con

How to Verify Performance of Complex Interconnect-Based Designs?

With more and more SoCs employing sophisticated interconnect IP to link multiple processor cores, caches, memories, and dozens of other IP functions, the designs are enabling a new generation of low-power servers and high-performance mobile devices. The complexity of the interconnects and their advanced configurability contributes to already formidable design and verification challenges which lead to the following questions:

While your interconnect subsystem might have a correct functionality, are you starving your IP functions of the bandwidth they need? Are requests from latency-critical initiators processed on time? How can you ensure that all applications will receive the desired bandwidth in steady-state and corner use-cases?

To answer these questions, Cadence recommends the Performance Verification Methodology to ensure that the system performance meets requirements at the different levels:

  1. Performance characterization: The first level of verification aims to verify the path-to-path traffic measuring the performance envelope. It targets integration bugs like clock frequency, buffer sizes, and bridge configuration. It requires to analyze the latency and bandwidth of design’s critical paths.
  2. Steady state workloads: The second level of verification aims to verify the master-by-master defined loads using traffic profiles. It identifies the impact on bandwidth when running multi-master traffic with various Quality-of-Service (QoS) settings. It analyzes the DDR sub-system’s efficiency, measures bandwidth and checks whether masters’ QoS requirements are met.
  3. Application specific use cases: The last level of verification simulates the use-cases and reaches the application performance corner cases. It analyzes the master-requested bandwidth as well as the DDR sub-system’s efficiency and bandwidth.

Cadence has developed a set of tools to assist customers in performance validation of their SoCs. Cadence Interconnect Workbench simplifies the setup and measurement of performance and verification testbenches and makes debugging of complex system behaviors a snap. The solution works with Cadence Verification IPs and executes on the Cadence Xcelium® Enterprise Simulator or Cadence Palladium® Accellerator/Emulator, with coverage results collected and analyzed in the Cadence vManager  Metric-Driven Signoff Platform.

To verify the performance of the Steady State Workloads, Arm has just released a new AMBA Adaptive Traffic Profile (ATP) specification which describes AMBA abstract traffic attributes and defines the behavior of the different traffic profiles in the system.

With the availability of Cadence Interconnect Workbench and AMBA VIP support of ATP, early adopters of the AMBA ATP specification can begin working immediately, ensuring compliance with the standard, and achieving the fastest path to SoC performance verification closure.

For more information on the AMBA Adaptive Traffic Profile, you can visit Dimitry's blog on AMBA Adaptive Traffic Profiles: Addressing The Challenge

More information on Cadence Interconnect Workbench solution is available at Cadence Interconnect Solution webpage.

Thierry




con

PCI-SIG DevCon 2019 APAC Tour: All Around Latest Spec Updates and Solution Offering

PCI-SIG DevCon 2019 APAC tour has come to Tokyo and Taipei this year. The focus is predominantly around the latest updates for PCIe Gen 5 which its version 1.0 specification was just released this year in May.  A series of presentations provided by PCI-SIG on the day 1 with comprehensive information covering all aspects of Gen 5 specification, including protocol, logical, electrical, compliance updates. On the day 2 (only in Taipei), several member companies shared their view on Testing, PCB analysis and Signal integrity. The exhibit is also another spotlight of this event where the member companies showcased their latest PCIe solutions.

Presentation Track (Taipei), Exhibit (Tokyo), Exhibit (Taipei) 

Cadence, as the market leading PCIe IP vendor, participated APAC tour this year with bringing in its latest PCIe IP solution offering (Gen 5/4) to the region as well as showcasing two live demo setups in the exhibit floor. One setup is the PCIe software development kit (SDK) while the other is the Interop/compliance/debug platform. Both come with the Cadence PCIe Gen 4 hardware setup and its corresponding software kit.

The SDK can be used for Device Driver Development, Firmware Development, and for pre-silicon emulation as well. It supports Xtensa and ARM processor with Linux OS and it also equip with Ethernet interface which can be used for remote debugging. It also supports PCIe stress tests for Speed change, link enable/disable, entry/exist for lower power states, …etc. 

Cadence PCIe 4.0 Software Development Kit

The “System Interop/Compliance/Debug platform” was set up to test with multiple endpoint and System platforms. This system come with integrated Cadence software for basic system debug without the need for analyzer to perform the analysis, such as LTSSM History, TS1/TS2 transmitted/received with time stamp, Link training phases, Capturing Packet errors details, Capturing PHY TX/RX internal state machine details, ...etc.

Cadence PCIe System Interop/Compliance/Debug Platform

 

The year 2019 is certainly a "fruitful year" for the PCIe as more Gen 4 products are now available in the market, Gen 5 v1.0 specification got officially ratified, and PCI-SIG's revealing of Gen 6 specification development. We were glad to be part of this APAC tour with the chance to further introduce Cadence’s complete and comprehensive PCIe IP solution.

See you all next year in APAC again!

More Information

For more information on Cadence's PCIe IP offerings, see our PCI Express page.

For more information on PCIe in general, and on the various PCI standards, see the PCI-SIG website.

Related Posts




con

Here Is Why the Indian Voter Is Saddled With Bad Economics

This is the 15th installment of The Rationalist, my column for the Times of India.

It’s election season, and promises are raining down on voters like rose petals on naïve newlyweds. Earlier this week, the Congress party announced a minimum income guarantee for the poor. This Friday, the Modi government released a budget full of sops. As the days go by, the promises will get bolder, and you might feel important that so much attention is being given to you. Well, the joke is on you.

Every election, HL Mencken once said, is “an advance auction sale of stolen goods.” A bunch of competing mafias fight to rule over you for the next five years. You decide who wins, on the basis of who can bribe you better with your own money. This is an absurd situation, which I tried to express in a limerick I wrote for this page a couple of years ago:

POLITICS: A neta who loves currency notes/ Told me what his line of work denotes./ ‘It is kind of funny./ We steal people’s money/And use some of it to buy their votes.’

We’re the dupes here, and we pay far more to keep this circus going than this circus costs. It would be okay if the parties, once they came to power, provided good governance. But voters have given up on that, and now only want patronage and handouts. That leads to one of the biggest problems in Indian politics: We are stuck in an equilibrium where all good politics is bad economics, and vice versa.

