o

An LC/MS/MS method for analyzing the steroid metabolome with high accuracy and from small serum samples [Methods]

Analyzing global steroid metabolism in humans can shed light on the etiologies of steroid-related diseases. However, existing methods require large amounts of serum and lack the evaluation of accuracy. Here, we developed an LC/MS/MS method for the simultaneous quantification of 12 steroid hormones: testosterone, pregnenolone, progesterone, androstenedione, corticosterone, 11-deoxycortisol, cortisol, 17-hydroxypregnenolone, 17-hydroxyprogesterone, dehydroepiandrosterone, estriol, and estradiol. Steroids and spiked internal standards in 100 μl serum were extracted by protein precipitation and liquid-liquid extraction. The organic phase was dried by evaporation, and isonicotinoyl chloride was added for steroid derivatization, followed by evaporation under nitrogen and redissolution in 50% methanol. Chromatographic separation was performed on a reverse-phase PFP column, and analytes were detected on a triple quadrupole mass spectrometer with ESI. The lower limits of quantification ranged from 0.005 ng/ml for estradiol to 1 ng/ml for cortisol. Apparent recoveries of steroids at high, medium, and low concentrations in quality control samples were between 86.4% and 115.0%. There were limited biases (–10.7% to 10.5%) between the measured values and the authentic values, indicating that the method has excellent reliability. An analysis of the steroid metabolome in pregnant women highlighted the applicability of the method in clinical serum samples. We conclude that the LC/MS/MS method reported here enables steroid metabolome analysis with high accuracy and reduced serum consumption, indicating that it may be a useful tool in both clinical and scientific laboratory research.




o

Lithium ion adduction enables UPLC-MS/MS-based analysis of multi-class 3-hydroxyl group-containing keto-steroids [Methods]

Steroids that contain a 3-hydroxyl group (3-OH steroids) are widely distributed in nature. During analysis with ESI-MS, they easily become dehydrated while in the protonated form, resulting in the production of several precursor ions and leading to low sensitivity of detection. To address this analytical challenge, here, we developed a method for the quantitation of 3-OH steroids by LC-MS/MS coupled with post-column addition of lithium (Li) ions to the mobile phase. The Li ion has a high affinity for the keto group of steroids, stabilizing their structures during ionization and permitting detection of analytes exclusively as the lithiated form. This not only improved the intensities of the precursor ions, but also promoted the formation of typical lithiated fragment ions. This improvement made the quantitation by multiple reaction monitoring more sensitive and reliable, as evidenced by 1.53–188 times enhanced detection sensitivity of 13 steroids that contained at least one keto and two hydroxyl groups or one keto and one 5-olefinic double bond, among 16 different 3-OH steroids. We deployed our newly developed method for profiling steroids in mouse brain tissue and identified six steroids in one tissue sample. Among these, 16-hydroxyestrone, tetrahydrocorticosterone, and 17α-hydroxypregnenolone were detected for the first time in the mouse brain. In summary, the method described here enables the detection of lithiated steroids by LC-MS/MS, including three 3-OH steroids not previously reported in the mouse brain. We anticipate that this new method may allow the determination of 3-OH steroids in different brain regions.




o

Development of a sensitive and quantitative method for the identification of two major furan fatty acids in human plasma [Methods]

This article focuses on the establishment of an accurate and sensitive quantitation method for the analysis of furan fatty acids. In particular, the sensitivity of GC/MS and UPLC/ESI/MS/MS was compared for the identification and quantification of furan fatty acids. Different methylation methods were tested with respect to GC/MS analysis. Special attention needs to be paid to the methylation of furan fatty acids, as acidic catalysts might lead to the degradation of the furan ring. GC/MS analysis in full-scan mode demonstrated that the limit of quantitation was 10 μM. UPLC/ESI/MS/MS in multiple reaction monitoring mode displayed a higher detection sensitivity than GC/MS. Moreover, the identification of furan fatty acids with charge-reversal derivatization was tested in the positive mode with two widely used pyridinium salts. Significant oxidation was unexpectedly observed using N-(4-aminomethylphenyl) pyridinium as a derivatization agent. The formed 3-acyl-oxymethyl-1-methylpyridinium iodide derivatized by 2-bromo-1-methylpyridinium iodide and 3-carbinol-1-methylpyridinium iodide improved the sensitivity more than 2,000-fold compared with nonderivatization in the negative mode by UPLC/ESI/MS/MS. This charge-reversal derivatization enabled the targeted quantitation of furan fatty acids in human plasma. Thus, it is anticipated that this protocol could greatly contribute to the clarification of pathological mechanisms related to furan fatty acids and their metabolites.




