oxy

Why We Venerate Icons (Sunday of Orthodoxy, Triumph of Orthodoxy)

"On this day, the first Sunday of Lent, we commemorate the restoration of the holy and venerable icons…” (Synaxarion for the Sunday of Orthodoxy) After weeks of learning about forgiveness and pride and judgment, we begin Great Lent with a Sunday dedicated to icons. Why? On one level, this is the anniversary of the triumph over Iconoclasm in 843 AD. But there's more to this triumph than meets the eye. So we'll take a deep dive into the theology of icons to learn that God made a promise to His saints. That He would unite heaven and earth. That we could look upon the face of the Lord and live. And this promise is fulfilled in us. We hold up icons as proof of this promise, the treasures we display in the Triumph of Orthodoxy. As always, we've prepared a FREE downloadable workbook to help you act on what you'll learn: https://mailchi.mp/goarch/bethebee169




oxy

The Light of Orthodoxy (Sunday of Saint Gregory Palamas)

"O Gregory the Miracle Worker, light of Orthodoxy, support and teacher of the Church, comeliness of Monastics, invincible defender of theologians, the pride of Thessalonica, and preacher of grace, intercede forever that our souls may be saved." (Apolytikion for the Sunday of Saint Gregory Palamas) Is it possible to know God? How could a perfect God have anything to do with His imperfection creation? These are some of the questions Saint Gregory Palamas faced in the 14th century. And they're questions the Church faces today. We dedicate the Second Sunday of Great Lent to this important saint because he taught an important theological truth that's at the core of the Christian life: That God is both knowable in His Energies and unknowable in His Essence. And this mystery is shown to us when Jesus heals the paralytic in Mark 2. As always, we've prepared a FREE downloadable workbook to help you act on what you'll learn: https://mailchi.mp/goarch/bethebee170




oxy

Papacy, Primacy, and Orthodoxy

Fr Laurent Cleenewerck, author of His Broken Body: Understanding and Healing the Schism between the Roman Catholic and Orthodox Churches and the editor of the Eastern Orthodox Bible (EOB), discusses with host Kevin Allen papacy, primacy, and church as they are differently understood in both Catholicism and Orthodoxy.




oxy

Orthodoxy and War

Orthodox Military Chaplains Fr. David Alexander and Fr. Sean Levine discuss important questions about war, serving under combat conditions, whether war is justified and under what conditions, and counseling soldiers suffering from post-traumatic stress disorder.




oxy

Coming Soon - Orthodoxy Live!

Kevin interviews Fr. Evan Armatas who will host a brand new call in program starting November 18 and then be heard the 1st and 3rd Sundays of each month. This program will offer an "open line" to any question about Orthodoxy and the Bible and then a podcast will be available to download shortly after each program. A few calls came in even on this program to give us a taste of the format.




oxy

Buddhism and Orthodoxy

Buddhists in the US are double the number of Orthodox Christians, and most American Buddhists are Western, not raised in Buddhist traditions. Kevin and his guests Fr. Brendan Pelphrey (GOA), an ex-missionary in Asia who has had dialogue with the Dalai Lama, and R. Todd Godwin, ex-Buddhist and Orthodox Christian, discuss the attractions of Buddhism, as well as its key teachings and practices, in comparison with and in contrast to those of Eastern Orthodox Christianity.




oxy

Orthodoxy and the Environment

Kevin Allen talks with guest Father Michael Butler about how we might address the environmental issues that confront us today by appealing to the authentic Orthodox Tradition. Fr. Michael is the co-author of Creation and the Heart of Man.




oxy

Making Orthodoxy Plausible for the Non-Orthodox

Fr. Wilbur Ellsworth discusses with host Kevin Allen the challenges and opportunities of presenting Orthodoxy as plausible to non-Orthodox visitors and inquirers. Fr. Wilbur is a former Baptist pastor of a large influential church in Wheaton, IL, but now a priest in the Orthodox Church.




oxy

Rock and Sand - Orthodoxy and Reformed Theology

We welcome back Kevin Allen to AFR with his inaugural come back podcast which is part 1 of an interview with Fr. Josiah Trenham. They discuss his new book Rock and Sand - An Orthodox Appraisal of the Protestant Reformers and their Teaching, published by New Rome Press. This interview is also available in video format from Patristic Nectar Films.




oxy

Rock and Sand - Orthodoxy and Reformed Theology - Part 2

In part 2 of his interview with Fr. Josiah Trenham, Kevin Allen gets specific on some of the modern day expressions of Reformed teaching and how it differs from the Orthodox Church. Fr. Josiah authored the book Rock and Sand: An Orthodox Appraisal of the Protestant Reformers and Their Theology. Click here to view the video version of this interview.




oxy

Is Orthodoxy in Decline?

