irs The crystal structures and Hirshfeld surface analyses of a cadmium(II) and a zinc(II) mononuclear complex of the new tetrakis-substituted pyrazine ligand N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis By scripts.iucr.org Published On :: 2020-02-18 The whole molecule of the cadmium(II) complex, diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II), [CdI2(C36H40N6)], (I), of the ligand N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline) (L), is generated by a twofold rotation symmetry; the twofold axis bisects the cadmium atom and the nitrogen atoms of the pyrazine ring. The ligand coordinates in a mono-tridentate manner and the cadmium atom has a fivefold CdN3I2 coordination environment with a distorted shape. In the zinc(II) complex, dichlorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate, [ZnCl2(C36H40N6)]·0.6CH2Cl2, (II), ligand L also coordinates in a mono-tridentate manner and the zinc atom has a fivefold ZnN3Cl2 coordination environment with a distorted shape. It crystallized as a partial dichloromethane solvate. In the crystal of I, the complex molecules are linked by weak C—H⋯I contacts, forming ribbons propagating along [100]. In the crystal of II, the complex molecules are linked by a series of C—H⋯π interactions, forming layers lying parallel to the (1overline{1}1) plane. In the crystals of both compounds there are metal–halide⋯π(pyrazine) contacts present. The Hirshfeld analyses confirm the importance of the C—H⋯halide contacts in the crystal packing of both compounds. Full Article text
irs Crystal structure, Hirshfeld surface analysis and DFT studies of 1,3-bis[2-methoxy-4-(prop-2-en-1-yl)phenoxy]propane By scripts.iucr.org Published On :: 2020-02-14 The asymmetric unit of the title compound, C23H28O4, comprises two half-molecules, with the other half of each molecule being completed by the application of twofold rotation symmetry. The two completed molecules both have a V-shaped appearance but differ in their conformations. In the crystal, each independent molecule forms chains extending parallel to the b axis with its symmetry-related counterparts through C—H⋯π(ring) interactions. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (65.4%), H⋯C/C⋯H (21.8%) and H⋯O/O⋯H (12.3%) interactions. Optimized structures using density functional theory (DFT) at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structures in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
irs Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 1-(1,3-benzothiazol-2-yl)-3-(2-hydroxyethyl)imidazolidin-2-one By scripts.iucr.org Published On :: 2020-02-14 In the title molecule, C12H13N3O2S, the benzothiazine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O—HHydethy⋯NThz hydrogen bonds and weak C—HImdz⋯OImdz and C—HBnz⋯OImdz (Hydethy = hydroxyethyl, Thz = thiazole, Imdz = imidazolidine and Bnz = benzene) interactions, together with C—HImdz⋯π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] interactions between thiazole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯N and C—H⋯O hydrogen-bond energies are 68.5 (for O—HHydethy⋯NThz), 60.1 (for C—HBnz⋯OImdz) and 41.8 kJ mol−1 (for C—HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. Full Article text
irs Crystal structure, characterization and Hirshfeld analysis of bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate By scripts.iucr.org Published On :: 2020-02-18 In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetracoordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π interactions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO molecules interact weakly with the complex molecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent molecule is disordered over two positions with occupancies of 0.70 and 0.30. Full Article text
irs Crystal structure and Hirshfeld surface analysis of (E)-3-(benzylideneamino)-5-phenylthiazolidin-2-iminium bromide By scripts.iucr.org Published On :: 2020-02-21 The central thiazolidine ring of the title salt, C16H16N3S+·Br−, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) interactions. Full Article text
irs Structural, Hirshfeld and DFT studies of conjugated D–π–A carbazole chalcone crystal By scripts.iucr.org Published On :: 2020-02-18 A new conjugated carbazole chalcone compound, (E)-3-[4-(9,9a-dihydro-8aH-carbazol-9-yl)phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (CPNC), C27H18N2O3, was synthesized using a Claisen–Schmidt condensation reaction. CPNC crystallizes in the monoclinic non-centrosymmetric space group Cc and adopts an s-cis conformation with respect to the ethylenic double bonds (C=O and C=C). The crystal packing features C—H⋯O and C—H⋯π interactions whose percentage contribution was quantified by Hirshfeld surface analysis. Quantum chemistry calculations including geometrical optimization and molecular electrostatic potential (MEP) were analysed by density functional theory (DFT) with a B3LYP/6–311 G++(d,p) basis set. Full Article text
irs Crystal structure, Hirshfeld surface analysis and DFT studies of 1-[r-2,c-6-diphenyl-t-3-(propan-2-yl)piperidin-1-yl]ethan-1-one By scripts.iucr.org Published On :: 2020-02-18 In the title compound, C22H27NO, the piperidine ring adopts a chair conformation. The dihedral angles between the mean plane of the piperidine ring and the phenyl rings are 89.78 (7) and 48.30 (8)°. In the crystal, molecules are linked into chains along the b-axis direction by C—H⋯O hydrogen bonds. The DFT/B3LYP/6–311 G(d,p) method was used to determine the HOMO–LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule. Full Article text
