trans

The telegraph / translated from the French of A.-L. Ternant by R. Routledge

Archives, Room Use Only - TK5115.T4713 1895




trans

Atlantic sentinel: Newfoundland's role in transatlantic cable communications / by D.R. Tarrant

Archives, Room Use Only - TK5611.T37 1999




trans

Elementary treatise on electric batteries / from the French of Alfred Niaudet ; translated by L.M. Fishback

Archives, Room Use Only - TK2941.N52313 1880




trans

The Phillips code: a thoroughly tested method of shorthand, arranged for telegraphic purposes, and contemplating the rapid transmission of press reports: also intended to be used as an easily acquired method for general newspaper and court reporting / by

Archives, Room Use Only - HE7669.P55 1914




trans

Postal telegraph: letter from the Postmaster General, transmitting a report of G.G. Hubbard, esq. of Boston, relative to the establishment of a cheap system of postal telegraph.

Archives, Room Use Only - HE7781.U556 1869




trans

Tariff for the transmission of messages to the United States of American, &c., &c., &c., issued September 1st, 1873.

Archives, Room Use Only - HE8097.A54 1873




trans

Message from the President of the United States, transmitting report of Secretary of State relative to the relations of certain telegraph and cable companies.

Archives, Room Use Only - HE7713.U6 M47 1887




trans

The transcendental cable: an Atlantic telegraph / by Robert Dalton Harris & Diane DeBlois

Archives, Room Use Only - TK5605.H37 1994




trans

Experimental researches on the transmission of electric signals through submarine cables. by Fleeming Jenkin ; communicated by C. Wheatstone

Archives, Room Use Only - TK5627.J46 1862




trans

The story of the first trans-atlantic short wave message: proceedings of the Radio Club of America inc.: 1BCG commemorative issue, October 1950.

Archives, Room Use Only - TK6540.S86 1950




trans

The secret corresponding vocabulary: adapted for use to Morse's electro-magnetic telegraph, and also in conducting written correspondence, transmitted by the mails, or otherwise / by Francis O.J. Smith, Esq

Archives, Room Use Only - HE7673.S65 1845




trans

Wireless transmission of photographs / by Marcus J. Martin

Archives, Room Use Only - TK6600.M37 1916




trans

Le cable transatlantique / par E. Cézanne

Archives, Room Use Only - TK5611.C49 1867




trans

Extrait des règlements généraux applicable sur les réseaux Est, Êtat, P.L.M., P.O.: extract from general regulations in effect on the Est, Etat, P.L.M., P.O. railways: for the use of members of the Transportation Department engag

Archives, Room Use Only - TF559.E98 1918




trans

A history of inventions, discoveries, and origins / by John Beckmann ; translated from the German by William Johnston

Archives, Room Use Only - T15.B3813 1846




trans

The Phillips code: a thoroughly tested method of shorthand arranged for telegraphic purposes, and contemplating the rapid transmission of press reports: also intended to be used as an easily acquired method for general newspaper and court reporting / by W

Archives, Room Use Only - HE7669.P55 1925




trans

Brief description of wireless telegraphy and the apparatus for wireless electrical communication in use in aviation and infantry: translation no. 94 of Notice sommaire sur la télégraphie sans fil et les appareils de communication électrique

Archives, Room Use Only - UG605.F8 F7313 1917




trans

Technical description of the Alexanderson system for radio telegraph and radio telephone transmission by Elmer E. Bucher

Archives, Room Use Only - TK5811.B83 1920




trans

Elementary treatise on natural philosophy / by A. Privat Deschanel ; translated and edited, with extensive modifications, by J.D. Everett

Archives, Room Use Only - QC23.P7513 1883




trans

Transatlantic telephone cable.

Archives, Room Use Only - TK6373.T73 1956




trans

Adani Transmission Q4 profit falls 60 pc to Rs 59 crore on one-time write off




trans

8 held for illegally transporting liquor in AP, 110 bottles of liquor seized




trans

Asymptomatic transmission Achilles' heel of Covid-19




trans

Immune system discovery paves way to lengthen organ transplant survival: Study





trans

Quantification of the mixed-valence and intervalence charge transfer properties of a cofacial metal–organic framework via single crystal electronic absorption spectroscopy