Alarming statistics are reported on the decline of Christianity (-8% in seven years) across all denominations in the U.S.; as well as significant data on the Orthodox Church in the U.S. Be the Bee's Steven Christoforou, Director of the GOA Youth and Adult Ministries Department, and the Office of Camping Ministries; also Fr. Jonathan Ivanoff, the director of the Orthodox Natural Church Development program, join Kevin Allen to discuss.




oxy

We Wish You an Ascetic Christmas! Understanding the Ascetic Struggle in Orthodoxy

For most people in our society the Christmas season is a time of celebration, with holiday parties, and unleashed consumerism. For Orthodox Christians however the Advent Season is a time of fasting, prayer and ascetic struggle. Why? In this edition of Ancient Faith Today, host Kevin Allen discusses with Father Gregory Jensen, author of the book The Cure for Consumerism, the reason for the ascetic struggle for Orthodox Christians.




oxy

The Great Return - The Renewal of Orthodoxy in Britain




oxy

Orthodoxy in Colonial Virginia

Matthew interviews Nicholas Chapman, the Managing Director of Orthodox Christian Books, about an 18th-century Orthodox convert from Virginia named Philip Ludwell III. Ludwell gave George Washington his commission in the army and was a cousin of George's wife Martha. Learn more HERE and HERE.




oxy

Orthodoxy: Yesterday and Today

Matthew speaks at the Fortieth Biennial Clergy Laity Congress of the Greek Orthodox Archdiocese of America in Atlanta, Georgia.




oxy

Disentangling the role of remotely sensed spectral heterogeneity as a proxy for North American plant species richness




oxy

Epoxy paste for stair treads

Form-A-Tread Original is a durable high-tech epoxy paste designed to be easy to apply to stair treads. Form-A-Tread’s kit includes a 400-milliliter cartridge of material that can produce 25 to 40 linear feet of 1-inch-wide tread depending on the surface type.




oxy

Innophos: Oxyjun Terminalia Arjuna Extract

The findings from this latest human clinical trial demonstrate advanced benefits in the areas of cardiac output and perceived reduction in physical fatigue in study subjects.




oxy

Taylor Adhesive's 501 Solvent-Free Epoxy Flooring Adhesive Ideal for Resilient

Taylor Adhesives 501 is a fast-setting, two-part, low-VOC epoxy system used to install vinyl and rubber flooring, including hard-to-stick recycled products.




oxy

Sherwin-Williams High-Performance Flooring Decorative Epoxy Coatings for Moderate to High-Use Areas

Sherwin-Williams High-Performance Flooring seamless flooring systems offers up durable, chemical resistant systems that cover a range of commercial applications, ranging from moderate to heavy use.




oxy

CFI’s WearCoat 440FS Epoxy Floor Coating Formulated to Resist Amine Blush

A common issue with cool-temperature floor coating jobs, amine blush is an oily surface imperfection caused by moisture or dew settling on uncured epoxy. 




oxy

Structural insights into 1,4-bis­(neopent­yloxy)pillar[5]arene and the pyridine host–guest system

The crystal structure of a neo­pentyl­oxypillar[5]arene with two pyridine mol­ecules encapsulated in the macrocyclic cavity is reported.




oxy

Ethyl (2RS,3SR,4RS)-1-ethyl-2-(furan-2-yl)-4-hy­droxy-5-oxopyrrolidine-3-carboxyl­ate

The crystal structure of a pyrrolidine analogue obtained from the stereoselective reduction of the enolic form of 4-hy­droxy-2-furyl-pyrrole­carboxyl­ate is described.




oxy

Crystal structures of two polymorphs for fac-bromido­tricarbon­yl[4-(4-meth­oxy­phen­yl)-2-(pyridin-2-yl)thia­zole-κ2N,N']rhenium(I)

Crystallization of the title compound from CH2Cl2/n-pentane (1:5 v/v) at room temperature gave two polymorphs, which crystallize in monoclinic (P21/c; α form) and ortho­rhom­bic (Pna21; β form) space groups. The ReI complex mol­ecules in either polymorph adopt a six-coordinate octa­hedral geometry with three facially-oriented carbonyl ligands, one bromido ligand, and two nitro­gen atoms from one chelating ligand ppt-OMe. In the crystal, both polymorph α and β form di-periodic sheet-like architectures supported by multiple hydrogen bonds.