irs Crystal structures and Hirshfeld surface analyses of two new tetrakis-substituted pyrazines and a degredation product By scripts.iucr.org Published On :: 2020-02-18 The two new tetrakis-substituted pyrazines, 1,1',1'',1'''-(pyrazine-2,3,5,6-tetrayl) tetrakis(N,N-dimethylmethanamine), C16H32N6, (I) and N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline), C36H40N6, (II), both crystallize with half a molecule in the asymmetric unit; the whole molecules are generated by inversion symmetry. There are weak intramolecular C—H⋯N hydrogen bonds present in both molecules and in (II) the pendant N-methylaniline rings are linked by a C—H⋯π interaction. The degredation product, N,N'-[(6-phenyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine-2,3-diyl)bis(methylene)]bis(N-methylaniline), C28H29N5, (III), was obtained several times by reacting (II) with different metal salts. Here, the 6-phenyl ring is almost coplanar with the planar pyrrolo[3,4-b]pyrazine unit (r.m.s. deviation = 0.029 Å), with a dihedral angle of 4.41 (10)° between them. The two N-methylaniline rings are inclined to the planar pyrrolo[3,4-b]pyrazine unit by 88.26 (10) and 89.71 (10)°, and to each other by 72.56 (13)°. There are also weak intramolecular C—H⋯N hydrogen bonds present involving the pyrazine ring and the two N-methylaniline groups. In the crystal of (I), there are no significant intermolecular contacts present, while in (II) molecules are linked by a pair of C—H⋯π interactions, forming chains along the c-axis direction. In the crystal of (III), molecules are linked by two pairs of C—H⋯π interactions, forming inversion dimers, which in turn are linked by offset π–π interactions [intercentroid distance = 3.8492 (19) Å], forming ribbons along the b-axis direction. Full Article text
irs Whole-molecule disorder of the Schiff base compound 4-chloro-N-(4-nitrobenzylidene)aniline: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2020-02-18 In the crystal of the title Schiff base compound, C13H9ClN2O2, [CNBA; systematic name: (E)-N-(4-chlorophenyl)-1-(4-nitrophenyl)methanimine], the CNBA molecule shows whole-molecule disorder (occupancy ratio 0.65:0.35), with the disorder components related by a twofold rotation about the shorter axis of the molecule. The aromatic rings are inclined to each other by 39.3 (5)° in the major component and by 35.7 (9)° in the minor component. In the crystal, C—H⋯O hydrogen bonds predominate in linking the major components, while weak C—H⋯Cl interactions predominate in linking the minor components. The result is the formation of corrugated layers lying parallel to the ac plane. The crystal packing was analysed using Hirshfeld surface analysis and compared with related structures. Full Article text
irs Polymorphism of 2-(5-benzyl-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl)acetic acid with two monoclinic modifications: crystal structures and Hirshfeld surface analyses By scripts.iucr.org Published On :: 2020-02-25 Two polymorphs of the title compound, C19H16N2O3, were obtained from ethanolic (polymorph I) and methanolic solutions (polymorph II), respectively. Both polymorphs crystallize in the monoclinic system with four formula units per cell and a complete molecule in the asymmetric unit. The main difference between the molecules of (I) and (II) is the reversed position of the hydroxy group of the carboxylic function. All other conformational features are found to be similar in the two molecules. The different orientation of the OH group results in different hydrogen-bonding schemes in the crystal structures of (I) and (II). Whereas in (I) intermolecular O—H⋯O hydrogen bonds with the pyridazinone carbonyl O atom as acceptor generate chains with a C(7) motif extending parallel to the b-axis direction, in the crystal of (II) pairs of inversion-related O—H⋯O hydrogen bonds with an R22(8) ring motif between two carboxylic functions are found. The intermolecular interactions in both crystal structures were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots. Full Article text
irs Crystal structure and Hirshfeld surface analysis of 4-allyl-2-methoxy-6-nitrophenol By scripts.iucr.org Published On :: 2020-02-28 The asymmetric unit of the title compound, C10H11NO4, which was synthesized via nitration reaction of eugenol (4-allyl-2-methoxyphenol) with a mixture of nitric acid and sulfuric acid, consists of three independent molecules of similar geometry. Each molecule displays an intramolecular hydrogen bond involving the hydroxide and the nitro group forming an S(6) motif. The crystal cohesion is ensured by intermolecular C—H⋯O hydrogen bonds in addition to π–π stacking interactions between the aromatic rings [centroid–centroid distances = 3.6583 (17)–4.0624 (16) Å]. The Hirshfeld surface analysis and the two-dimensional fingerprint plots show that H⋯H (39.6%), O⋯H/H⋯O (37.7%), C⋯H/H⋯C (12.5%) and C⋯C (4%) are the most important contributors towards the crystal packing. Full Article text
irs Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of (S)-10-propargylpyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione By scripts.iucr.org Published On :: 2020-03-03 The title compound, C15H14N2O2, consists of pyrrole and benzodiazepine units linked to a propargyl moiety, where the pyrrole and diazepine rings adopt half-chair and boat conformations, respectively. The absolute configuration was assigned on the the basis of l-proline, which was used in the synthesis of benzodiazepine. In the crystal, weak C—HBnz⋯ODiazp and C—HProprg⋯ODiazp (Bnz = benzene, Diazp = diazepine and Proprg = propargyl) hydrogen bonds link the molecules into two-dimensional networks parallel to the bc plane, enclosing R44(28) ring motifs, with the networks forming oblique stacks along the a-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.8%), H⋯C/C⋯H (25.7%) and H⋯O/O⋯H (20.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯O hydrogen-bond energies are 38.8 (for C—HBnz⋯ODiazp) and 27.1 (for C—HProprg⋯ODiazp) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
