromosome organization and in investigating how these dynamic mechanisms control V(D)J recombination. We also introduce remaining questions for how CTCF/cohesin–dependent and –independent genome architectural mechanisms might regulate compaction and recombination of AgR loci.




    ev

    Generation and Evaluation of a Glaesserella (Haemophilus) parasuis Capsular Mutant [Bacterial Infections]

    Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer’s disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069cap) through allelic exchange following natural transformation. HS069cap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069cap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069cap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs.




    ev

    Towards Innovative Design and Application of Recombinant Eimeria as a Vaccine Vector [Minireviews]

    Efficient delivery of antigenic cargo to trigger protective immune responses is critical to the success of vaccination. Genetically engineered microorganisms, including virus, bacteria, and protozoa, can be modified to carry and deliver heterologous antigens to the host immune system. The biological vectors can induce a broad range of immune responses and enhance heterologous antigen-specific immunological outcomes. The protozoan genus Eimeria is widespread in domestic animals, causing serious coccidiosis. Eimeria parasites with strong immunogenicity are potent coccidiosis vaccine candidates and offer a valuable model of live vaccines against infectious diseases in animals. Eimeria parasites can also function as a vaccine vector. Herein, we review recent advances in design and application of recombinant Eimeria as a vaccine vector, which has been a topic of ongoing research in our laboratory. By recapitulating the establishment of an Eimeria transfection platform and its application, it will help lay the foundation for the future development of effective parasite-based vaccine delivery vectors and beyond.




    ev

    Staphylococcus aureus Fibronectin Binding Protein A Mediates Biofilm Development and Infection [Bacterial Infections]

    Implanted medical device-associated infections pose significant health risks, as they are often the result of bacterial biofilm formation. Staphylococcus aureus is a leading cause of biofilm-associated infections which persist due to mechanisms of device surface adhesion, biofilm accumulation, and reprogramming of host innate immune responses. We found that the S. aureus fibronectin binding protein A (FnBPA) is required for normal biofilm development in mammalian serum and that the SaeRS two-component system is required for functional FnBPA activity in serum. Furthermore, serum-developed biofilms deficient in FnBPA were more susceptible to macrophage invasion, and in a model of biofilm-associated implant infection, we found that FnBPA is crucial for the establishment of infection. Together, these findings show that S. aureus FnBPA plays an important role in physical biofilm development and represents a potential therapeutic target for the prevention and treatment of device-associated infections.




    ev

    Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during In Vivo Infectivity and Reveals a Specific Role for the C Terminus during Cellular Invasion [Cellular Microbiology: Pat

    The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis. In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia’s ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor.




    ev

    Crystal Structure of African Swine Fever Virus pS273R Protease and Implications for Inhibitor Design [Structure and Assembly]

    African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the "core domain" and the N-terminal "arm domain." The "arm domain" contains the residues from M1 to N83, and the "core domain" contains the residues from N84 to A273. A structure analysis reveals that the "core domain" shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the "arm domain" is unique to ASFV. Further, experiments indicated that the "arm domain" plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen.

    IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique "arm domain" has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.




    ev

    Bottleneck Size-Dependent Changes in the Genetic Diversity and Specific Growth Rate of a Rotavirus A Strain [Genetic Diversity and Evolution]

    RNA viruses form a dynamic distribution of mutant swarms (termed "quasispecies") due to the accumulation of mutations in the viral genome. The genetic diversity of a viral population is affected by several factors, including a bottleneck effect. Human-to-human transmission exemplifies a bottleneck effect, in that only part of a viral population can reach the next susceptible hosts. In the present study, two lineages of the rhesus rotavirus (RRV) strain of rotavirus A were serially passaged five times at a multiplicity of infection (MOI) of 0.1 or 0.001, and three phenotypes (infectious titer, cell binding ability, and specific growth rate) were used to evaluate the impact of a bottleneck effect on the RRV population. The specific growth rate values of lineages passaged under the stronger bottleneck (MOI of 0.001) were higher after five passages. The nucleotide diversity also increased, which indicated that the mutant swarms of the lineages under the stronger bottleneck effect were expanded through the serial passages. The random distribution of synonymous and nonsynonymous substitutions on rotavirus genome segments indicated that almost all mutations were selectively neutral. Simple simulations revealed that the presence of minor mutants could influence the specific growth rate of a population in a mutant frequency-dependent manner. These results indicate a stronger bottleneck effect can create more sequence spaces for minor sequences.