oxy

Crystal structure, Hirshfeld surface, DFT and mol­ecular docking studies of 2-{4-[(E)-(4-acetylphen­yl)diazen­yl]phen­yl}-1-(5-bromo­thio­phen-2-yl)ethanone; a bromine⋯oxygen type contact

The title compound is a non-liquid crystal mol­ecule. The mol­ecular crystal is consolidated by C—Br⋯O&z-dbnd;C type contacts running continuously along the [001] direction.




oxy

Synthesis, crystal structure and Hirshfeld surface analysis of N-(4-meth­oxy­phen­yl)picolinamide

The mol­ecular and crystal structure of N-(4-meth­oxy­phen­yl)picolinamide were studied and Hirshfeld surfaces and fingerprint plots were generated to investigate various inter­molecular inter­actions.




oxy

Crystal structures of two polymorphs for fac-bromidotricarbonyl[4-(4-methoxyphenyl)-2-(pyridin-2-yl)thiazole-κ2N,N']rhenium(I)

Crystallization of the title compound, fac-[ReBr(ppt-OMe)(CO)3] (ppt-OMe = C15H12N2OS), from CH2Cl2/n-pentane (1:5 v/v) at room temperature gave two polymorphs, which crystallize in monoclinic (P21/c; α form) and orthorhombic (Pna21; β form) space groups. The ReI complex molecules in either polymorph adopt a six-coordinate octahedral geometry with three facially-oriented carbonyl ligands, one bromido ligand, and two nitrogen atoms from one chelating ligand ppt-OMe. In the crystal, both polymorph α and β form di-periodic sheet-like architectures supported by multiple hydrogen bonds. In polymorph α, two types of hydrogen bonds (C—H...O) are found while, in polymorph β, four types of hydrogen bonds (C—H...O and C—H...Br) exist.




oxy

The role of carboxyl­ate ligand orbitals in the breathing dynamics of a metal-organic framework by resonant X-ray emission spectroscopy

Metal-organic frameworks (MOFs) exhibit structural flexibility induced by temperature and guest adsorption, as demonstrated in the structural breathing transition in certain MOFs between narrow-pore and large-pore phases. Soft modes were suggested to entropically drive such pore breathing through enhanced vibrational dynamics at high temperatures. In this work, oxygen K-edge resonant X-ray emission spectroscopy of the MIL-53(Al) MOF was performed to selectively probe the electronic perturbation accompanying pore breathing dynamics at the ligand carboxyl­ate site for metal–ligand interaction. It was observed that the temperature-induced vibrational dynamics involves switching occupancy between antisymmetric and symmetric configurations of the carboxyl­ate oxygen lone pair orbitals, through which electron density around carboxyl­ate oxygen sites is redistributed and metal–ligand interactions are tuned. In turn, water adsorption involves an additional perturbation of π orbitals not observed in the structural change solely induced by temperature.




oxy

Methyl 1-(4-fluoro­benz­yl)-1H-indazole-3-carboxyl­ate

The title compound, C16H13FN2O2, was synthesized by nucleophilic substitution of the indazole N—H hydrogen atom of methyl 1H-indazole-3-carboxyl­ate with 1-(bromo­meth­yl)-4-fluoro­benzene. In the crystal, some hydrogen-bond-like inter­actions are observed.




oxy

rac-Hy­droxy­isovaleric acid

The title compound (systematic name: rac-2-hydroxy-3-methylbutanoic acid), C5H10O3, is the constitutional isomer of α-hy­droxy­butanoic acid. In the crystal, hydrogen bonds involving the alcoholic hydroxyl group give rise to centrosymmetric dimers that are extended to sheets perpendicular to the crystallographic c axis.




oxy

Di­chlorido­(4,7-dimeth­oxy-1,10-phenanthroline-κ2N,N')zinc(II)

In the title complex, [ZnCl2(C14H12N2O2)], the ZnII atom is located on a twofold rotation axis and is fourfold coordinated by two chlorido ligands and a bidentate 4,7-meth­oxy-1,10-phenanthroline ligand in a distorted tetra­hedral environment. Weak π–π stacking inter­actions between adjacent 4,7-dimeth­oxy-1,10-phenanthroline rings [centroid-to-centroid distances = 3.5969 (11) and 3.7738 (11) Å] contribute to the alignment of the complexes in layers parallel to (overline{2}01).