o

A novel NanoBiT-based assay monitors the interaction between lipoprotein lipase and GPIHBP1 in real time [Methods]

The hydrolysis of triglycerides in triglyceride-rich lipoproteins by LPL is critical for the delivery of triglyceride-derived fatty acids to tissues, including heart, skeletal muscle, and adipose tissues. Physiologically active LPL is normally bound to the endothelial cell protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1), which transports LPL across endothelial cells, anchors LPL to the vascular wall, and stabilizes LPL activity. Disruption of LPL-GPIHBP1 binding significantly alters triglyceride metabolism and lipid partitioning. In this study, we modified the NanoLuc® Binary Technology split-luciferase system to develop a novel assay that monitors the binding of LPL to GPIHBP1 on endothelial cells in real time. We validated the specificity and sensitivity of the assay using endothelial lipase and a mutant version of LPL and found that this assay reliably and specifically detected the interaction between LPL and GPIHBP1. We then interrogated various endogenous and exogenous inhibitors of LPL-mediated lipolysis for their ability to disrupt the binding of LPL to GPIHBP1. We found that angiopoietin-like (ANGPTL)4 and ANGPTL3-ANGPTL8 complexes disrupted the interactions of LPL and GPIHBP1, whereas the exogenous LPL blockers we tested (tyloxapol, poloxamer-407, and tetrahydrolipstatin) did not. We also found that chylomicrons could dissociate LPL from GPIHBP1 and found evidence that this dissociation was mediated in part by the fatty acids produced by lipolysis. These results demonstrate the ability of this assay to monitor LPL-GPIHBP1 binding and to probe how various agents influence this important complex.




o

Heritability of 596 lipid species and genetic correlation with cardiovascular traits in the Busselton Family Heart Study [Patient-Oriented and Epidemiological Research]

CVD is the leading cause of death worldwide, and genetic investigations into the human lipidome may provide insight into CVD risk. The aim of this study was to estimate the heritability of circulating lipid species and their genetic correlation with CVD traits. Targeted lipidomic profiling was performed on 4,492 participants from the Busselton Family Heart Study to quantify the major fatty acids of 596 lipid species from 33 classes. We estimated narrow-sense heritabilities of lipid species/classes and their genetic correlations with eight CVD traits: BMI, HDL-C, LDL-C, triglycerides, total cholesterol, waist-hip ratio, systolic blood pressure, and diastolic blood pressure. We report heritabilities and genetic correlations of new lipid species/subclasses, including acylcarnitine (AC), ubiquinone, sulfatide, and oxidized cholesteryl esters. Over 99% of lipid species were significantly heritable (h2: 0.06–0.50) and all lipid classes were significantly heritable (h2: 0.14–0.50). The monohexosylceramide and AC classes had the highest median heritabilities (h2 = 0.43). The largest genetic correlation was between clinical triglycerides and total diacylglycerol (rg = 0.88). We observed novel positive genetic correlations between clinical triglycerides and phosphatidylglycerol species (rg: 0.64–0.82), and HDL-C and alkenylphosphatidylcholine species (rg: 0.45–0.74). Overall, 51% of the 4,768 lipid species-CVD trait genetic correlations were statistically significant after correction for multiple comparisons. This is the largest lipidomic study to address the heritability of lipids and their genetic correlation with CVD traits. Future work includes identifying putative causal genetic variants for lipid species and CVD using genome-wide SNP and whole-genome sequencing data.




o

Hexacosenoyl-CoA is the most abundant very long-chain acyl-CoA in ATP binding cassette transporter D1-deficient cells [Patient-Oriented and Epidemiological Research]