For example, the minimum guarantee for the poor is good politics, because the optics are great. It’s basically Garibi Hatao: that slogan made Indira Gandhi a political juggernaut in the 1970s, at the same time that she unleashed a series of economic policies that kept millions of people in garibi for decades longer than they should have been.

This time, the Congress has released no details, and keeping it vague makes sense because I find it hard to see how it can make economic sense. Depending on how they define ‘poor’, how much income they offer and what the cost is, the plan will either be ineffective or unworkable.

The Modi government’s interim budget announced a handout for poor farmers that seemed rather pointless. Given our agricultural distress, offering a poor farmer 500 bucks a month seems almost like mockery.

Such condescending handouts solve nothing. The poor want jobs and opportunities. Those come with growth, which requires structural reforms. Structural reforms don’t sound sexy as election promises. Handouts do.

A classic example is farm loan waivers. We have reached a stage in our politics where every party has to promise them to assuage farmers, who are a strong vote bank everywhere. You can’t blame farmers for wanting them – they are a necessary anaesthetic. But no government has yet made a serious attempt at tackling the root causes of our agricultural crisis.

Why is it that Good Politics in India is always Bad Economics? Let me put forth some possible reasons. One, voters tend to think in zero-sum ways, as if the pie is fixed, and the only way to bring people out of poverty is to redistribute. The truth is that trade is a positive-sum game, and nations can only be lifted out of poverty when the whole pie grows. But this is unintuitive.

Two, Indian politics revolves around identity and patronage. The spoils of power are limited – that is indeed a zero-sum game – so you’re likely to vote for whoever can look after the interests of your in-group rather than care about the economy as a whole.

Three, voters tend to stay uninformed for good reasons, because of what Public Choice economists call Rational Ignorance. A single vote is unlikely to make a difference in an election, so why put in the effort to understand the nuances of economics and governance? Just ask, what is in it for me, and go with whatever seems to be the best answer.

Four, Politicians have a short-term horizon, geared towards winning the next election. A good policy that may take years to play out is unattractive. A policy that will win them votes in the short term is preferable.

Sadly, no Indian party has shown a willingness to aim for the long term. The Congress has produced new Gandhis, but not new ideas. And while the BJP did make some solid promises in 2014, they did not walk that talk, and have proved to be, as Arun Shourie once called them, UPA + Cow. Even the Congress is adopting the cow, in fact, so maybe the BJP will add Temple to that mix?

Benjamin Franklin once said, “Democracy is two wolves and a lamb voting on what to have for lunch.” This election season, my friends, the people of India are on the menu. You have been deveined and deboned, marinated with rhetoric, seasoned with narrative – now enter the oven and vote.



© 2007 IndiaUncut.com. All rights reserved.
India Uncut * The IU Blog * Rave Out * Extrowords * Workoutable * Linkastic




con

DAC 2015: Google Smart Contact Lens Project Stretches Limits of IC Design

There has been so much hype about the “Internet of Things” (IoT) that it is refreshing to hear about a cutting-edge development project that can bring concrete benefits to millions of people. That project is the ongoing development of the Google Smart Contact Lens, and it was detailed in a keynote speech June 8 at the Design Automation Conference (DAC 2015).

The keynote speech was given by Brian Otis (right), a director at Google and a research associate professor at the University of Washington. The “smart lens” that the project envisions is essentially a disposable contact lens that fits on an eye and continuously monitors blood glucose levels. This is valuable information for anyone who has, or may someday have, diabetes.

Since he was speaking to an engineering audience, Otis focused on the challenges behind building such a device, and described some of the strategies taken by Google and its partner, Novartis. The project required new approaches to miniaturization, low-power design, and connectivity, as well as a comfortable and reliable silicon-to-human interface. Otis discussed the “why” as well and showed how the device could potentially save or improve millions of lives.

Millions of Users

First, a bit of background. Google announced the smart lens project in a blog post in January 2014. Since then it has been featured in news outlets including Forbes, Time, and the Wall Street Journal. In March 2015, Time reported that Google has been granted a patent for a smart contact lens.

The smart lens monitors the level of blood glucose by looking at its concentration in tears. The lens includes a wireless system on chip (SoC) and a miniaturized glucose sensor. A tiny pinhole in the lens allows tear fluid to seep into the sensor, and a wireless antenna handles communications to the wireless devices.

“We figure that if we can solve a huge problem, it is probably worth doing,” Otis said. “Diabetes is one example.” He noted 382 million people worldwide have diabetes today, and that 35% of the U.S. population may be pre-diabetic. Today, diabetics must *** their fingers to test blood glucose levels, a procedure that is invasive, painful, and subject to infrequent monitoring.

According to Otis, the smart contact lens represents a “new category of wearable devices that are comfortable, inexpensive, and empowering.” The lens does sensor data logging and uses a portable instrument to measure glucose levels. It is thin, cheap, and disposable, he said.

Moreover, the lens is not just for people already diagnosed with diabetes—it’s for anyone who is pre-diabetic, or may be at risk due to genetic predisposition. “If we are pro-active rather than re-active,” Otis said, “Instead of waiting until a person has full-fledged diabetes, we could make a huge difference in peoples’ lives and lower the costs of treating them.”

Technical Challenges

No one has built anything quite like the smart lens, so researchers at Google and Novartis are treading new ground. Otis identified three key challenges:

  • Miniaturization: Everything must be really small—the SoC, the passive components, the power supply. Components must be flexible and cheap, and support thin-film integration.
  • Platform: Google has developed a reusable platform that includes tiny, always-on wireless sensors, ultra low-power components, and standards-based interfaces.
  • Data: Researchers are looking for the best ways to get the resulting data into a mobile device and onto the cloud.

Comfort is another concern. “This is not intended to be for the most severe cases,” Otis said. “This is intended to be for all of us as a pro-active way of improving our lifestyles.”

The platform provides a bidirectional encrypted wireless link, integrated power management, on-chip memory, standards-based RFID link, flexible sensor interface, high-resolution potentiostat sensor, and decoupling capacitors. Most of these capabilities are provided by the standard CMOS SoC, which is a couple hundred microns on a side and only “tens of microns” thick.