oxy

Bis(2-hy­droxy-2,3-di­hydro-1H-inden-1-aminium) tetra­chlorido­palladate(II) hemihydrate

A new square-planar palladium complex salt hydrate, (C9H12NO)2[PdCl4]·0.5H2O, has been characterized. The asymmetric unit of the complex salt comprises two [PdCl4]2− dianions, four 2-hy­droxy-2,3-di­hydro-1H-inden-1-aminium cations, each derived from (1R,2S)-(+)-1-amino­indan-2-ol, and one water mol­ecule of crystallization. In the crystal, a two-dimensional layer parallel to (001) features a number of O—H⋯O, N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds.




oxy

(2,2'-Bi­pyridine-κ2N,N')(4,4'-dimeth­oxy-2,2'-bipyridine-κ2N,N')palladium(II) bis­(tri­fluoro­meth­anesulfonate)

In the title complex salt, [Pd(C10H8N2)(C12H12N2O2)](CF3SO3)2, the palladium(II) atom is fourfold coordinated by two chelating ligands, 2,2'-bi­pyridine and 4,4'-dimeth­oxy-2,2'-bi­pyridine, in a distorted square-planar environment. In the crystal, weak π–π stacking inter­actions between the 2,2'-bi­pyridine rings [centroid-to-centroid distances = 3.8984 (19) Å] and between the 4,4'-dimeth­oxy-2,2'-bi­pyridine rings [centroid-to-centroid distances = 3.747 (18) Å] contribute to the alignment of the complex cations in columns parallel to the b-axis direction.




oxy

Prop-2-ynyl 3-meth­oxy-4-(prop-2-yn­yloxy)benzoate

The title compound, C14H12O4, comprises of two crystallographically independent mol­ecules in the asymmetric unit, linked via C—H⋯O inter­actions to form dimeric entities. The allylic groups are twisted out of the phenyl planes with dihedral angles varying between 7.92 (13) and 25.42 (8)°. In the crystal, the packing follows a zigzag pattern along the c-axis direction. The absolute configuration of the sample could not be determined reliably.




oxy

Methyl N-{(1R)-2-[(meth­oxy­carbon­yl)­oxy]-1-phenyleth­yl}carbamate

The title mol­ecule, C12H15NO5, is a methyl carbamate derivative obtained by reacting (R)-2-phenyl­glycinol and methyl chloro­formate, with calcium hydroxide as heterogeneous catalyst. Supra­molecular chains are formed in the [100] direction, based on N—H⋯O hydrogen bonds between the amide and carboxyl­ate groups. These chains weakly inter­act in the crystal, and the phenyl rings do not display significant π–π inter­actions.




oxy

Methyl 2-hy­droxy-4-iodo­benzoate

The structure of the title compound, C8H7IO3, at 90 K has monoclinic (P21/c) symmetry. The extended structure is layered and displays inter­molecular and intra­molecular hydrogen bonding arising from the same OH group.




oxy

Chlorido­(2-{(2-hy­droxy­eth­yl)[tris­(hy­droxy­meth­yl)meth­yl]amino}­ethano­lato-κ5N,O,O',O'',O''')copper(II)

The title complex, [Cu(C8H18NO5)Cl] or [Cu(H4bis-tris­)Cl], was obtained starting from the previously reported [Cu(H5bis-tris­)Cl]Cl compound. The deprotonation of the amino­polyol ligand H5bis-tris {[bis­(2-hy­droxy­eth­yl)amino]­tris­(hy­droxy­meth­yl)methane, C8H19NO5} promotes the formation of a very strong O—H⋯O inter­molecular hydrogen bond, characterized by an H⋯O separation of 1.553 (19) Å and an O—H⋯O angle of 178 (4)°. The remaining hy­droxy groups are also engaged in hydrogen bonds, forming R22(8), R44(16), R44(20) and R44(22) ring motifs, which stabilize the triperiodic supra­molecular network.