X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder caused by deleterious mutations in the ABCD1 gene. The ABCD1 protein transports very long-chain FAs (VLCFAs) from the cytosol into the peroxisome where the VLCFAs are degraded through β-oxidation. ABCD1 dysfunction leads to VLCFA accumulation in individuals with X-ALD. FAs are activated by esterification to CoA before metabolic utilization. However, the intracellular pools and metabolic profiles of individual acyl-CoA esters have not been fully analyzed. In this study, we profiled the acyl-CoA species in fibroblasts from X-ALD patients and in ABCD1-deficient HeLa cells. We found that hexacosenoyl (26:1)-CoA, but not hexacosanoyl (26:0)-CoA, was the most abundantly concentrated among the VLCFA-CoA species in these cells. We also show that 26:1-CoA is mainly synthesized from oleoyl-CoA, and the metabolic turnover rate of 26:1-CoA was almost identical to that of oleoyl-CoA in both WT and ABCD1-deficient HeLa cells. The findings of our study provide precise quantitative and metabolic information of each acyl-CoA species in living cells. Our results suggest that VLCFA is endogenously synthesized as VLCFA-CoA through a FA elongation pathway and is then efficiently converted to other metabolites, such as phospholipids, in the absence of ABCD1.




o

Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination [Research Articles]

Myelin is a unique lipid-rich membrane structure that accelerates neurotransmission and supports neuronal function. Sphingolipids are critical myelin components. Yet sphingolipid content and synthesis have not been well characterized in oligodendrocytes, the myelin-producing cells of the CNS. Here, using quantitative real-time PCR, LC-MS/MS-based lipid analysis, and biochemical assays, we examined sphingolipid synthesis during the peak period of myelination in the postnatal rat brain. Importantly, we characterized sphingolipid production in isolated oligodendrocytes. We analyzed sphingolipid distribution and levels of critical enzymes and regulators in the sphingolipid biosynthetic pathway, with focus on the serine palmitoyltransferase (SPT) complex, the rate-limiting step in this pathway. During myelination, levels of the major SPT subunits increased and oligodendrocyte maturation was accompanied by extensive alterations in the composition of the SPT complex. These included changes in the relative levels of two alternative catalytic subunits, SPTLC2 and -3, in the relative levels of isoforms of the small subunits, ssSPTa and -b, and in the isoform distribution of the SPT regulators, the ORMDLs. Myelination progression was accompanied by distinct changes in both the nature of the sphingoid backbone and the N-acyl chains incorporated into sphingolipids. We conclude that the distribution of these changes among sphingolipid family members is indicative of a selective channeling of the ceramide backbone toward specific downstream metabolic pathways during myelination. Our findings provide insights into myelin production in oligodendrocytes and suggest how dysregulation of the biosynthesis of this highly specialized membrane could contribute to demyelinating diseases.




o

HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic {beta}-cells in vitro by activation of Smoothened [Research Articles]

Loss of pancreatic β-cell mass and function as a result of sustained ER stress is a core step in the pathogenesis of diabetes mellitus type 2. The complex control of β-cells and insulin production involves hedgehog (Hh) signaling pathways as well as cholesterol-mediated effects. In fact, data from studies in humans and animal models suggest that HDL protects against the development of diabetes through inhibition of ER stress and β-cell apoptosis. We investigated the mechanism by which HDL inhibits ER stress and apoptosis induced by thapsigargin, a sarco/ER Ca2+-ATPase inhibitor, in β-cells of a rat insulinoma cell line, INS1e. We further explored effects on the Hh signaling receptor Smoothened (SMO) with pharmacologic agonists and inhibitors. Interference with sterol synthesis or efflux enhanced β-cell apoptosis and abrogated the anti-apoptotic activity of HDL. During ER stress, HDL facilitated the efflux of specific oxysterols, including 24-hydroxycholesterol (OHC). Supplementation of reconstituted HDL with 24-OHC enhanced and, in cells lacking ABCG1 or the 24-OHC synthesizing enzyme CYP46A1, restored the protective activity of HDL. Inhibition of SMO countered the beneficial effects of HDL and also LDL, and SMO agonists decreased β-cell apoptosis in the absence of ABCG1 or CYP46A1. The translocation of the SMO-activated transcription factor glioma-associated oncogene GLI-1 was inhibited by ER stress but restored by both HDL and 24-OHC. In conclusion, the protective effect of HDL to counter ER stress and β-cell death involves the transport, generation, and mobilization of oxysterols for activation of the Hh signaling receptor SMO




o

Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism [Research Articles]