irs Crystal structure and Hirshfeld surface analysis of 3,6-bis(pyrimidin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine dihydrate By scripts.iucr.org Published On :: 2020-03-03 In the title compound, C10H8N8·2H2O or H2bmtz·2H2O [bmtz = 3,6-bis(2'-pyrimidyl)-1,2,4,5-tetrazine], the asymmetric unit consists of one-half molecule of H2bmtz and one water molecule, the whole H2bmtz molecule being generated by a crystallographic twofold rotation axis passing through the middle point of the 1,4-dihydro-1,2,4,5-tetrazine moiety. In the crystal, N—H⋯O, N—H⋯N, O—H⋯O hydrogen bonds and aromatic π–π stacking interactions link the components into a three-dimensional supramolecular network. Hirshfeld surface analysis was used to further investigate the intermolecular interactions in the crystal structure. Full Article text
irs Crystal structure and Hirshfeld surface analysis of (C7H9N4O2)[ZnCl3(H2O)] By scripts.iucr.org Published On :: 2020-03-10 In the title molecular salt, 1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-9-ium aquatrichloridozincate(II), (C7H9N4O2)[ZnCl3(H2O)], the fused ring system of the cation is close to planar, with the largest deviation from the mean plane being 0.037 (3) Å. In the complex anion, the ZnII cation is coordinated by three chloride ions and one oxygen atom from the water ligand in a distorted tetrahedral geometry. In the crystal, inversion dimers between pairs of cations linked by pairwise N—H⋯O hydrogen bonds generate R22(10) rings. The anions are linked into dimers by pairs of O—H⋯Cl hydrogen bonds and the respective dimers are linked by O—H⋯O and N—H⋯Cl hydrogen bonds. Together, these generate a three-dimensional supramolecular network. Hirshfeld surfaces were generated to gain further insight into the packing. Full Article text
irs A redetermination of the crystal structure of the mannitol complex NH4[Mo2O5(C6H11O6)]·H2O: hydrogen-bonding scheme and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2020-03-10 The redetermined structure [for the previous study, see: Godfrey & Waters (1975). Cryst. Struct. Commun. 4, 5–8] of ammonium μ-oxido-μ-[1,5,6-trihydroxyhexane-2,3,4-tris(olato)]bis[dioxidomolybdenum(V)] monohydrate, NH4[Mo2(C6H11O6)O5]·H2O, was obtained from an attempt to prepare a glutamic acid complex from the [Co2Mo10H4O38]6− anion. Subsequent study indicated the complex arose from a substantial impurity of mannitol in the glutamic acid sample used. All hydrogen atoms have been located in the present study and the packing displays N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. A Hirshfeld surface analysis was also performed. Full Article text
irs Crystal structure, Hirshfeld surface analysis and computational study of 2-chloro-N-[4-(methylsulfanyl)phenyl]acetamide By scripts.iucr.org Published On :: 2020-03-31 In the title compound, C9H10ClNOS, the amide functional group –C(=O)NH– adopts a trans conformation with the four atoms nearly coplanar. This conformation promotes the formation of a C(4) hydrogen-bonded chain propagating along the [010] direction. The central part of the molecule, including the six-membered ring, the S and N atoms, is fairly planar (r.m.s. deviation of 0.014). The terminal methyl group and the C(=O)CH2 group are slightly deviating out-of-plane while the terminal Cl atom is almost in-plane. Hirshfeld surface analysis of the title compound suggests that the most significant contacts in the crystal are H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯S/S⋯H. π–π interactions between inversion-related molecules also contribute to the crystal packing. DFT calculations have been performed to optimize the structure of the title compound using the CAM-B3LYP functional and the 6–311 G(d,p) basis set. The theoretical absorption spectrum of the title compound was calculated using the TD–DFT method. The analysis of frontier orbitals revealed that the π–π* electronic transition was the major contributor to the absorption peak in the electronic spectrum. Full Article text
irs The first coordination compound of 6-fluoronicotinate: the crystal structure of a one-dimensional nickel(II) coordination polymer containing the mixed ligands 6-fluoronicotinate and 4,4'-bipyridine By scripts.iucr.org Published On :: 2020-03-10 A one-dimensional nickel(II) coordination polymer with the mixed ligands 6-fluoronicotinate (6-Fnic) and 4,4'-bipyridine (4,4'-bpy), namely, catena-poly[[diaquabis(6-fluoropyridine-3-carboxylato-κO)nickel(II)]-μ-4,4'-bipyridine-κ2N:N'] trihydrate], {[Ni(6-Fnic)2(4,4'-bpy)(H2O)2]·3H2O}n, (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-fluoronicotinic acid (C6H4FNO2) and 4,4'-bipyridine (C10H8N2) in a mixture of water and ethanol. The nickel(II) ion in 1 is octahedrally coordinated by the O atoms of two water molecules, two O atoms from O-monodentate 6-fluoronicotinate ligands and two N atoms from bridging 4,4'-bipyridine ligands, forming a trans isomer. The bridging 4,4'-bipyridine ligands connect symmetry-related nickel(II) ions into infinite one-dimensional polymeric chains running in the [1overline{1}0] direction. In the extended structure of 1, the polymeric chains and lattice water molecules are connected into a three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of distinct hydrogen-bond ring motifs: octameric R88(24) and hexameric R86(16) loops. Full Article text
irs Crystal structure and Hirshfeld surface analysis of 2-amino-3-hydroxypyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide By scripts.iucr.org Published On :: 2020-03-27 The asymmetric unit of the title compound, C5H7N2O+·C4H4NO4S−, contains one cation and one anion. The 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide anion adopts an envelope conformation with the S atom as the flap. In the crystal, the anions and cations are held together by N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, thus forming a three-dimensional structure. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal packing is dominated by O⋯H/H⋯O (43.1%) and H⋯H (24.2%) contacts. Full Article text