oxy

(S)-2-Carb­oxy­ethyl l-cysteinyl sulfone

The title compound {systematic name: (2S)-2-aza­niumyl-3-[(2-carb­oxy­ethane)­sulfon­yl]propano­ate}, C6H11NO6S, forms enanti­opure crystals in the monoclinic space group P21 and exists as a zwitterion, with a protonated α-amino group and a deprotonated α-carboxyl group. Both the carboxyl groups and the amino group are involved in an extensive multicentered inter­molecular hydrogen-bonding scheme. In the crystal, the diperiodic network of hydrogen bonds propagates parallel to (101) and involves inter­connected heterodromic R43(10) rings. Electrostatic forces are major contributors to the structure energy, which was estimated by DFT calculations as Etotal = −333.5 kJ mol−1.




oxy

Poly[[{μ2-5-[(di­methyl­amino)(thioxo)meth­oxy]benzene-1,3-di­carboxyl­ato-κ4O1,O1':O3,O3'}(μ2-4,4'-di­pyridyl­amine-κ2N4:N4')cobalt(II)] di­methyl­formamide hemisolvate monohydrate]

In the crystal structure of the title compound, {[Co(C11H9NSO5)(C10H9N3)]0.5C3H7NO·H2O}n or {[Co(dmtb)(dpa)]·0.5DMF·H2O}n (dmtb2– = 5-[(di­meth­yl­amino)­thioxometh­oxy]-1,3-benzene­dicarboxyl­ate and dpa = 4,4'-di­pyridyl­amine), an assembly of periodic [Co(C11H9NSO5)(C10H9N3)]n layers extending parallel to the bc plane is present. Each layer is constituted by distorted [CoO4N2] octa­hedra, which are connected through the μ2-coordination modes of both dmtb2– and dpa ligands. Occupationally disordered water and di­meth­yl­formamide (DMF) solvent mol­ecules are located in the voids of the network to which they are connected through hydrogen-bonding inter­actions.




oxy

Bis{(S)-(−)-N-[(2-biphen­yl)methyl­idene]-1-(4-meth­oxy­phen­yl)ethyl­amine-κN}di­chlorido­palladium(II)

The PdII complex bis­{(S)-(−)-N-[(biphenyl-2-yl)methyl­idene]1-(4-meth­oxy­phen­yl)ethanamine-κN}di­chlorido­palladium(II), [PdCl2(C22H21NO)2], crystallizes in the monoclinic Sohncke space group P21 with a single mol­ecule in the asymmetric unit. The coordination environment around the palladium is slightly distorted square planar. The N—Pd—Cl bond angles are 91.85 (19), 88.10 (17), 89.96 (18), and 90.0 (2)°, while the Pd—Cl and Pd—N bond lengths are 2.310 (2) and 2.315 (2) Å and 2.015 (2) and 2.022 (6) Å, respectively. The crystal structure features inter­molecular N—H⋯Cl and intramolecular C—H⋯Pd inter­actions, which lead to the formation of a supramolecular framework structure.




oxy

Bis(8-hy­droxy­quinolinium) naphthalene-1,5-di­sulfonate tetra­hydrate

The inter­action between 8-hy­droxy­quinoline (8HQ, C9H7NO) and naphthalene-1,5-di­sulfonic acid (H2NDS, C10H8O6S2) in aqueous media results in the formation of the salt hydrate bis­(8-hy­droxy­quinolinium) naphthalene-1,5-di­sulfonate tetra­hydrate, 2C9H8NO+·C10H6O6S22−·4H2O. The asymmetric unit comprises one protonated 8HQ+ cation, half of an NDS2– dianion symmetrically disposed around a center of inversion, and two water mol­ecules. Within the crystal structure, these components are organized into chains along the [010] and [10overline{1}] directions through O—H⋯O and N—H⋯O hydrogen-bonding inter­actions, forming a di-periodic network parallel to (101). Additional stabilizing inter­actions such as C—H⋯O, C—H⋯π, and π–π inter­actions extend this arrangement into a tri-periodic network structure




oxy

6-[4-(tert-Butyl­dimethyl­sil­yloxy)phen­yl]-1-oxa­spiro­[2.5]hepta­ne

The title compound, C19H30O2Si, has triclinic (Poverline{1}) symmetry at 100 K. The O atom of the epoxide group has a pseudoaxial orientation and the dihedral angle between the cyclo­hexyl and benzene rings is 85.80 (8)°. The C—O—Si—Ct (t = tert-but­yl) torsion angle is −177.40 (14)°. In the crystal, pairwise C—H⋯O links connect the mol­ecules into inversion dimers featuring R22(8) loops.