Compared with humans, rodents have higher synthesis of cholesterol and bile acids (BAs) and faster clearance and lower levels of serum LDL-cholesterol. Paradoxically, they increase BA synthesis in response to bile duct ligation (BDL). Another difference is the production of hydrophilic 6-hydroxylated muricholic acids (MCAs), which may antagonize the activation of FXRs, in rodents versus humans. We hypothesized that the presence of MCAs is key for many of these metabolic differences between mice and humans. We thus studied the effects of genetic deletion of the Cyp2c70 gene, previously proposed to control MCA formation. Compared with WT animals, KO mice created using the CRISPR/Cas9 system completely lacked MCAs, and displayed >50% reductions in BA and cholesterol synthesis and hepatic LDL receptors, leading to a marked increase in serum LDL-cholesterol. The doubling of BA synthesis following BDL in WT animals was abolished in KO mice, despite extinguished intestinal fibroblast growth factor (Fgf)15 expression in both groups. Accumulation of cholesterol-enriched particles ("Lp-X") in serum was almost eliminated in KO mice. Livers of KO mice were increased 18% in weight, and serum markers of liver function indicated liver damage. The human-like phenotype of BA metabolism in KO mice could not be fully explained by the activation of FXR-mediated changes. In conclusion, the presence of MCAs is critical for many of the known metabolic differences between mice and humans. The Cyp2c70-KO mouse should be useful in studies exploring potential therapeutic targets for human disease.




o

Alcohol effects on hepatic lipid metabolism [Reviews]

Alcoholic liver disease (ALD) is the most prevalent type of chronic liver disease with significant morbidity and mortality worldwide. ALD begins with simple hepatic steatosis and progresses to alcoholic steatohepatitis, fibrosis, and cirrhosis. The severity of hepatic steatosis is highly associated with the development of later stages of ALD. This review explores the disturbances of alcohol-induced hepatic lipid metabolism through altered hepatic lipid uptake, de novo lipid synthesis, fatty acid oxidation, hepatic lipid export, and lipid droplet formation and catabolism. In addition, we review emerging data on the contributions of genetics and bioactive lipid metabolism in alcohol-induced hepatic lipid accumulation.




o

HDL and pancreatic {beta} cells: a SMO-king gun? [Commentary]




o

In Memoriam: Lina M. Obeid (1957-2019) [Tribute]




o

The data must be accessible to all [Editorials]




o

SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation [Research Articles]

Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement.




o

Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles]

Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation.




o

A novel GPER antagonist protects against the formation of estrogen-induced cholesterol gallstones in female mice [Research Articles]

Many clinical studies and epidemiological investigations have clearly demonstrated that women are twice as likely to develop cholesterol gallstones as men, and oral contraceptives and other estrogen therapies dramatically increase that risk. Further, animal studies have revealed that estrogen promotes cholesterol gallstone formation through the estrogen receptor (ER) α, but not ERβ, pathway. More importantly, some genetic and pathophysiological studies have found that G protein-coupled estrogen receptor (GPER) 1 is a new gallstone gene, Lith18, on chromosome 5 in mice and produces additional lithogenic actions, working independently of ERα, to markedly increase cholelithogenesis in female mice. Based on computational modeling of GPER, a novel series of GPER-selective antagonists were designed, synthesized, and subsequently assessed for their therapeutic effects via calcium mobilization, cAMP, and ERα and ERβ fluorescence polarization binding assays. From this series of compounds, one new compound, 2-cyclohexyl-4-isopropyl-N-(4-methoxybenzyl)aniline (CIMBA), exhibits superior antagonism and selectivity exclusively for GPER. Furthermore, CIMBA reduces the formation of 17β-estradiol-induced gallstones in a dose-dependent manner in ovariectomized mice fed a lithogenic diet for 8 weeks. At 32 μg/day/kg CIMBA, no gallstones are found, even in ovariectomized ERα (–/–) mice treated with 6 μg/day 17β-estradiol and fed the lithogenic diet for 8 weeks. In conclusion, CIMBA treatment protects against the formation of estrogen-induced cholesterol gallstones by inhibiting the GPER signaling pathway in female mice. CIMBA may thus be a new agent for effectively treating cholesterol gallstone disease in women.­




o

Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids [Research Articles]

The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains.




o

Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation [Research Articles]

The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD.




o

Slc43a3 is a regulator of free fatty acid flux [Research Articles]