irs Crystal structure and Hirshfeld surface analysis of 3,4-dihydro-2H-anthra[1,2-b][1,4]dioxepine-8,13-dione By scripts.iucr.org Published On :: 2020-03-27 The title compound, C17H12O4, was synthesized from the dye alizarin. The dihedral angle between the mean plane of the anthraquinone ring system (r.m.s. deviation = 0.039 Å) and the dioxepine ring is 16.29 (8)°. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds, forming sheets lying parallel to the ab plane. The sheets are connected through π–π and C=O⋯π interactions to generate a three-dimensional supramolecular network. Hirshfeld surface analysis was used to investigate intermolecular interactions in the solid-state: the most important contributions are from H⋯H (43.0%), H⋯O/O⋯H (27%), H⋯C/C⋯H (13.8%) and C⋯C (12.4%) contacts. Full Article text
irs Crystal structure, Hirshfeld surface and frontier molecular orbital analysis of 10-benzyl-9-(3-ethoxy-4-hydroxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione By scripts.iucr.org Published On :: 2020-03-27 In the fused ring system of the title compound, C32H37NO4, the central dihydropyridine ring adopts a flattened boat conformation, the mean and maximum deviations of the dihydropyridine ring being 0.1429 (2) and 0.2621 (2) Å, respectively. The two cyclohexenone rings adopt envelope conformations with the tetrasubstituted C atoms as flap atoms. The benzene and phenyl rings form dihedral angles of 85.81 (2) and 88.90 (2)°, respectively, with the mean plane of the dihydropyridine ring. In the crystal, molecules are linked via an O—H⋯O hydrogen bond, forming a helical chain along the b-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (65.2%), O⋯H/H⋯O (18.8%) and C⋯H/H⋯C (13.9%) contacts. Quantum chemical calculations for the frontier molecular orbitals were undertake to determine the chemical reactivity of the title compound. Full Article text
irs Crystal structure, Hirshfeld surface analysis and interaction energy, DFT and antibacterial activity studies of ethyl 2-[(2Z)-2-(2-chlorobenzylidene)-3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl]acetate By scripts.iucr.org Published On :: 2020-04-07 The title compound, C19H16ClNO3S, consists of chlorophenyl methylidene and dihydrobenzothiazine units linked to an acetate moiety, where the thiazine ring adopts a screw-boat conformation. In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = dihydrobenzothiazine) hydrogen bonds form layers of molecules parallel to the bc plane. The layers stack along the a-axis direction with intercalation of the ester chains. The crystal studied was a two component twin with a refined BASF of 0.34961 (5). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (37.5%), H⋯C/C⋯H (24.6%) and H⋯O/O⋯H (16.7%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HPh⋯ODbt hydrogen bond energies are 38.3 and 30.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Moreover, the antibacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria. Full Article text
irs Synthesis, crystal structure and Hirshfeld and thermal analysis of bis[benzyl 2-(heptan-4-ylidene)hydrazine-1-carboxylate-κ2N2,O]bis(thiocyanato)nickel(II) By scripts.iucr.org Published On :: 2020-04-07 The title centrosymmetric NiII complex, [Ni(NCS)2(C15H22N2O2)2], crystallizes with one half molecule in the asymmetric unit of the monoclinic unit cell. The complex adopts an octahedral coordination geometry with two mutually trans benzyl-2-(heptan-4-ylidene)hydrazine-1-carboxylate ligands in the equatorial plane with the axial positions occupied by N-bound thiocyanato ligands. The overall conformation of the molecule is also affected by two, inversion-related, intramolecular C—H⋯O hydrogen bonds. The crystal structure features N—H⋯S, C—H⋯S and C—H⋯N hydrogen bonds together with C—H⋯π contacts that stack the complexes along the b-axis direction. The packing was further explored by Hirshfeld surface analysis. The thermal properties of the complex were also investigated by simultaneous TGA–DTA analyses. Full Article text
irs Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol By scripts.iucr.org Published On :: 2020-04-03 The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H⋯π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯C/C⋯H (35.8%) and H⋯O/O⋯H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
irs Crystal structure and Hirshfeld surface analysis of hexyl 1-hexyl-2-oxo-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2020-04-09 The asymmetric unit of the title compound, C22H31NO3, comprises of one molecule. The molecule is not planar, with the carboxylate ester group inclined by 33.47 (4)° to the heterocyclic ring. Individual molecules are linked by aromaticC—H⋯Ocarbonyl hydrogen bonds into chains running parallel to [001]. Slipped π–π stacking interactions between quinoline moieties link these chains into layers extending parallel to (100). Hirshfeld surface analysis, two-dimensional fingerprint plots and molecular electrostatic potential surfaces were used to quantify the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (72%), O⋯H/H⋯O (14.5%) and C⋯H/H⋯C (5.6%) interactions. Full Article text
irs Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 3-butyl-2,6-bis(4-fluorophenyl)piperidin-4-one By scripts.iucr.org Published On :: 2020-04-09 The title compound, C21H23F2NO, consists of two fluorophenyl groups and one butyl group equatorially oriented on a piperidine ring, which adopts a chair conformation. The dihedral angle between the mean planes of the phenyl rings is 72.1 (1)°. In the crystal, N—H⋯O and weak C—H⋯F interactions, which form R22[14] motifs, link the molecules into infinite C(6) chains propagating along [001]. A weak C—H⋯π interaction is also observed. A Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H⋯H (53.3%), H⋯C/C⋯H (19.1%), H⋯F/F⋯H (15.7%) and H⋯O/O⋯H (7.7%) contacts. Density functional theory geometry-optimized calculations were compared to the experimentally determined structure in the solid state and used to determine the HOMO–LUMO energy gap and compare it to the UV–vis experimental spectrum. Full Article text