Otis noted that unpackaged ICs are typically 250 microns thick when they come back from the foundry. Thus, post-processing is needed so the IC will fit into a contact lens.

Furthermore, the design requires precision analog circuitry and additional environmental sensors. “Some of this stuff sounds mundane but it is really hard, especially when you find out you can’t throw large decoupling capacitors and bypass capacitors onto a board, and all that has to be re-integrated into the chip,” Otis said.

Sensor Challenges

Getting information from the human body is challenging. The smart lens sensor does a direct chemical measurement on the surface of the eye. The sensor is designed to work with very low glucose concentrations. This is because the concentration of glucose in tears is an order of magnitude lower than it is in blood.

In brief, the sensor has two parallel plates that are coated with an enzyme that converts glucose into hydrogen peroxide, which flows around the electrodes of the sensor. This is actually a fairly standard way of doing glucose monitoring. However, the smart lens sensor has two electrodes compared to the typical three.

In manufacturing, it is essential to keep costs low. Otis outlined a three-step manufacturing process:

  • Start with the bottom layer, and mold a contact lens in the way you typically would.
  • Add the electronics package on top of that layer.
  • Build a second layer that encapsulates the electronics and provides the curvature needed for comfort and vision correction.

Beyond the technical challenges are the “clinical” challenges of working with human beings. The human body “is messy and very variable,” Otis said. This variability affects sensor performance and calibration, RF/electro-magnetic performance, system reliability, and comfort.

The final step is making use of the data. “We need to get the data from the device into a phone, and then display it so users can visualize the data,” Otis said. This provides “actionable feedback” to the person who needs it. Eventually, the data will need to be stored in the cloud.

As he concluded his talk, Otis noted that the platform his group developed may have many applications beyond glucose monitoring. “There is a lot you can do with a bunch of logic and sensing capability,” he said, “and there are hundreds of biomarkers beyond glucose.” Clearly this will be an interesting technology to watch.

Richard Goering

Related Blog Post

Gary Smith at DAC 2015: How EDA Can Expand Into New Directions




con

DAC 2015: Lip-Bu Tan, Cadence CEO, Sees Profound Changes in Semiconductors and EDA

As a leading venture capitalist in the electronics technology, as well as CEO of Cadence, Lip-Bu Tan has unique insights into ongoing changes that will impact EDA providers and users. Tan shared some of those insights in a “fireside chat” with Ed Sperling, editor in chief of Semiconductor Engineering, at the Design Automation Conference (DAC 2015) on June 9.

Topics of this discussion included industry consolidation, the need for more talent and more startups, Internet of Things (IoT) opportunities and challenges, the shift from ICs to full product development, and the challenges of advanced nodes. Following are some excerpts from this conversation, held at the DAC Pavilion theater on the exhibit floor.

 

Ed Sperling (left) and Lip-Bu Tan (right) discuss trends in semiconductors and EDA

Q: As you look out over the semiconductor and EDA industries these days, what worries you most?

Tan: At the top of my list is all the consolidation that is going on. Secondly, chip design complexity is increasing substantially. Time-to-market pressure is growing and advanced nodes have challenges.

The other thing I worry about is that we need to have more startups. There’s a lot of innovation that needs to happen. And this industry needs more top talent. At Cadence, we have a program to recruit over 10% of new hires every year from college graduates. We need new blood and new ideas.

Q: EDA vendors were acquiring companies for many years, but now the startups are pretty much gone. Where does the next wave of innovation come from?

Tan: I’ve been an EDA CEO for the last seven years and I really enjoy it because so much innovation is needed. System providers have very big challenges and very different needs. You have to find the opportunities and go out and provide the solutions.

The opportunities are not just in basic tools. Massive parallelism is critical, and the power challenge is huge. Time to market is critical, and for the IoT companies, cost is going to be critical. If you want to take on some good engineering challenges, this is the most exciting time.

Q: You live two lives—you’re a CEO but you’re also an investor. Where are the investments going these days and where are we likely to see new startups?

Tan: Clearly everybody is chasing the IoT. There is a lot of opportunity in the cloud, in the data center. Also, I’m a big believer in video, so I back companies that are video related. A big area is automotive. ADAS [Advanced Driver Assistance Systems] is a tremendous opportunity.

These companies can help us understand how the industry is transforming, and then we can provide solutions, either in terms of IP, tools, or the PCB. Then we need to connect from the system level down to semiconductors. I think it’s a different way to design.

Q: What happens as we start moving from companies looking to design a semiconductor to system companies who are doing things from the perspective that we have this purpose for our software?

Tan: We are extending from EDA to what we call system design enablement, and we are becoming more application driven. The application at the system level will drive the silicon design. We need to help companies look at the whole system including the power envelope and signal integrity. You don’t want to be in a position where you design a chip all the way to fabrication and then find the power is too high.

We help the customers with hardware/software co-design and co-verification. We have a design suite and a verification suite that can provide customers with high-level abstractions, as well as verify IP blocks at the system level. Then we can break things down to the component level with system constraints in mind, and drive power-aware, system-aware design.

We are starting to move into vertical markets. For example, medical is a tremendous opportunity.

Q: How does this approach change what you provide to customers?

Tan: Every year I spend time meeting with customers. I think it is very important to understand what they are trying to design, and it is also important to know the customer’s customer requirements. We might say, “Wait a minute, for this design you may want to think about power or the library you’re using.” We help them understand what foundry they should use and what process they should use. They don’t view me as a vendorthey view me as a partner.

We also work very closely with our IP and foundry partners. We work as one teamthe ultimate goal is customer success.

Q: Is everybody going to say, FinFETs are beautiful, we’re going to go down to 10nm or 7nmor is it a smaller number of companies who will continue down that path?

Tan: Some of the analog/mixed-signal companies don’t need to go that far. We love those customerswe have close to 50% of that business. But we also have customers in the graphics or processor area who are really pushing the envelope, and need to be in 16nm, 14nm, or 10nm. We work very closely with those guys to make sure they can go into FinFETs.

We always want to work with the customer to make sure they have a first-time silicon success. If you have to do a re-spin, you miss the opportunity and it’s very costly.