Chem. Sci., 2020, Advance Article
DOI: 10.1039/D0SC01521K, Edge Article
Open Access
Patrick W. Doheny, Jack K. Clegg, Floriana Tuna, David Collison, Cameron J. Kepert, Deanna M. D'Alessandro
Gaining a fundamental understanding of charge transfer mechanisms in three-dimensional Metal–Organic Frameworks (MOFs) is crucial to the development of electroactive and conductive porous materials.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




trans

Punjab Police expose Pak links in powerful nexus of narcotics smuggling, hawala transaction




trans

Justice Muralidhar transferred to Punjab and Haryana HC




trans

Committed to end monopoly in transport business, Amarinder Singh tells Assembly




trans

27 new COVID-19 cases with no travel history points to community transmission: Punjab CM




trans

Health Ministry denies Punjab CM's claim of community transmission in State




trans

Punjab moving towards community transmission as 27 coronavirus patients have no travel history: Capt Amarinder Singh




trans

Punjab CM seeks Home Minister Shah's intervention to transport stranded workers back to their states




trans

Coronavirus | ICMR to test for community transmission in 75 districts

Health Ministry to send central teams to 10 States.




trans

HC to hold sitting on transport of returnees

A division bench of the Kerala High Court will hold a special sitting on Sunday to consider issues pertaining to the transport of Keralites from acros




trans

Morning Digest: Migrant workers lug crashed hopes en route their homes; ICMR to test for community transmission in 75 districts, and more

A select list of stories to read before you start your day




trans

BioStruct-Africa: empowering Africa-based scientists through structural biology knowledge transfer and mentoring – recent advances and future perspectives

Being able to visualize biology at the molecular level is essential for our understanding of the world. A structural biology approach reveals the molecular basis of disease processes and can guide the design of new drugs as well as aid in the optimization of existing medicines. However, due to the lack of a synchrotron light source, adequate infrastructure, skilled persons and incentives for scientists in addition to limited financial support, the majority of countries across the African continent do not conduct structural biology research. Nevertheless, with technological advances such as robotic protein crystallization and remote data collection capabilities offered by many synchrotron light sources, X-ray crystallography is now potentially accessible to Africa-based scientists. This leap in technology led to the establishment in 2017 of BioStruct-Africa, a non-profit organization (Swedish corporate ID: 802509-6689) whose core aim is capacity building for African students and researchers in the field of structural biology with a focus on prevalent diseases in the African continent. The team is mainly composed of, but not limited to, a group of structural biologists from the African diaspora. The members of BioStruct-Africa have taken up the mantle to serve as a catalyst in order to facilitate the information and technology transfer to those with the greatest desire and need within Africa. BioStruct-Africa achieves this by organizing workshops onsite at our partner universities and institutions based in Africa, followed by post-hoc online mentoring of participants to ensure sustainable capacity building. The workshops provide a theoretical background on protein crystallography, hands-on practical experience in protein crystallization, crystal harvesting and cryo-cooling, live remote data collection on a synchrotron beamline, but most importantly the links to drive further collaboration through research. Capacity building for Africa-based researchers in structural biology is crucial to win the fight against the neglected tropical diseases, e.g. ascariasis, hookworm, trichuriasis, lymphatic filariasis, active trachoma, loiasis, yellow fever, leprosy, rabies, sleeping sickness, onchocerciasis, schistosomiasis, etc., that constitute significant health, social and economic burdens to the continent. BioStruct-Africa aims to build local and national expertise that will have direct benefits for healthcare within the continent.




trans

Transmission measurement at the Bernina branch of the Aramis Beamline of SwissFEL

The transmission of the optical components of the Bernina branch of the Aramis beamline at SwissFEL has been measured with an X-ray gas monitor from DESY and compared with a PSI gas detector upstream of the optical components. The transmission efficiencies of the Mo, Si and SiC mirror coatings of the Aramis beamline and the various other in-beam components were evaluated and compared with theoretical calculations, showing an agreement of 6% or better in all cases. The experiment has also shown the efficacy of the high-harmonic rejection mirrors at the Bernina branch of the Aramis beamline at SwissFEL, and characterized the transmission efficiency of the on-line spectrometer in the Aramis beamline. The theoretical transmission of the mirror coatings match the experimental data to within 7%. The accuracy of these measurements was checked against a radiative bolometer from a Japanese collaboration and found to agree to a level of 4% or better. Further comparisons with a diamond detector from a US-based inter-institute collaboration demonstrated a good agreement for the attenuator settings of the beamline.