oxy

Redetermined structure of 4-(benz­yloxy)benzoic acid

In the title compound, C14H14O3, the dihedral angle between the aromatic rings is 39.76 (9)°. In the crystal, the mol­ecules associate to form centrosymmetric acid–acid dimers linked by pairwise O—H⋯O hydrogen bonds. The precision of the geometric parameters in the present single-crystal study is about an order of magnitude better than the previous powder diffraction study [Chattopadhyay et al. (2013). CrystEngComm, 15, 1077–1085].




oxy

Di­chloridotetra­kis­(3-meth­oxy­aniline)nickel(II)

The reaction of nickel(II) chloride with 3-meth­oxy­aniline yielded di­chlorido­tetra­kis­(3-meth­oxy­aniline)nickel(II), [NiCl2(C7H9NO)4], as yellow crystals. The NiII ion is pseudo-octa­hedral with the chloride ions trans to each other. The four 3-meth­oxy­aniline ligands differ primarily due to different conformations about the Ni—N bond, which also affect the hydrogen bonding. Inter­molecular N—H⋯ Cl hydrogen bonds and short Cl⋯Cl contacts between mol­ecules link them into chains parallel to the b axis.




oxy

Bis(2-carb­oxy­quinolinium) hexa­chlorido­stan­nate(IV) dihydrate

In the hydrated title salt, (C10H8NO2)2[SnCl6]·2H2O, the tin(IV) atom is located about a center of inversion. In the crystal structure, the organic cation, the octa­hedral inorganic anion and the water mol­ecule of crystallization inter­act through O—H⋯O, N—H⋯O and O—H⋯Cl hydrogen bonds, supplemented by weak π–π stacking between neighboring cations, and C—Cl⋯π inter­actions.




oxy

(E)-1-(3,4-Di­meth­oxy­phen­yl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)prop-2-en-1-one

In the title compound, C26H22N2O3, the dihedral angle between the benzene and pyrazole rings of the chalcone unit is 88.3 (1)°. The pyrazole ring has two attached phenyl rings that form dihedral angles with the pyrazole ring of 22.6 (2) and 40.0 (1)°. In the crystal, pairwise C—H⋯O hydrogen bonds generate R22(20) inversion dimers.




oxy

Redetermined structure of methyl 3-{4,4-di­fluoro-2-[2-(methoxy­car­bon­yl)­ethyl]-1,3,5,7-tetra­methyl-4-bora-3a,4a-di­aza-s-in­da­cen-6-yl}pro­pion­ate

In the title compound, C21H27BF2N2O4, a highly fluorescent boron–dipyrromethene dye, the methyl­propionate moieties have different conformations. In the crystal, weak C—H⋯F and C—H⋯O inter­actions link the mol­ecules. Some optical properties are presented.




oxy

(1R,2S,4aR,6S,8R,8aS)-1-(3-Hy­droxy­propano­yl)-1,3,6,8-tetra­methyl-1,2,4a,5,6,7,8,8a-octa­hydronaphthalene-2-carb­oxy­lic acid

The mol­ecular structure of C18H28O4, (+)-diplodiatoxin, is described, whereby the absolute configuration of the structure of diplodiatoxin has been confirmed by single-crystal X-ray diffraction. Diplodiatoxin crystallizes in the chiral P43212 space group with one mol­ecule in the asymmetric unit.




oxy

(Z)-N-(2,6-Diiso­propyl­phen­yl)-1-[(2-meth­oxyphen­yl)amino]­methanimine oxide

The mol­ecular structure of the title compound, C20H26N2O2 reveals non-co-planarity between the central formamidine backbone and each of the outer meth­oxy- and i-propyl- substituted benzene rings with dihedral angles of 7.88 (15) and 81.17 (15)°, respectively, indicating significant twists in the mol­ecule. In the crystal, inter­molecular C—H⋯O inter­actions, forming an R34(30) graph set, occur within a two-dimensional layer that extends along the ac plane.




oxy

(Z)-N-(2,6-Di­methyl­phen­yl)-1-[(2-meth­oxy­phen­yl)amino]­methanimine oxide methanol monosolvate

In the title solvate, C16H18N2O2·CH4O, the dihedral angles between the formamidine backbone and the pendant 2-meth­oxy­phenyl and 2,6-di­methyl­phenyl groups are 14.84 (11) and 81.61 (12)°, respectively. In the crystal, the components are linked by C—H⋯O, O—H⋯O and C—H⋯ π hydrogen bonds, generating a supra­molecular chain that extends along the crystallographic a-axis direction.