Q: There’s a new market that is starting to explodeIoT. How real is that world to you? Everyone talks about large numbers, but is it showing up in terms of tools?

Tan: Everybody is talking about huge profits, but a lot of the time I think it is just connecting old devices that you have. Billions of units, absolutely yes, but if you look close enough the silicon percentage of that revenue is very tiny. A lot of the profit is on the service side. So you really need to look at the service killer app you are trying to provide.

What’s most important to us in the IoT market is the IP business. That’s why we bought Tensilicait’s programmable, so you can find the killer app more quickly. The other challenges are time to market, low power, and low cost.

Q: Where is system design enablement going? Does it expand outside the traditional market for EDA?

Tan: It’s not just about tools. IP is now 11% of our revenue. At the PCB level, we acquired a company called Sigrity, and through that we are able to drive system analysis for power, signal integrity, and thermal. And then we look at some of the verticals and provide modeling all the way from the system level to the component level. We make sure that we provide a solution to the end customer, rather than something piecemeal.

Q: What do you think DAC will look like in five years?

Tan: It’s getting smaller. We need to see more startups and innovative IP solutions. I saw a few here this year, and that’s good. We need to encourage small startups.

Q: Where do we get the people to pull this off? I don’t see too many people coming into EDA.

Tan: I talk to a lot of university students, and I tell them that this small industry is a gold mine. A lot of innovation is needed. We need them to come in [to EDA] rather than join Google or Facebook. Those are great companies, but there is a lot of fundamental physical innovation we need.

Richard Goering

Related Blog Posts

Gary Smith at DAC 2015: How EDA Can Expand Into New Directions

DAC 2015: Google Smart Contact Lens Project Stretches Limits of IC Design

Q&A with Nimish Modi: Going Beyond Traditional EDA




con

Special Route not connecting to Power Rings

Hi,

I'm a newbie and I'm working on a mixed-signal chip in Innovus. I've got a few analog LEF files that I've imported into my floorplan as macros.

My chip has got two power domains - VCC and VBAT.

One of the macro in the VBAT domain uses VBAT and GND as power rails myloweslife.com.

On doing Special-Route, I've got a lot of minute power rails for the standard cells, as expected.

But, the VBAT power rails are not getting extended till the outer power rings. Only the GND rails are correctly getting extended till the outer power rings.

A screen shot is attached for reference.

Thanks for any help




con

Special Route not connecting to Power Rings

Hi,

I'm a newbie and I'm working on a mixed-signal chip in Innovus. I've got a few analog LEF files that I've imported into my floorplan as macros.

My chip has got two power domains - VCC and VBAT.

One of the macro in the VBAT domain uses VBAT and GND as power rails KrogerFeedback.com.

On doing Special-Route, I've got a lot of minute power rails for the standard cells, as expected.

But, the VBAT power rails are not getting extended till the outer power rings. Only the GND rails are correctly getting extended till the outer power rings.

A screen shot is attached for reference.

Thanks for any help




con

About modus design constraints

Hi! 

In my design, there is an one hold violation on scan path, test data is corrupted during scan cycles (when i run verilog simulation of test vectors). I created constraint 'falsepath' to 'TI' input of violated flop and load it into Modus, but this does not have effect.

Can enyone explain to me, does 'falsepath' constraint affects scan path (from Q to TI/SI input, i.e. during SCAN procedure) or this constraint is only for functional mode (ie affects TEST cycle only - to 'D' input)?

I hope resolve this problem this by using some modus design constraints or any other method.




con

In power pins unconnected

Hi,

When I import the top level Verilog file generated by Genus into Virtuoso, the power pins are left unconnected. I tried different configurations in "Global Net Options" tab. However, nothing changed. 

The cell is imported with three views, namely functional, schematic, and symbol. In www krogerfeedback com functional view everything looks OK, that is the top level Verilog file. In schematic, I can see the digital cells but VDD and VSS pins of the blocks are not connected. In the symbol view there are no pins for VDD and VSS. 

On top, we are trying to implement a digital block into Virtuoso. The technology is TSMC 65nm. On Genus and Innovus, everything goes straight and layout is generated successfully.

Thanks.




con

checkRoute or VerifyConnectivity

Hello Everyone,

I was finishing the layout via Innovus and ran verifyConnectivity followed by checkRoute.

verifyConnectivity was okay and it showed no errors and no warnings, whereas checkRoute showed there are 3 unrouted nets.

When i ran the checkRoute command again immediately, it showed no unrouted/unconnected nets.

Which of these commands should we trust or is this really unrouted nets issue?

Looking forward for a response, thanks in advance.

Regards,

Vijay




con

How to customize default_hdl_checks/rules in CCD conformal constraint designer

Dear all,

I am using Conformal Constraint Designer (Version 17.1) to analyse a SystemVerilog based design.

While performing default HDL checks it finds  some violations (issues) in RTL and complains (warnings, etc) about RTL checks and others.

My questions:

Is there any directive which I can add to RTL (system Verilog) so that particular line of code or signal is ignored or not checked for HDL or RTL checks.

I can set ignore rules in rule manager (gui) but it does not seems effective if code line number changes or new signals are introduced.

What is the best way to customize default_hdl_rules ?

I will be grateful for your guidance.

Thanks for your time.




con

Force cell equivalence between same-footprint and same-functionality hard-macros in Conformal LEC

For a netlist vs. netlist LEC flow we have to solve the following problem:

- in the RTL code we replicate a large array of N x M all-identical hard-macros, let call them MACRO_A

- MACRO_A is pre-assembled in Innovus and contains digital parts and analog parts (bottom-up hierarchical flow)

- at top-level (full-chip) we instantiate this array of all-identical macros

- in the top-level place-and-route flow we perform ecoChangeCell to remaster the top row of this array with MACRO_B

- MACRO_B is just a copy of the original MACRO_A cell containing same pins position, same internal digital functionality and also same digital layout, only slight differences in one analog block inside the macro

- MACRO_A and MACRO_B have the same .lib file generated with the do_extract_model command at the end of the Innovus flow, they only differ in the name of the macro

- when performing post-synthesis netlist vs post-place-and-route we load .lib files of both macros in Conformal LEC

- the LEC flow fails because Conformal LEC sees only MACRO_A instantiated in the post-synthesis netlist and both MACRO_A and MACRO_B in the post-palce-and-route netlist

Since both digital functionality and STD cells layout are the same between MACRO_A and MACRO_B we don't want to keep track of this difference already at RTL stage, we just want to perform this ECO change in place-and-route and force Conformal to assume equivalence between MACRO_A and MACRO_B .