trans

Limited angle tomography for transmission X-ray microscopy using deep learning

In transmission X-ray microscopy (TXM) systems, the rotation of a scanned sample might be restricted to a limited angular range to avoid collision with other system parts or high attenuation at certain tilting angles. Image reconstruction from such limited angle data suffers from artifacts because of missing data. In this work, deep learning is applied to limited angle reconstruction in TXMs for the first time. With the challenge to obtain sufficient real data for training, training a deep neural network from synthetic data is investigated. In particular, U-Net, the state-of-the-art neural network in biomedical imaging, is trained from synthetic ellipsoid data and multi-category data to reduce artifacts in filtered back-projection (FBP) reconstruction images. The proposed method is evaluated on synthetic data and real scanned chlorella data in 100° limited angle tomography. For synthetic test data, U-Net significantly reduces the root-mean-square error (RMSE) from 2.55 × 10−3 µm−1 in the FBP reconstruction to 1.21 × 10−3 µm−1 in the U-Net reconstruction and also improves the structural similarity (SSIM) index from 0.625 to 0.920. With penalized weighted least-square denoising of measured projections, the RMSE and SSIM are further improved to 1.16 × 10−3 µm−1 and 0.932, respectively. For real test data, the proposed method remarkably improves the 3D visualization of the subcellular structures in the chlorella cell, which indicates its important value for nanoscale imaging in biology, nanoscience and materials science.




trans

Binding site asymmetry in human transthyretin: insights from a joint neutron and X-ray crystallographic analysis using perdeuterated protein

A neutron crystallographic study of perdeuterated transthyretin reveals important aspects of the structure relating to its stability and its propensity to form fibrils, as well as evidence of a single water molecule that affects the symmetry of the two binding pockets.




trans

Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport

The transmembrane intracellular lectin ER–Golgi intermediate compartment protein 53 (ERGIC-53) and the soluble EF-hand multiple coagulation factor deficiency protein 2 (MCFD2) form a complex that functions as a cargo receptor, trafficking various glycoproteins between the endoplasmic reticulum (ER) and the Golgi apparatus. It has been demonstrated that the carbohydrate-recognition domain (CRD) of ERGIC-53 (ERGIC-53CRD) interacts with N-linked glycans on cargo glycoproteins, whereas MCFD2 recognizes polypeptide segments of cargo glycoproteins. Crystal structures of ERGIC-53CRD complexed with MCFD2 and mannosyl oligosaccharides have revealed protein–protein and protein–sugar binding modes. In contrast, the polypeptide-recognition mechanism of MCFD2 remains largely unknown. Here, a 1.60 Å resolution crystal structure of the ERGIC-53CRD–MCFD2 complex is reported, along with three other crystal forms. Comparison of these structures with those previously reported reveal that MCFD2, but not ERGIC-53–CRD, exhibits significant conformational plasticity that may be relevant to its accommodation of various polypeptide ligands.




trans

Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway

The enzyme 4-hydroxy-tetrahydrodipicolinate synthase (DapA) is involved in the production of lysine and precursor molecules for peptidoglycan synthesis. In a multistep reaction, DapA converts pyruvate and l-aspartate-4-semialdehyde to 4-hydroxy-2,3,4,5-tetrahydrodipicolinic acid. In many organisms, lysine binds allosterically to DapA, causing negative feedback, thus making the enzyme an important regulatory component of the pathway. Here, the 2.1 Å resolution crystal structure of DapA from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV is reported. The enzyme crystallized as a contaminant of a protein preparation from native biomass. Genome analysis reveals that M. fumariolicum SolV utilizes the recently discovered aminotransferase pathway for lysine biosynthesis. Phylogenetic analyses of the genes involved in this pathway shed new light on the distribution of this pathway across the three domains of life.




trans

trans-Bis(dimethyl sulfoxide-κO)bis­(3-nitro­benzo­hydroxamato-κ2O,O')zinc(II)

Single crystals of the title complex, [Zn(C7H5N2O4)2(C2H6OS)2] or [Zn(NBZH)2(DMSO)2], were isolated from a dimethyl sulfoxide (DMSO) solution containing [Zn(NBZH)2]·2H2O (NBZH = 3-nitro­benzo­hydroxamate anion). The asymmetric unit comprises of one O,O'-chelating NBZH anion, one O-bound DMSO ligand and one zinc(II) cation localized on an inversion centre. The three-dimensional crystal packing includes N—H⋯O and C—H⋯O hydrogen bonding, as well as O⋯H and H⋯H contacts identified by Hirshfeld isosurface analysis.