    IMPORTANCE In this study, we investigated a bottleneck effect on an RRV population that may drastically affect the viral population structure. RRV populations were serially passaged under two levels of a bottleneck effect, which exemplified human-to-human transmission. As a result, the genetic diversity and specific growth rate of RRV populations increased under the stronger bottleneck effect, which implied that a bottleneck created a new space in a population for minor mutants originally existing in a hidden layer, which includes minor mutations that cannot be distinguished from a sequencing error. The results of this study suggest that the genetic drift caused by a bottleneck in human-to-human transmission explains the random appearance of new genetic lineages causing viral outbreaks, which can be expected according to molecular epidemiology using next-generation sequencing in which the viral genetic diversity within a viral population is investigated.




    ev

    Establishment of a Reverse Genetics System for Influenza D Virus [Genome Replication and Regulation of Viral Gene Expression]

    Influenza D virus (IDV) was initially isolated in the United States in 2011. IDV is distributed worldwide and is one of the causative agents of the bovine respiratory disease complex (BRDC), which causes high morbidity and mortality in feedlot cattle. The molecular mechanisms of IDV pathogenicity are still unknown. Reverse genetics systems are vital tools not only for studying the biology of viruses, but also for use in applications such as recombinant vaccine viruses. Here, we report the establishment of a plasmid-based reverse genetics system for IDV. We first verified that the 3'-terminal nucleotide of each 7-segmented genomic RNA contained uracil (U), contrary to previous reports, and we were then able to successfully generate recombinant IDV by cotransfecting 7 plasmids containing these genomic RNAs along with 4 plasmids expressing polymerase proteins and nucleoprotein into human rectal tumor 18G (HRT-18G) cells. The recombinant virus had a growth deficit compared to the wild-type virus, and we determined the reason for this growth difference by examining the genomic RNA content of the viral particles. We found that the recombinant virus incorporated an unbalanced ratio of viral RNA segments into particles compared to that of the wild-type virus, and thus we adjusted the amount of each plasmid used in transfection to obtain a recombinant virus with the same replicative capacity as the wild-type virus. Our work here in establishing a reverse genetics system for IDV will have a broad range of applications, including uses in studies focused on better understanding IDV replication and pathogenicity, as well as in those contributing to the development of BRDC countermeasures.

    IMPORTANCE The bovine respiratory disease complex (BRDC) causes high mortality and morbidity in cattle, causing economic losses worldwide. Influenza D virus (IDV) is considered to be a causative agent of the BRDC. Here, we developed a reverse genetics system that allows for the generation of IDV from cloned cDNAs and the introduction of mutations into the IDV genome. This reverse genetics system will become a powerful tool for use in studies related to understanding the molecular mechanisms of viral replication and pathogenicity and will also lead to the development of new countermeasures against the BRDC.




    ev

    Comprehensive Characterization of Transcriptional Activity during Influenza A Virus Infection Reveals Biases in Cap-Snatching of Host RNA Sequences [Virus-Cell Interactions]

    Macrophages in the lung detect and respond to influenza A virus (IAV), determining the nature of the immune response. Using terminal-depth cap analysis of gene expression (CAGE), we quantified transcriptional activity of both host and pathogen over a 24-h time course of IAV infection in primary human monocyte-derived macrophages (MDMs). This method allowed us to observe heterogenous host sequences incorporated into IAV mRNA, "snatched" 5' RNA caps, and corresponding RNA sequences from host RNAs. In order to determine whether cap-snatching is random or exhibits a bias, we systematically compared host sequences incorporated into viral mRNA ("snatched") against a complete survey of all background host RNA in the same cells, at the same time. Using a computational strategy designed to eliminate sources of bias due to read length, sequencing depth, and multimapping, we were able to quantify overrepresentation of host RNA features among the sequences that were snatched by IAV. We demonstrate biased snatching of numerous host RNAs, particularly small nuclear RNAs (snRNAs), and avoidance of host transcripts encoding host ribosomal proteins, which are required by IAV for replication. We then used a systems approach to describe the transcriptional landscape of the host response to IAV, observing many new features, including a failure of IAV-treated MDMs to induce feedback inhibitors of inflammation, seen in response to other treatments.

    IMPORTANCE Infection with influenza A virus (IAV) infection is responsible for an estimated 500,000 deaths and up to 5 million cases of severe respiratory illness each year. In this study, we looked at human primary immune cells (macrophages) infected with IAV. Our method allows us to look at both the host and the virus in parallel. We used these data to explore a process known as "cap-snatching," where IAV snatches a short nucleotide sequence from capped host RNA. This process was believed to be random. We demonstrate biased snatching of numerous host RNAs, including those associated with snRNA transcription, and avoidance of host transcripts encoding host ribosomal proteins, which are required by IAV for replication. We then describe the transcriptional landscape of the host response to IAV, observing new features, including a failure of IAV-treated MDMs to induce feedback inhibitors of inflammation, seen in response to other treatments.