Adipocytes take up long chain FAs through diffusion and protein-mediated transport, whereas FA efflux is considered to occur by diffusion. To identify potential membrane proteins that are involved in regulating FA flux in adipocytes, the expression levels of 55 membrane transporters without known function were screened in subcutaneous adipose samples from obese patients before and after bariatric surgery using branched DNA methodology. Among the 33 solute carrier (SLC) transporter family members screened, the expression of 14 members showed significant changes before and after bariatric surgery. One of them, Slc43a3, increased about 2.5-fold after bariatric surgery. Further investigation demonstrated that Slc43a3 is highly expressed in murine adipose tissue and induced during adipocyte differentiation in primary preadipocytes and in OP9 cells. Knockdown of Slc43a3 with siRNA in differentiated OP9 adipocytes reduced both basal and forskolin-stimulated FA efflux, while also increasing FA uptake and lipid droplet accumulation. In contrast, overexpression of Slc43a3 decreased FA uptake in differentiated OP9 cells and resulted in decreased lipid droplet accumulation. Therefore, Slc43a3 seems to regulate FA flux in adipocytes, functioning as a positive regulator of FA efflux and as a negative regulator of FA uptake.




o

The grease trap: uncovering the mechanism of the hydrophobic lid in Cutibacterium acnes lipase [Research Articles]

Acne is one of the most common dermatological conditions, but the details of its pathology are unclear, and current management regimens often have adverse effects. Cutibacterium acnes is known as a major acne-associated bacterium that derives energy from lipase-mediated sebum lipid degradation. C. acnes is commensal, but lipase activity has been observed to differ among C. acnes types. For example, higher populations of the type IA strains are present in acne lesions with higher lipase activity. In the present study, we examined a conserved lipase in types IB and II that was truncated in type IA C. acnes strains. Closed, blocked, and open structures of C. acnes ATCC11828 lipases were elucidated by X-ray crystallography at 1.6–2.4 Å. The closed crystal structure, which is the most common form in aqueous solution, revealed that a hydrophobic lid domain shields the active site. By comparing closed, blocked, and open structures, we found that the lid domain-opening mechanisms of C. acnes lipases (CAlipases) involve the lid-opening residues, Phe-179 and Phe-211. To the best of our knowledge, this is the first structure-function study of CAlipases, which may help to shed light on the mechanisms involved in acne development and may aid in future drug design.




o

Vitamin E does not prevent Western diet-induced NASH progression and increases metabolic flux dysregulation in mice [Research Articles]

Fatty liver involves ectopic lipid accumulation and dysregulated hepatic oxidative metabolism, which can progress to a state of elevated inflammation and fibrosis referred to as nonalcoholic steatohepatitis (NASH). The factors that control progression from simple steatosis to NASH are not fully known. Here, we tested the hypothesis that dietary vitamin E (VitE) supplementation would prevent NASH progression and associated metabolic alterations induced by a Western diet (WD). Hyperphagic melanocortin-4 receptor-deficient (MC4R–/–) mice were fed chow, chow+VitE, WD, or WD+VitE starting at 8 or 20 weeks of age. All groups exhibited extensive hepatic steatosis by the end of the study (28 weeks of age). WD feeding exacerbated liver disease severity without inducing proportional changes in liver triglycerides. Eight weeks of WD accelerated liver pyruvate cycling, and 20 weeks of WD extensively upregulated liver glucose and oxidative metabolism assessed by 2H/13C flux analysis. VitE supplementation failed to reduce the histological features of NASH. Rather, WD+VitE increased the abundance and saturation of liver ceramides and accelerated metabolic flux dysregulation compared with 8 weeks of WD alone. In summary, VitE did not limit NASH pathogenesis in genetically obese mice, but instead increased some indicators of metabolic dysfunction.




o

Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice [Research Articles]

The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRMyeLDLR–/–) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXRMyeLDLR–/– mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXRMyeLDLR–/– mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages in vitro. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management.




o

The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes [Thematic Reviews]

Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning.




o

Hematopoiesis is regulated by cholesterol efflux pathways and lipid rafts: connections with cardiovascular diseases [Thematic Reviews]