trans

Tris­(4,4'-di-tert-butyl-2,2'-bi­pyridine)(trans-4-tert-butyl­cyclo­hexa­nolato)­deca-μ-oxido-hepta­oxido­hepta­vanadium aceto­nitrile monosolvate including another unknown solvent mol­ecule

The title hepta­nuclear alkoxido(oxido)vanadium(V) oxide cluster complex, [V7(C10H19O)O17(C18H24N2)3]·CH3CN, was obtained by the reaction of [V8O20(C18H24N2)4] with 4-tert-butyl­cyclo­hexa­nol (mixture of cis and trans) in a mixed CHCl3/CH3CN solvent. The complex has a V7O18N6 core with approximately Cs symmetry, which is composed of two VO4 tetra­hedra, two VO6 octa­hedra and three VO4N2 octa­hedra. In the crystal, these complexes are linked together by weak inter­molecular C—H⋯O hydrogen bonds between the 4,4'-di-tert-butyl-2,2'-bi­pyridine ligand and the V7O18N6 core, forming a one-dimensional network along the c-axis direction. Besides the complex, the asymmetric unit contains one CH3CN solvent mol­ecule. The contribution of other disordered solvent mol­ecules to the scattering was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The unknown solvent mol­ecules are not considered in the chemical formula and other crystal data.




trans

Crystal structures of trans-di­aqua­(3-R-1,3,5,8,12-penta­aza­cyclo­tetra­deca­ne)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl)

The asymmetric units of the title compounds, trans-di­aqua­(3-benzyl-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-di­aqua­[3-(pyridin-3-ylmeth­yl)-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12]copper(II) iso­phthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one di­aqua macrocyclic cation, one di­carboxyl­ate anion and uncoordinated water mol­ecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water mol­ecules in a tetra­gonally distorted octa­hedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding inter­actions between the N—H groups of the macrocycles and the O—H groups of coordinated water mol­ecules as the proton donors and the O atoms of the carboxyl­ate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water mol­ecules of crystallization, the isophthalate dianions form layers lying parallel to the (overline{1}01) and (100) planes in (I) and (II), respectively.




trans

Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of trans-di­aqua­[2,5-bis­(pyridin-4-yl)-1,3,4-oxa­diazole]di­thio­cyanato­nickel(II)

The reaction of 2,5-bis­(pyridin-4-yl)-1,3,4-oxa­diazole (4-pox) and thio­cyanate ions, used as co-ligand with nickel salt NiCl2·6H2O, produced the title complex, [Ni(NCS)2(C12H8N4O)2(H2O)2]. The NiII atom is located on an inversion centre and is octa­hedrally coordinated by four N atoms from two ligands and two pseudohalide ions, forming the equatorial plane. The axial positions are occupied by two O atoms of coordinated water mol­ecules. In the crystal, the mol­ecules are linked into a three-dimensional network through strong O—H⋯N hydrogen bonds. Hirshfeld surface analysis was used to investigate the inter­molecular inter­actions in the crystal packing.




trans

Crystal structures of two charge–transfer com­plexes of benzo[1,2-c:3,4-c':5,6-c'']tri­thio­phene (D3h-BTT)

Benzo[1,2-c:3,4-c':5,6-c'']tri­thio­phene (D3h-BTT) is an easily prepared electron donor that readily forms charge–transfer complexes with organic acceptors. We report here two crystal structures of its charge–transfer complexes with 7,7,8,8-tetra­cyano­quinodi­methane (TCNQ) and buckminsterfullerene (C60). The D3h-BTT·TCNQ complex, C12H6S3·C12H4N4, crystallizes with mixed layers of donors and acceptors, with an estimated degree of charge transfer at 0.09 e. In the D3h-BTT·C60·toluene complex, C12H6S3·C60·C7H8, the central ring of BTT is `squeezed' by the C60 mol­ecules from both faces. However, the degree of charge transfer is low. The C60 unit is disordered over two sites in a 0.766 (3):0.234 (3) ratio and was refined as a two-component inversion twin.




trans

Crystal structures and Hirshfeld surface analysis of trans-bis­(thio­cyanato-κN)bis­{2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline-κ2N,N'}manganese(II) and trans-bis­(thio­cyanato-κN)bis­{2,4,6-trimethyl-N-[(pyri