Basically what I'm searching for is something similar to the add_instance_equivalences Conformal command but that works between Golden and Revised designs on cell primitives/black-boxes .

Is this flow supported ?

Thanks in advance

Luca




con

convert ircx to ict or emDataFile for Voltus-fi

Hi,

I want to convert ircx file(which is from TSMC,inclued EM Information) to ict or emDataFile for Voltus-fi.

I tried many way, but I can not make it. Can anyone give me some advice?

and I  do not installed QRC.

below is some tools installed my server. 

IC617-64b.500.21 is used.




con

Select all members of a constraint with SKILL

I want to select a constraint, and then run a SKILL command that returns a list with the members of that constraint. Is this possible?

Thx,




con

Displaying contents of a modeless dialog box during execution of a SKILL script

I have a modeless informational dialog box defined at the beginning of a SKILL script, but its contents don't display until the script finishes.

How do you get a modeless dialog box contents to display while a SKILL script is running?

procedure(myproc()

   prog((myvars)

     hiDisplayAppDBox()    ; opens blank dialog box - no dboxText contents show until script completes!

     ....rest of SKILL code in script...launches child processes

   );prog

);proc




con

IC Packagers: Shape Connectivity in the Allegro Data Model

Those who work in the IC Packaging design space have some unique challenges. We bridge between the IC design world (90/45-degree traces with rectangular and octagonal pins) and the PCB domain...

[[ Click on the title to access the full blog on the Cadence Community site. ]]




con

Linley Processor Conference 2020 Keynote

The Linley Processor Conference always opens with a keynote by Linley Gwenapp giving an overview of processors in whatever is the hottest area. Most of the other presentations during the conference...

[[ Click on the title to access the full blog on the Cadence Community site. ]]




con

Wally Rhines: Predicting Semiconductor Business Trends After Moore's Law

I recently attended a webinar presented by Wally Rhines about his new book, Predicting Semiconductor Business Trends After Moore's Law . Wally was the CEO of Mentor, as you probably know. Now he...

[[ Click on the title to access the full blog on the Cadence Community site. ]]




con

Tales from DAC: Semiconductor Design in MY Cloud? It's More Likely Than You Think

Everyone keeps talking about “the cloud” this and “the cloud” that these days—but you’re a semiconductor designer. Everyone keeps saying “the cloud” is revolutionizing all aspects of electronics design—but what does it mean for you? Cadence's own Tom Hackett discussed this in a presentation at the Cadence Theater during DAC 2019.

What people refer to as “the cloud” is commonly divided into three categories: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and software as a Service (SaaS). With IaaS, you bring your own software—i.e. loading your owned or appropriately licensed tools onto cloud hardware that you rent by the minute. This service is available from providers like Google Cloud Platform, Amazon Web Service, and Microsoft Azure. In PaaS (also available from the major cloud providers), you create your own offering using capabilities and a software design environment provided by the cloud vendor that makes subsequent scaling and distribution really easy because the service was “born in the cloud”.  Lastly, there’s SaaS, where the cloud is used to access and manage functionality and data without requiring users to set up or manage any of the underlying infrastructure used to provide it.  SaaS companies like Workday and Salesforce deliver their value in this manner.  The Cadence Cloud portfolio makes use of both IaaS and SaaS, depending on the customers’ interest.  Cadence doesn’t have PaaS offerings because our customers don’t create their own EDA software from building blocks that Cadence provides.

All of these designations are great, but you’re a semiconductor designer. Presumably you use Workday or some similar software, or have in the past when you were an intern, but what about all of your tools? Those aren’t on the cloud.

Wait—actually, they are.

Using EDA tools in the cloud allows you to address complexity and data explosion issues you would have to simply struggle through before. Since you don’t have to worry about having the compute-power on-site, you can use way more power than you could before. You may be wary about this new generation of cloud-based tools, but don’t worry: the old rules of cloud computing no longer apply. Cloud capacity is far larger than it used to be, and it’s more secure. Updates to scheduling software means that resource competition isn’t as big of a deal anymore. Clouds today have nearly unlimited capacity—they’re so large that you don’t ever need to worry about running out of space.

The vast increase in raw compute available to designers through the cloud makes something like automotive functional safety verification, previously an extremely long verification task, doable in a reasonable time frame. With the cloud, it’s easy to scale the amount of compute you’re using to fit your task—whether it’s an automotive functional safety-related design or a small one.

Nowadays, the Cadence Cloud Portfolio brings you the best and brightest in cloud technology. No matter what your use case is, the Cadence Cloud Portfolio has a solution that works for you. You can even access the Palladium Cloud, allowing you to try out the benefits of an accelerator without having to buy one.

Cloud computing is the future of EDA. See the future here.




con

BoardSurfers: Footprints for Silicon - Two Steps to Creating PCB Footprints

Longfellow's metaphorical footprints on the sands of time is more profound and eternal no doubt but a footprint for silicon (a form of sand isn't it?) is as important for PCB designers. So, here we will list the steps to create a fo...(read more)



  • Allegro PCB Editor

con

Kf parameter testing in spectre under non standart conditions

Hello, i need to test the  parameter Kf under some conditions in subthreshold.i cannot just plot the OP param,becasue i need to derive it under certain conditions.

Spectre(of Cadence) like BSIM(of Berkley) has developed a method for deriving each parameter in their model.

Is there a way to help me with such manual where i can test in cadence virtuoso the Kf parameter shown in the formula bellow?

Thanks.




con

Inconsistent behaviour of warn() between Virtuoso and Allegro

For a project, we depend on capturing warnings. This works fine in Virtuoso but behaves differently in Allegro.