Lipid rafts are highly ordered regions of the plasma membrane that are enriched in cholesterol and sphingolipids and play important roles in many cells. In hematopoietic stem and progenitor cells (HSPCs), lipid rafts house receptors critical for normal hematopoiesis. Lipid rafts also can bind and sequester kinases that induce negative feedback pathways to limit proliferative cytokine receptor cycling back to the cell membrane. Modulation of lipid rafts occurs through an array of mechanisms, with optimal cholesterol efflux one of the major regulators. As such, cholesterol homeostasis also regulates hematopoiesis. Increased lipid raft content, which occurs in response to changes in cholesterol efflux in the membrane, can result in prolonged receptor occupancy in the cell membrane and enhanced signaling. In addition, certain diseases, like diabetes, may contribute to lipid raft formation and affect cholesterol retention in rafts. In this review, we explore the role of lipid raft-related mechanisms in hematopoiesis and CVD (specifically, atherosclerosis) and discuss how defective cholesterol efflux pathways in HSPCs contribute to expansion of lipid rafts, thereby promoting myelopoiesis and thrombopoiesis. We also discuss the utility of cholesterol acceptors in contributing to lipid raft regulation and disruption, and highlight the potential to manipulate these pathways for therapeutic gain in CVD as well as other disorders with aberrant hematopoiesis.




o

Lipid rafts in glial cells: role in neuroinflammation and pain processing [Thematic Reviews]

Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions.




o

Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews]

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.




o

Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews]

Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy.




o

Lipid rafts and pathogens: the art of deception and exploitation [Thematic Reviews]

Lipid rafts, solid regions of the plasma membrane enriched in cholesterol and glycosphingolipids, are essential parts of a cell. Functionally, lipid rafts present a platform that facilitates interaction of cells with the outside world. However, the unique properties of lipid rafts required to fulfill this function at the same time make them susceptible to exploitation by pathogens. Many steps of pathogen interaction with host cells, and sometimes all steps within the entire lifecycle of various pathogens, rely on host lipid rafts. Such steps as binding of pathogens to the host cells, invasion of intracellular parasites into the cell, the intracellular dwelling of parasites, microbial assembly and exit from the host cell, and microbe transfer from one cell to another all involve lipid rafts. Interaction also includes modification of lipid rafts in host cells, inflicted by pathogens from both inside and outside the cell, through contact or remotely, to advance pathogen replication, to utilize cellular resources, and/or to mitigate immune response. Here, we provide a systematic overview of how and why pathogens interact with and exploit host lipid rafts, as well as the consequences of this interaction for the host, locally and systemically, and for the microbe. We also raise the possibility of modulation of lipid rafts as a therapeutic approach against a variety of infectious agents.




o

Biology of Lipid Rafts: Introduction to the Thematic Review Series [Thematic Reviews]

Lipid rafts are organized plasma membrane microdomains, which provide a distinct level of regulation of cellular metabolism and response to extracellular stimuli, affecting a diverse range of physiologic and pathologic processes. This Thematic Review Series focuses on Biology of Lipid Rafts rather than on their composition or structure. The aim is to provide an overview of ideas on how lipid rafts are involved in regulation of different pathways and how they interact with other layers of metabolic regulation. Articles in the series will review the involvement of lipid rafts in regulation of hematopoiesis, production of extracellular vesicles, host interaction with infection, and the development and progression of cancer, neuroinflammation, and neurodegeneration, as well as the current outlook on therapeutic targeting of lipid rafts.




o

Commentary on SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect fatty acid translocation [Commentaries]




o

Membrane domains beyond the reach of microscopy [Commentaries]




o

GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells [Images In Lipid Research]




o

Images in Lipid Research [Editorials]




o

Problem Notes for SAS®9 - 65852: The PANEL procedure produces incorrect results for certain models when the NOINT and RANONE options are specified

The estimation results might be incorrect in PROC PANEL when the RANONE and NOINT options are specified in the MODEL statement.




o

Problem Notes for SAS®9 - 65940: You might receive "ERROR: PI Point not found" when you query a PI tag name that contains a special character such as an ampersand (&)

When you query a PI tag name or element that contains a special character, such as an ampersand (&), you might receive the following error:



o

Problem Notes for SAS®9 - 65939: "ERROR: Unable to transcode data to/from UCS-2 encoding" occurs when you run an SQL query using SAS/ACCESS Interface to ODBC on SAS 9.4M5 with UTF-8