irs 2-[(2,4,6-Trimethylbenzene)sulfonyl]phthalazin-1(2H)-one: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-04-21 The X-ray crystal structure of the title phthalazin-1-one derivative, C17H16N2O3S {systematic name: 2-[(2,4,6-trimethylbenzene)sulfonyl]-1,2-dihydrophthalazin-1-one}, features a tetrahedral sulfoxide-S atom, connected to phthalazin-1-one and mesityl residues. The dihedral angle [83.26 (4)°] between the organic substituents is consistent with the molecule having the shape of the letter V. In the crystal, phthalazinone-C6-C—H⋯O(sulfoxide) and π(phthalazinone-N2C4)–π(phthalazinone-C6) stacking [inter-centroid distance = 3.5474 (9) Å] contacts lead to a linear supramolecular tape along the a-axis direction; tapes assemble without directional interactions between them. The analysis of the calculated Hirshfeld surfaces confirm the importance of the C—H⋯O and π-stacking interactions but, also H⋯H and C—H⋯C contacts. The calculation of the interaction energies indicate the importance of dispersion terms with the greatest energies calculated for the C—H⋯O and π-stacking interactions. Full Article text
irs Crystal structure, Hirshfeld surface analysis and DFT studies of 6-bromo-3-(12-bromododecyl)-2-(4-nitrophenyl)-4H-imidazo[4,5-b]pyridine By scripts.iucr.org Published On :: 2020-04-21 The title compound, C24H30Br2N4O2, consists of a 2-(4-nitrophenyl)-4H-imidazo[4,5-b]pyridine entity with a 12-bromododecyl substituent attached to the pyridine N atom. The middle eight-carbon portion of the side chain is planar to within 0.09 (1) Å and makes a dihedral angle of 21.9 (8)° with the mean plane of the imidazolopyridine moiety, giving the molecule a V-shape. In the crystal, the imidazolopyridine units are associated through slipped π–π stacking interactions together with weak C—HPyr⋯ONtr and C—HBrmdcyl⋯ONtr (Pyr = pyridine, Ntr = nitro and Brmdcyl = bromododecyl) hydrogen bonds. The 12-bromododecyl chains overlap with each other between the stacks. The terminal –CH2Br group of the side chain shows disorder over two resolved sites in a 0.902 (3):0.098 (3) ratio. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.1%), H⋯Br/Br⋯H (15.0%) and H⋯O/O⋯H (12.8%) interactions. The optimized molecular structure, using density functional theory at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
irs Crystal structure and Hirshfeld surface analysis of 2-phenyl-1H-phenanthro[9,10-d]imidazol-3-ium benzoate By scripts.iucr.org Published On :: 2020-04-24 In the title compound, C21H15N2+·C7H5O2−, 2-phenyl-1H-phenanthro[9,10-d]imidazole and benzoic acid form an ion pair complex. The system is consolidated by hydrogen bonds along with π–π interactions and N—H⋯π interactions between the constituent units. For a better understanding of the crystal structure and intermolecular interactions, a Hirshfeld surface analysis was performed. Full Article text
irs Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)methyl]amino}benzoic acid dimethylformamide monosolvate By scripts.iucr.org Published On :: 2020-04-24 The title compound, C22H17NO2·C3H7NO, was synthesized by condensation of an aromatic aldehyde with a secondary amine and subsequent reduction. It was crystallized from a dimethylformamide solution as a monosolvate, C22H17NO2·C3H7NO. The aromatic molecule is non-planar with a dihedral angle between the mean planes of the aniline moiety and the methyl anthracene moiety of 81.36 (8)°. The torsion angle of the Caryl—CH2—NH—Caryl backbone is 175.9 (2)°. The crystal structure exhibits a three-dimensional supramolecular network, resulting from hydrogen-bonding interactions between the carboxylic OH group and the solvent O atom as well as between the amine functionality and the O atom of the carboxylic group and additional C—H⋯π interactions. Hirshfeld surface analysis was performed to quantify the intermolecular interactions. Full Article text
irs Crystal structure and Hirshfeld surface analysis of 6-benzoyl-3,5-diphenylcyclohex-2-en-1-one By scripts.iucr.org Published On :: 2020-04-21 In the title compound, C25H20O2, the central cyclohexenone ring adopts an envelope conformation. The mean plane of the cyclohexenone ring makes dihedral angles of 87.66 (11) and 23.76 (12)°, respectively, with the two attached phenyl rings, while it is inclined by 69.55 (11)° to the phenyl ring of the benzoyl group. In the crystal, the molecules are linked by C—H⋯O and C—H⋯π interactions, forming a three-dimensional network. Full Article text
irs Synthesis, crystal structure and Hirshfeld surface analysis of N-(4-chlorophenyl)-5-cyclopropyl-1-(4-methoxyphenyl)-1H-1,2,3-triazole-4-carboxamide By scripts.iucr.org Published On :: 2020-04-30 The title compound, C19H17ClN4O2, was obtained via a two-step synthesis involving the enol-mediated click Dimroth reaction of 4-azidoanisole with methyl 3-cyclopropyl-3-oxopropanoate leading to the 5-cyclopropyl-1-(4-methoxyphenyl)-1H-1,2,3-triazole-4-carboxylic acid and subsequent acid amidation with 4-chloroaniline by 1,1'-carbonyldiimidazole (CDI). It crystallizes in space group P21/n, with one molecule in the asymmetric unit. In the extended structure, two molecules arranged in a near coplanar fashion relative to the triazole ring planes are interconnected by N—H⋯N and C—H⋯N hydrogen bonds into a homodimer. The formation of dimers is a consequence of the above interaction and the edge-to-face stacking of aromatic rings, which are turned by 58.0 (3)° relative to each other. The dimers are linked by C—H⋯O interactions into ribbons. DFT calculations demonstrate that the frontier molecular orbitals are well separated in energy and the HOMO is largely localized on the 4-chlorophenyl amide motif while the LUMO is associated with aryltriazole grouping. A Hirshfeld surface analysis was performed to further analyse the intermolecular interactions. Full Article text