In our observations

Virtuoso:

>>> warn("Hello")

*WARNING* Hello

Allegro:

>>> warn("Hello")

*WARNING* Hello

But when we capture the warning:

Virtuoso:

>>> warn("Hello") getWarn()

"Hello"

Allegro:

>>> warn("Hello") getWarn()

"*WARNING* Hello"

This is a Problem for because we put an empty String in the warn and depend on the fact that no Warning results in an empty String but on Allegro the output always begins with *WARNING*

Is there a way to make the behavior consistent in both versions?




con

Here Is Why the Indian Voter Is Saddled With Bad Economics

This is the 15th installment of The Rationalist, my column for the Times of India.

It’s election season, and promises are raining down on voters like rose petals on naïve newlyweds. Earlier this week, the Congress party announced a minimum income guarantee for the poor. This Friday, the Modi government released a budget full of sops. As the days go by, the promises will get bolder, and you might feel important that so much attention is being given to you. Well, the joke is on you.

Every election, HL Mencken once said, is “an advance auction sale of stolen goods.” A bunch of competing mafias fight to rule over you for the next five years. You decide who wins, on the basis of who can bribe you better with your own money. This is an absurd situation, which I tried to express in a limerick I wrote for this page a couple of years ago:

POLITICS: A neta who loves currency notes/ Told me what his line of work denotes./ ‘It is kind of funny./ We steal people’s money/And use some of it to buy their votes.’

We’re the dupes here, and we pay far more to keep this circus going than this circus costs. It would be okay if the parties, once they came to power, provided good governance. But voters have given up on that, and now only want patronage and handouts. That leads to one of the biggest problems in Indian politics: We are stuck in an equilibrium where all good politics is bad economics, and vice versa.

For example, the minimum guarantee for the poor is good politics, because the optics are great. It’s basically Garibi Hatao: that slogan made Indira Gandhi a political juggernaut in the 1970s, at the same time that she unleashed a series of economic policies that kept millions of people in garibi for decades longer than they should have been.

This time, the Congress has released no details, and keeping it vague makes sense because I find it hard to see how it can make economic sense. Depending on how they define ‘poor’, how much income they offer and what the cost is, the plan will either be ineffective or unworkable.

The Modi government’s interim budget announced a handout for poor farmers that seemed rather pointless. Given our agricultural distress, offering a poor farmer 500 bucks a month seems almost like mockery.

Such condescending handouts solve nothing. The poor want jobs and opportunities. Those come with growth, which requires structural reforms. Structural reforms don’t sound sexy as election promises. Handouts do.

A classic example is farm loan waivers. We have reached a stage in our politics where every party has to promise them to assuage farmers, who are a strong vote bank everywhere. You can’t blame farmers for wanting them – they are a necessary anaesthetic. But no government has yet made a serious attempt at tackling the root causes of our agricultural crisis.

Why is it that Good Politics in India is always Bad Economics? Let me put forth some possible reasons. One, voters tend to think in zero-sum ways, as if the pie is fixed, and the only way to bring people out of poverty is to redistribute. The truth is that trade is a positive-sum game, and nations can only be lifted out of poverty when the whole pie grows. But this is unintuitive.

Two, Indian politics revolves around identity and patronage. The spoils of power are limited – that is indeed a zero-sum game – so you’re likely to vote for whoever can look after the interests of your in-group rather than care about the economy as a whole.

Three, voters tend to stay uninformed for good reasons, because of what Public Choice economists call Rational Ignorance. A single vote is unlikely to make a difference in an election, so why put in the effort to understand the nuances of economics and governance? Just ask, what is in it for me, and go with whatever seems to be the best answer.

Four, Politicians have a short-term horizon, geared towards winning the next election. A good policy that may take years to play out is unattractive. A policy that will win them votes in the short term is preferable.

Sadly, no Indian party has shown a willingness to aim for the long term. The Congress has produced new Gandhis, but not new ideas. And while the BJP did make some solid promises in 2014, they did not walk that talk, and have proved to be, as Arun Shourie once called them, UPA + Cow. Even the Congress is adopting the cow, in fact, so maybe the BJP will add Temple to that mix?

Benjamin Franklin once said, “Democracy is two wolves and a lamb voting on what to have for lunch.” This election season, my friends, the people of India are on the menu. You have been deveined and deboned, marinated with rhetoric, seasoned with narrative – now enter the oven and vote.

The India Uncut Blog © 2010 Amit Varma. All rights reserved.
Follow me on Twitter.




con

How do we use the concept of Save and Restore during real developing(debugging)???/

Hi All,

I'm trying to understand checkpoint concept. When I found save and restart concept in cdnshelp, There is just describing about "$save" and "xrun -r "~~~".

and I found also the below link about save restart and it saves your time.

But I can't find any benefits from my experiment from save&restart article( I fully agree..the article)

Ok, So I'v got some experiment  Here.

1. I declared $save and got the below result as I expected within the simple UVM code.

In UVM code...

$display("TEST1");
$display("TEST2");
$save("SAVE_TEST");
$display("TEST3");
$display("TEST4");

And I restart at "SAVE_TEST" point by xrun -r "SAVE_TEST", I've got the below log

xcelium> run
TEST3
TEST4

Ok, It's Good what I expected.(The concept of Save and Restore is simple: instead of re-initializing your simulation every time you want to run a test, only initialize it once. Then you can save the simulation as a “snapshot” and re-run it from that point to avoid hours of initialization times. It used to be inconvenient. I agree..)

2. But The Problem is that I can't restart with modified code. Let's see the below example.

I just modified TEST5 instead of "TEST3"

$display("TEST1");
$display("TEST2");
$save("SAVE_TEST");
$display("TEST5"); //$display("TEST3");
$display("TEST4");

and I rerun with xrun -r "SAVE_TEST", then I've got the same log

xcelium> run
TEST3
TEST4

There is no "TEST5". Actually I expected "TEST5" in the log.From here We know $save can't support partially modified code after $save. 

Actually, through this, we can approach to our goal about saving developing time. 

So I want to know Is there any possible way that instead of re-initializing our simulation every time we want to run a test, only initialize it once and keep developing(debugging) our code ?