When you run an SQL query using SAS/ACCESS Interface to ODBC under the following conditions, you might receive an error: You run SAS 9.4M5 (TS1M5) or SAS 9.4M6 (TS1M6)  i




o

Problem Notes for SAS®9 - 65938: Incorrect values might be written to Hadoop for columns defined with the BIGINT data type

Large numeric values consisting of 16 digits in SAS might be incorrect when written to Hadoop for columns defined with the BIGINT data type.  This problem was introduced in SAS 9




o

Problem Notes for SAS®9 - 65900: Registering an Oracle table to the metadata might fail and generate an error

When you register an Oracle table to the metadata, it might fail and generate an error similar to the following: "ERROR: An exception has been encountered...ERROR: Read Access Violation METALIB..."




o

Problem Notes for SAS®9 - 35066: When a bulk-loading process fails with "SQL*Loader 2026" error, error message appears as a warning in the SAS log

If a bulk-loading process fails when you use SAS with SAS/ACCESS Interface to Oracle, you will receive the warning: "WARNING: All or some rows were rejected/discarded.: The actual error is "SQL*Loader-2026: The load was aborted because SQL




o

Problem Notes for SAS®9 - 65834: PROC METADATA returns various errors when the input contains certain multi-byte characters

The METADATA procedure might return an error similar to one of the following:

  • ERROR: Missing root element definition.
  • Full Article


  • o

    Problem Notes for SAS®9 - 65899: "ERROR: ORACLE disconnect error: ORA-03135" occurs when SAS disconnects from the Oracle database server

    When you run 32-bit SAS on Windows and disconnect from the Oracle database server, you might see the error: "ERROR: ORACLE disconnect error: ORA-03135: connection lost contact."




    o

    Problem Notes for SAS®9 - 60332: A SAS 9.4 installation in Update mode notifies you about unwritable files in the "SASHome\SASWebApplicationServer" directory

    When you run SAS Deployment Wizard to install or update SAS 9.4 software, the file system is examined. If any files that the wizard needs to delete are found to be locked, they are reported as unwritable f




    o

    Problem Notes for SAS®9 - 65918: SAS Workflow Services fails to respond after a com.sas.workflow.engine.policy.PolicyExecutionException error occurs for a workflow instance

    When the problem occurs, you are unable to perform any workflow actions in a SAS solution that uses SAS Workflow Services.




    o

    Problem Notes for SAS®9 - 65929: A grid-enabled sign-on to SAS 9.4M6 (TS1M6) fails with errors, including "Remote signon … canceled"

    A sign-on to a grid-enabled environment fails while it is trying to communicate with the client host. The following errors then appear in the SAS log:


    o

    Problem Notes for SAS®9 - 64285: The SCD Type 2 Loader transformation in SAS Data Integration Studio generates "ERROR 22-322: Syntax error, expecting one of the following:..."

    If your business key column is a name literal, like " business key "n, a syntax error occurs when that variable name does not follow standard SAS naming conventions.




    o

    Problem Notes for SAS®9 - 64459: A SAS Data Integration Studio job receives an error that states "The name '; index_name '; has the wrong number of qualifiers"

    An error occurs because of an incorrectly generated CREATE INDEX clause in an SQL query that is sent to DB2 when the DB2 schema value is SESSION . The error message says "The name '; index_name '; has the wrong number of qualifie




    o

    Problem Notes for SAS®9 - 65908: The IMPORT procedure contains a stack-corruption vulnerability

    Severity: Medium Description: PROC IMPORT contains a stack-corruption vulnerability. Potential Impact: Under certain circumstances (with use of the DBM




    o

    Problem Notes for SAS®9 - 65906: The EXPORT procedure contains a stack-corruption vulnerability

    Severity: Medium Description: PROC EXPORT contains a stack-corruption vulnerability. Potential Impact: Under certain circumstances, the use of PROC EXP




    o

    Problem Notes for SAS®9 - 65922: Trying to read a Google BigQuery table that contains a variable defined as an array might result in a panic error and SAS shutting down

    Trying to read a Google BigQuery table that contains a variable that is defined as an array of records might result in an error and cause SAS to shut down. This issue occurs when one of the variables contained in




    o

    Problem Notes for SAS®9 - 65295: The order of columns is not maintained when you select columns for output in the Business Rules transformation

    In SAS Data Integration Studio, the columns that you select to include in the target table in a Business Rules transformation appear in the Selected columns area in a random order. Th