irs Energetics of interactions in the solid state of 2-hydroxy-8-X-quinoline derivatives (X = Cl, Br, I, S-Ph): comparison of Hirshfeld atom, X-ray wavefunction and multipole refinements By scripts.iucr.org Published On :: 2019-07-15 In this work, two methods of high-resolution X-ray data refinement: multipole refinement (MM) and Hirshfeld atom refinement (HAR) – together with X-ray wavefunction refinement (XWR) – are applied to investigate the refinement of positions and anisotropic thermal motion of hydrogen atoms, experiment-based reconstruction of electron density, refinement of anharmonic thermal vibrations, as well as the effects of excluding the weakest reflections in the refinement. The study is based on X-ray data sets of varying quality collected for the crystals of four quinoline derivatives with Cl, Br, I atoms and the -S-Ph group as substituents. Energetic investigations are performed, comprising the calculation of the energy of intermolecular interactions, cohesive and geometrical relaxation energy. The results obtained for experimentally derived structures are verified against the values calculated for structures optimized using dispersion-corrected periodic density functional theory. For the high-quality data sets (the Cl and -S-Ph compounds), both MM and XWR could be successfully used to refine the atomic displacement parameters and the positions of hydrogen atoms; however, the bond lengths obtained with XWR were more precise and closer to the theoretical values. In the application to the more challenging data sets (the Br and I compounds), only XWR enabled free refinement of hydrogen atom geometrical parameters, nevertheless, the results clearly showed poor data quality. For both refinement methods, the energy values (intermolecular interactions, cohesive and relaxation) calculated for the experimental structures were in similar agreement with the values associated with the optimized structures – the most significant divergences were observed when experimental geometries were biased by poor data quality. XWR was found to be more robust in avoiding incorrect distortions of the reconstructed electron density as a result of data quality issues. Based on the problem of anharmonic thermal motion refinement, this study reveals that for the most correct interpretation of the obtained results, it is necessary to use the complete data set, including the weak reflections in order to draw conclusions. Full Article text
irs First synthesis of a unique icosahedral phase from the Khatyrka meteorite by shock-recovery experiment By scripts.iucr.org Published On :: 2020-03-26 Icosahedral quasicrystals (i-phases) in the Al–Cu–Fe system are of great interest because of their perfect quasicrystalline structure and natural occurrences in the Khatyrka meteorite. The natural quasicrystal of composition Al62Cu31Fe7, referred to as i-phase II, is unique because it deviates significantly from the stability field of i-phase and has not been synthesized in a laboratory setting to date. Synthetic i-phases formed in shock-recovery experiments present a novel strategy for exploring the stability of new quasicrystal compositions and prove the impact origin of natural quasicrystals. In this study, an Al–Cu–W graded density impactor (GDI, originally manufactured as a ramp-generating impactor but here used as a target) disk was shocked to sample a full range of Al/Cu starting ratios in an Fe-bearing 304 stainless-steel target chamber. In a strongly deformed region of the recovered sample, reactions between the GDI and the steel produced an assemblage of co-existing Al61.5Cu30.3Fe6.8Cr1.4 i-phase II + stolperite (β, AlCu) + khatyrkite (θ, Al2Cu), an exact match to the natural i-phase II assemblage in the meteorite. In a second experiment, the continuous interface between the GDI and steel formed another more Fe-rich quinary i-phase (Al68.6Fe14.5Cu11.2Cr4Ni1.8), together with stolperite and hollisterite (λ, Al13Fe4), which is the expected assemblage at phase equilibrium. This study is the first laboratory reproduction of i-phase II with its natural assemblage. It suggests that the field of thermodynamically stable icosahedrite (Al63Cu24Fe13) could separate into two disconnected fields under shock pressure above 20 GPa, leading to the co-existence of Fe-rich and Fe-poor i-phases like the case in Khatyrka. In light of this, shock-recovery experiments do indeed offer an efficient method of constraining the impact conditions recorded by quasicrystal-bearing meteorite, and exploring formation conditions and mechanisms leading to quasicrystals. Full Article text