If we do, Could you let me know the simple example?




con

IC Packagers: Shape Connectivity in the Allegro Data Model

Those who work in the IC Packaging design space have some unique challenges. We bridge between the IC design world (90/45-degree traces with rectangular and octagonal pins) and the PCB domain (any-angle routing, filled planes, and a multitude of pad ...(read more)



  • Allegro Package Designer
  • Allegro PCB Editor

con

Why the Autorouter use Via to connect GND and VCC pins to Shape Plane

Here are two screen capture of Before and After Autorouting my board. Padstacks have all been revised and corrected. The Capture Schematic is correct. All Footprints have been verified after Padstack revision. a new NETLIST generation have been done after some corrections made in Capture. I have imported the new Logic. I revised my Layout Cross Section as such: TOP, GND, VCC, BOTTOM. Both VCC and GND shapes have been assigned to their respective logical GND and VCC Nets (verified). Yet, I still have the Autorouter to systematically use extra vias to make GND and VCC connections to the VCC and GND planes. Where a simple utilisation of the part padstack inner layer would have been indicated. What Im I missing ?




con

Capture Constraint Man anger

Is anyone else using Constraint Manager within Capture? This is my first time using it. I'm finding that it is occasionally changing some of my constraint values in Allegro. It seems random. 




con

Error: CMFBC-1 The schematic and the layout constraints were not synchronized

Hi, I am in the middle of a design and had no problem going back and forth between schematics and layout. Now I am getting the error message below. I am using Cadence 17.2.

ERROR: Layout database has probably been reverted to an earlier version than that, which was used in the latest flow or the schematic database was synchronized with another board.

The basecopy file generated by the last back-to-front flow not found.

ERROR: Layout database has probably been reverted to an earlier version than that, which was used in the latest flow or the schematic database was synchronized with another board.

The basecopy file generated by the last back-to-front flow not found.

Error: CMFBC-1: The schematic and the layout constraints were not synchronized as the changes done since the last sync up could not be reconciled. Syncing the current version of the schematic or layout databases with a previous version would result in this issue. The  constraint difference report is displayed.

Continuing with "changes-only" processing may result in incorrect constraint updates.

Thanks for your input

Claudia




con

Create a new Constraint Group or Constraint Class ?

When in Constraint Manager, Physical Domain, one can create a new Physical Constraint Class defining specific attributes for a custom rule set. One can then assing this new rule set to a set of nets. To do that it is instructed to create a new Net Class with menu Objects > Create > Net Class. Also on that same menu is available Net Group. Both options create a group that appear in the Constraint Manager Objects Name Column. I have triied both  options and cant really see the difference. 

The Question: What is the difference between creating a Net Class and a Net Group ?  What are the implications ?

Thanks for your help.




con

Allegro design entry DHL, pin swaps , export without exporting constraints, back annotate.

Hi,

I have a new customer that uses Allegro Design entry HDL for the schematic and have a few questions.

1. How do you get pin/gate swaps into the symbols in the schematic ?

2. How do you transfer them to the pcb editor ?

3. How do you back annotate the swaps from the pcb editor to the schematic ?

4. How do you stop the export/Import physical from updating the constraints in the pcb file ? 




con

convert ircx to ict or emDataFile for Voltus-fi

Hi,

I want to convert ircx file(which from TSMC) to ict or emDataFile for Voltus-fi.

I tried many way, but I can not make it.

and I  do not installed QRC.

below is some tools installed my server. 

IC617-64b.500.21 is used.




con

Wrong Constraint Values in Sequential Cell Characterization

Hi,

I am trying to characterize a D flip-flop for low voltage operation (0.6V) using Cadence Liberate (V16). This is a positive edge triggered D flip flop based on true-single-phase clocking scheme. After the characterization, the measurements reported for hold constraint arcs seem to deviate significantly from its (spectre) spice simulation.

The constraint and the power settings to the liberate are as follows : 

# -------------------------------------------- Timing Constraints --------------------------------------------------------------------------------
### Input waveform ###
set_var predriver_waveform 2;# 2=use pre-driver waveform
### Capacitance ###
set_var min_capacitance_for_outputs 1;# write min_capacitance attribute for output pins
### Timing ###
set_var force_condition 4
### Constraint ###
set_var constraint_info 2
#set_var constraint_search_time_abstol 1e-12 ;# 1ps resolution for bisection search
set_var nochange_mode 1 ;# enable nochange_* constraint characterization
### min_pulse_width ###
set_var conditional_mpw 0
set_var constraint_combinational 2


#---------------------------------------------- CCS Settings ----------------------------------------------------------------------------------------
set_var ccsn_include_passgate_attr 1
set_var ccsn_model_related_node_attr 1
set_var write_library_is_unbuffered 1

set_var ccsp_min_pts 15 ;# CCSP accuracy
set_var ccsp_rel_tol 0.01 ;# CCSP accuracy
set_var ccsp_table_reduction 0 ;# CCSP accuracy
set_var ccsp_tail_tol 0.02 ;# CCSP accuracy
set_var ccsp_related_pin_mode 2 ;# use 3 for multiple input switching scnarios and Voltus only libraries


#----------------------------------------------- Power ---------------------------------------------------------------------------------------------------
### Leakage ###
set_var max_leakage_vector [expr 2**10]
set_var leakage_float_internal_supply 0 ;# get worst case leakage for power switch cells when off
set_var reset_negative_leakage_power 1 ;# convert negative leakage current to 0

### Power ###
set_var voltage_map 1 ;# create pg_pin groups, related_power_pin / related_ground_pin
set_var pin_based_power 0 ;# 0=based on VDD only; 1=power based on VDD and VSS (default);
set_var power_combinational_include_output 0 ;# do not include output pins in when conditions for combinational cells

set_var force_default_group 1
set_default_group -criteria {power avg} ;# use average for default power group

#set_var power_subtract_leakage 4 ;# use 4 for cells with exhaustive leakage states.
set_var subtract_hidden_power 2 ;# 1=subtract hidden power for all cells
set_var subtract_hidden_power_use_default 3 ;# 3=subtract hidden power from matched when condition then default group
set_var power_multi_output_binning_mode 1 ;# binning for multi-output cell considered for both timing and power arcs
set_var power_minimize_switching 1
set_var max_hidden_vector [expr 2**10]
#--------------------------------------------------------------------------------------------------------------------------------------------------------------

I specifically used set_var constraint_combinational 2 in the settings, in case the Bisection pass/fail mode fails to capture the constraints. In my spice simulation, the hold_rise (D=1, CLK=R, Q=R) arc at-least requires ~250 ps for minimum CLK/D slew combination (for the  by default smallest capacitive load as per Liberate)  while Liberate reports only ~30 ps. The define_cell template to this flip flop is pretty generic, which does not have any user specified arcs. So which settings most likely affecting the constraint measurements in Liberate and how can I debug this issue ?