Two new mononuclear metal complexes involving the bidentate Schiff base ligand 2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline (C15H16N2 or PM-TMA), [Mn(NCS)2(PM-TMA)2] (I) and [Ni(NCS)2(PM-TMA)2] (II), were synthesized and their structures determined by single-crystal X-ray diffraction. Although the title compounds crystallize in different crystal systems [triclinic for (I) and monoclinic for (II)], both asymmetric units consist of one-half of the complex mol­ecule, i.e. one metal(II) cation, one PM-TMA ligand, and one N-bound thio­cyanate anion. In both complexes, the metal(II) cation is located on a centre of inversion and adopts a distorted octa­hedral coordination environment defined by four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from two symmetry-related NCS− anions in a trans axial arrangement. The tri­methyl­benzene and pyridine rings of the PM-TMA ligand are oriented at dihedral angles of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. The subtle change in size of the central metal cations leads to a different crystal packing arrangement for (I) and (II) that is dominated by weak C—H⋯S, C—H⋯π, and π–π inter­actions. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to qu­antify these inter­molecular contacts, and indicate that the most significant contacts in packing are H⋯H [48.1% for (I) and 54.9% for (II)], followed by H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)], and H⋯S/S⋯H [21.1% for (I) and 21.1% for (II)].




trans

Crystal structures of trans-acetyl­dicarbon­yl(η5-cyclo­penta­dien­yl)(1,3,5-tri­aza-7-phosphaadamantane)molybdenum(II) and trans-acetyl­di­carbon­yl(η5-cyclo­penta­dien­yl)(3,7-diacetyl-1,3,7-tr

The title compounds, [Mo(C5H5)(COCH3)(C6H12N3P)(CO)2], (1), and [Mo(C5H5)(COCH3)(C9H16N3O2P)(C6H5)2))(CO)2], (2), have been prepared by phosphine-induced migratory insertion from [Mo(C5H5)(CO)3(CH3)]. The mol­ecular structures of these complexes are quite similar, exhibiting a four-legged piano-stool geometry with trans-disposed carbonyl ligands. The extended structures of complexes (1) and (2) differ substanti­ally. For complex (1), the molybdenum acetyl unit plays a dominant role in the organization of the extended structure, joining the mol­ecules into centrosymmetrical dimers through C—H⋯O inter­actions with a cyclo­penta­dienyl ligand of a neighboring mol­ecule, and these dimers are linked into layers parallel to (100) by C—H⋯O inter­actions between the molybdenum acetyl and the cyclo­penta­dienyl ligand of another neighbor. The extended structure of (2) is dominated by C—H⋯O inter­actions involving the carbonyl groups of the acetamide groups of the DAPTA ligand, which join the mol­ecules into centrosymmetrical dimers and link them into chains along [010]. Additional C—H⋯O inter­actions between the molybdenum acetyl oxygen atom and an acetamide methyl group join the chains into layers parallel to (101).




trans

Crystal structure of trans-di­chlorido­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III) bis­(form­amide-κO)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III) bis­[tetra­ch

The structure of the title compound, [CrCl2(C10H24N4)][Cr(HCONH2)2(C10H24N4)][ZnCl4]2 (C10H24N4 = 1,4,8,11-tetra­aza­cyclo­tetra­decane, cyclam; HCONH2 = formamide, fa), has been determined from synchrotron X-ray data. The asymmetric unit contains two independent halves of the [CrCl2(cyclam)]+ and [Cr(fa)(cyclam)]3+ cations, and one tetra­chlorido­zincate anion. In each complex cation, the CrIII ion is coordinated by the four N atoms of the cyclam ligand in the equatorial plane and two Cl ligands or two O-bonded formamide mol­ecules in a trans axial arrangement, displaying a distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(cyclam) bond lengths are in the range 2.061 (2) to 2.074 (2) Å, while the Cr—Cl and Cr—O(fa) bond distances are 2.3194 (7) and 1.9953 (19) Å, respectively. The macrocyclic cyclam moieties adopt the centrosymmetric trans-III conformation with six- and five-membered chelate rings in chair and gauche conformations. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the NH or CH groups of cyclam and the NH2 group of coordinated formamide as donors, and Cl atoms of the ZnCl42− anion as acceptors.