irs Expression and interactions of stereochemically active lone pairs and their relation to structural distortions and thermal conductivity By scripts.iucr.org Published On :: 2020-03-31 In chemistry, stereochemically active lone pairs are typically described as an important non-bonding effect, and recent interest has centred on understanding the derived effect of lone pair expression on physical properties such as thermal conductivity. To manipulate such properties, it is essential to understand the conditions that lead to lone pair expression and provide a quantitative chemical description of their identity to allow comparison between systems. Here, density functional theory calculations are used first to establish the presence of stereochemically active lone pairs on antimony in the archetypical chalcogenide MnSb2O4. The lone pairs are formed through a similar mechanism to those in binary post-transition metal compounds in an oxidation state of two less than their main group number [e.g. Pb(II) and Sb(III)], where the degree of orbital interaction (covalency) determines the expression of the lone pair. In MnSb2O4 the Sb lone pairs interact through a void space in the crystal structure, and their their mutual repulsion is minimized by introducing a deflection angle. This angle increases significantly with decreasing Sb—Sb distance introduced by simulating high pressure, thus showing the highly destabilizing nature of the lone pair interactions. Analysis of the chemical bonding in MnSb2O4 shows that it is dominated by polar covalent interactions with significant contributions both from charge accumulation in the bonding regions and from charge transfer. A database search of related ternary chalcogenide structures shows that, for structures with a lone pair (SbX3 units), the degree of lone pair expression is largely determined by whether the antimony–chalcogen units are connected or not, suggesting a cooperative effect. Isolated SbX3 units have larger X—Sb—X bond angles and therefore weaker lone pair expression than connected units. Since increased lone pair expression is equivalent to an increased orbital interaction (covalent bonding), which typically leads to increased heat conduction, this can explain the previously established correlation between larger bond angles and lower thermal conductivity. Thus, it appears that for these chalcogenides, lone pair expression and thermal conductivity may be related through the degree of covalency of the system. Full Article text
irs XTIP – the world's first beamline dedicated to the synchrotron X-ray scanning tunneling microscopy technique By scripts.iucr.org Published On :: 2020-04-14 In recent years, there have been numerous efforts worldwide to develop the synchrotron X-ray scanning tunneling microscopy (SX-STM) technique. Here, the inauguration of XTIP, the world's first beamline fully dedicated to SX-STM, is reported. The XTIP beamline is located at Sector 4 of the Advanced Photon Source at Argonne National Laboratory. It features an insertion device that can provide left- or right-circular as well as horizontal- and vertical-linear polarization. XTIP delivers monochromatic soft X-rays of between 400 and 1900 eV focused into an environmental enclosure that houses the endstation instrument. This article discusses the beamline system design and its performance. Full Article text
irs Disorder in La1−xBa1+xGaO4−x/2 ionic conductor: resolving the pair distribution function through insight from first-principles modeling By journals.iucr.org Published On :: Ba excess in LaBaGaO4 triggers ionic conductivity together with structural disorder. A direct correlation is found between the density functional theory model energy and the pair distribution function fit residual. Full Article text
irs Strawberry dart frogs bred at National Zoo for first time in Zoo’s history By insider.si.edu Published On :: Wed, 06 Jan 2010 13:00:14 +0000 For the first time in its history, the National Zoo has bred strawberry dart frogs (Oophaga pumilio), which are known primarily for their vibrant colors and poisonous skin. These frogs also stand out among others because of their dedication to their young as they undergo metamorphosis from egg to tadpole to frog. The post Strawberry dart frogs bred at National Zoo for first time in Zoo’s history appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature amphibian chytrid fungus conservation biology endangered species frogs Smithsonian's National Zoo
irs For first time, scientists prove locusts use vision to place their legs when walking By insider.si.edu Published On :: Thu, 14 Jan 2010 18:35:09 +0000 In their laboratory, scientists from the University of Cambridge, the University of Southampton and the Smithsonian Tropical Research Institute in Panama, observed as a number of adult locusts walked along a horizontal ladder. After covering the right or left eye of an insect, the scientists observed a significant increase in the error rate of rungs missed by the front leg on the side of the covered eye. The post For first time, scientists prove locusts use vision to place their legs when walking appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature insects Tropical Research Institute
irs Scientists establish first frozen repository of Hawaiian coral By insider.si.edu Published On :: Wed, 18 Aug 2010 08:26:38 +0000 Unless action is taken now, coral reefs and many of the animals that depend on them may cease to exist within the next 40 years, causing the first global extinction of a worldwide ecosystem during current history. The post Scientists establish first frozen repository of Hawaiian coral appeared first on Smithsonian Insider. Full Article Marine Science Research News Science & Nature climate change conservation coral reefs endangered species extinction fungi greenhouse gas Smithsonian's National Zoo
irs Rapid Response telescope system spots first potentially hazardous asteroid By insider.si.edu Published On :: Tue, 28 Sep 2010 11:50:53 +0000 The Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) PS1 telescope has discovered an asteroid about 150 feet in diameter that will come within 4 million miles of Earth in mid-October. The post Rapid Response telescope system spots first potentially hazardous asteroid appeared first on Smithsonian Insider. Full Article Research News Science & Nature asteroids astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian rocks & minerals supernova