Thanks

Anuradha




con

Ultrasim does not converge with BSIMBULK model

Hello,

I am using ultrasim Version 18.1.0.314.isr5  64bit 03/26/2019 06:33 (csvcm20c-2).

When I run my netlist, ultrasim is blocked in the first DC stage and takes forever. Then it will fail or never progress. I am using a 22nm BSIMBULK model. I tried to tune different accuracy and convergence aids options but noting works.

 When I run the same netlist with spectre it works fine with no problem.

Also, If I use another model (not BULKSIM), ultrasim will work and converge with no problem.

My first feeling is that ultrasim has a problem with using BSIMBULK model.

Could you please advice,

Thank you,

Kotb




con

Delay Degradation vs Glitch Peak Criteria for Constraint Measurement in Cadence Liberate

Hi,

This question is related to the constraint measurement criteria used by the Liberate inside view. I am trying to characterize a specific D flip-flop for low voltage operation (0.6V) using Cadence Liberate (V16). 

When the "define_arcs" are not explicitly specified in the settings for the circuit (but the input/outputs are indeed correct in define_cell), the inside view seems to probe an internal node (i.e. master latch output)  for constraint measurements instead of the Q output of the flip flop. So to force the tool to probe Q output I added following coder in constraint arcs :

# constraint arcs from CK => D
define_arc
-type hold
-vector {RRx}
-related_pin CP
-pin D
-probe Q
DFFXXX

define_arc
-type hold
-vector {RFx}
-related_pin CP
-pin D
-probe Q
DFFXXX

define_arc
-type setup
-vector {RRx}
-related_pin CP
-pin D
-probe Q
DFFXXX

define_arc
-type setup
-vector {RFx}
-related_pin CP
-pin D
-probe Q
DFFXXX

with -probe Q liberate identifies Q as the output, but uses Glitch-Peak criteria instead of delay degradation method. So what could be the exact reason for this unintended behavior ? In my external (spectre) spice simulation, the Flip-Flop works well and it does not show any issues in the output delay degradation when the input sweeps.

Thanks

Anuradha




con

Is there a simple way of converting a schematic to an s-parameter model?

Before I ask this, I am aware that I can output an s-parameter file from an SP analysis.

I'm wondering if there is a simple way of creating an s-parameter model of a component.

As an example, if I have an S-parameter model that has 200 ports and 150 of those ports are to be connected to passive components and the remaining 50 ports are to be connected to active components, I can simplify the model by connecting the 150 passive components, running an SP analysis, and generating a 50 port S-parameter file.

The problem is that this is cumbersome. You've got to wire up 50 PORT components and then after generating the s50p file, create a new cellview with an nport component and connect the 50 ports with 50 new pins.

Wiring up all of those port components takes quite a lot of time to do, especially as the "choosing analyses" form adds arrays in reverse (e.g. if you click on an array of PORT components called X<0:2> it will add X<2>, X<1>, X<0> instead of in ascending order) so you have to add all of them to the analyses form manually.

Is any way of taking a schematic and running some magic "generate S-Parameter cellview from schematic cellview"  function that automates the whole process?




con

Virtuosity: Are Your Layout Design Mansions Correct-by-Construction?

Do you want to create designs that are correct by construction? Read along this blog to understand how you can achieve this by using Width Spacing Patterns (WSPs) in your designs. WSPs, are track lines that provide guidance for quickly creating wires. Defining WSPs that capture the width-dependent spacing rules, and snapping the pathSegs of a wire to them, ensures that the wires meet width-dependent spacing rules.(read more)




con

Virtuosity: Concurrently Editing a Hierarchical Cellview

This blog discusses key features of concurrently editing a hierarchical cellview.(read more)




con

Navratri Second Day: નવરાત્રીનો બીજો દિવસ, માં બ્રહ્મચારિણીનું માહત્મ્ય અને ચમત્કારી મંત્ર

માં બ્રહ્મચારિણીએ શ્વેત વસ્ત્ર પહેર્યા છે. એમના એક હાથમાં અષ્ટદળની જપમાળા અને બીજા હાથમાં કમંડલ સુશોભિત છે.




con

সুস্থ থাকুন, আমরা পাশে আছি ! প্রথম জন্মদিনে পাঠকদের বার্তা Moneycontrol Pro-র




con

১ বছর পূর্ণ Moneycontrol Pro-র, সাবস্ক্রাইবারদের আরও উন্নত পরিষেবা দেওয়াই লক্ষ্য




con

কীভাবে হবে জীবনে আর্থিক উন্নতি, Moneycontrol Pro-তে রইল তার সুলুক-সন্ধান




con

Moneycontrol Pro-র বর্ষপূর্তি, পাঠকদের উদ্দেশে ওপিনিয়ন টিমের কিছু কথা





con

Controlling The Kernel - Its All About DRM




con

Die-Hard Bug Bytes Linux Kernel For Second Time






con

Adobe Flash Player Type Confusion Remote Code Execution

This Metasploit module exploits a type confusion vulnerability found in the ActiveX component of Adobe Flash Player. This vulnerability was found exploited in the wild in November 2013. This Metasploit module has been tested successfully on IE 6 to IE 10 with Flash 11.7, 11.8 and 11.9 prior to 11.9.900.170 over Windows XP SP3 and Windows 7 SP1.




con

AoA MP4 Converter 4.1.2 Active-X Overflow

AoA MP4 Converter version 4.1.2 suffers from an overflow vulnerability.




con

X360 VideoPlayer ActiveX Control Buffer Overflow

This Metasploit module exploits a buffer overflow in the VideoPlayer.ocx ActiveX installed with the X360 Software. By setting an overly long value to 'ConvertFile()',an attacker can overrun a .data buffer to bypass ASLR/DEP and finally execute arbitrary code.