irs For safety’s sake, Zoo’s lion cubs take first swim By insider.si.edu Published On :: Fri, 29 Oct 2010 12:00:18 +0000 For safety’s sake, the four eight-week-old cubs born to National Zoo lioness Shera were given a swim test on Oct. 26 in the moat of […] The post For safety’s sake, Zoo’s lion cubs take first swim appeared first on Smithsonian Insider. Full Article Animals Science & Nature Spotlight mammals Smithsonian's National Zoo veterinary medicine
irs National Zoo and partners first to breed critically endangered tree frog By insider.si.edu Published On :: Thu, 18 Nov 2010 18:23:34 +0000 Although the La Loma tree frog, Hyloscirtus colymba, is notoriously difficult to care for in captivity, the Panama Amphibian Rescue and Conservation Project is the first to successfully breed this species. The post National Zoo and partners first to breed critically endangered tree frog appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature amphibian animal births biodiversity chytrid fungus conservation conservation biology endangered species extinction frogs Smithsonian's National Zoo veterinary medicine
irs A first: National Zoo elephant shows insightful problem solving By insider.si.edu Published On :: Fri, 26 Aug 2011 19:11:26 +0000 Kandula, an 8-year-old male Asian elephant at the Smithsonian’s National Zoo, recently demonstrated to researchers for the first time that elephants are capable of insightful problem solving. The post A first: National Zoo elephant shows insightful problem solving appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature mammals Smithsonian's National Zoo
irs Center for Astrophysics project gets first look through new ALMA telescope By insider.si.edu Published On :: Wed, 05 Oct 2011 17:39:35 +0000 Humanity's most complex ground-based astronomy observatory, the Atacama Large Millimeter/submillimeter Array (ALMA), has officially opened for astronomers at its 16,500-foot high desert plateau in northern Chile. The post Center for Astrophysics project gets first look through new ALMA telescope appeared first on Smithsonian Insider. Full Article Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory
irs Tree dwelling animals were first to fly, study shows By insider.si.edu Published On :: Tue, 18 Oct 2011 12:38:13 +0000 Adding wings to a robotic bug helped it run faster and better, but was it enough to achieve takeoff? The post Tree dwelling animals were first to fly, study shows appeared first on Smithsonian Insider. Full Article Animals Science & Nature animal flight conservation biology Tropical Research Institute
irs First Eld’s deer born from in vitro fertilization with help of Smithsonian Conservation Biology Institute scientists By insider.si.edu Published On :: Tue, 29 Nov 2011 20:20:58 +0000 Nearly 20 years after the Smithsonian Conservation Biology Institute became the first to produce an Eld’s deer fawn through artificial insemination, SCBI scientists have now contributed to the birth of the first Eld’s deer via in vitro fertilization. The post First Eld’s deer born from in vitro fertilization with help of Smithsonian Conservation Biology Institute scientists appeared first on Smithsonian Insider. Full Article Animals Science & Nature animal births captive breeding endangered species mammals Smithsonian's National Zoo veterinary medicine
irs Smithsonian scientists help build first frozen repository of Great Barrier Reef coral By insider.si.edu Published On :: Mon, 12 Dec 2011 13:48:03 +0000 Researchers from the Smithsonian Conservation Biology Institute, Hawaii Institute of Marine Biology and other partnering organizations spent two weeks at the end of November collecting sperm and embryonic cells during spawning from two species of coral and have built the first frozen repository for the Great Barrier Reef. The post Smithsonian scientists help build first frozen repository of Great Barrier Reef coral appeared first on Smithsonian Insider. Full Article Animals Marine Science Science & Nature biodiversity Caribbean conservation biology coral reefs endangered species extinction Smithsonian's National Zoo veterinary medicine
irs First fish App from the Smithsonian free on iTunes. “The Smithsonian Guide to the Shore Fishes of the Tropical Eastern Pacific” By insider.si.edu Published On :: Tue, 14 Feb 2012 20:22:34 +0000 The Smithsonian Tropical Research Institute has released the first completely portable bilingual species identification guide for the shore fishes of the tropical Eastern Pacific as a free iPhone application. The post First fish App from the Smithsonian free on iTunes. “The Smithsonian Guide to the Shore Fishes of the Tropical Eastern Pacific” appeared first on Smithsonian Insider. Full Article Animals Marine Science Science & Nature conservation biology Ecuador extinction fishes Smithsonian Environmental Research Center South America technology
irs First ever record of insect pollination captured in 100 million-year-old amber By insider.si.edu Published On :: Tue, 15 May 2012 13:24:47 +0000 Scientists have discovered several specimens of tiny insects covered with pollen grains in two pieces of amber, revealing the first record of pollen transport and social behavior in this group of animals. The post First ever record of insect pollination captured in 100 million-year-old amber appeared first on Smithsonian Insider. Full Article Dinosaurs & Fossils Science & Nature bees insects National Museum of Natural History pollination prehistoric
irs 2013 exhibition to celebrate first complete human genome sequence By insider.si.edu Published On :: Wed, 23 May 2012 15:02:43 +0000 To celebrate the 10th anniversary of researchers producing the first complete human genome sequence — the genetic blueprint of the human body — the Smithsonian’s National Museum of Natural History, will open a new high-tech, high-intensity exhibition in 2013. The post 2013 exhibition to celebrate first complete human genome sequence appeared first on Smithsonian Insider. Full Article Research News Science & Nature exhibitions National Museum of Natural History