ino

The Endocannabinoid System Alleviates Pain in a Murine Model of Cancer-Induced Bone Pain [Drug Discovery and Translational Medicine]

Metastatic breast cancer is prevalent worldwide, and one of the most common sites of metastasis is long bones. Of patients with disease, the major symptom is pain, yet current medications fail to adequately result in analgesic efficacy and present major undesirable adverse effects. In our study, we investigate the potential of a novel monoacylglycerol lipase (MAGL) inhibitor, MJN110, in a murine model of cancer-induced bone pain. Literature has previously demonstrated that MAGL inhibitors function to increase the endogenous concentrations of 2-arachydonylglycerol, which then activates CB1 and CB2 receptors to inhibit inflammation and pain. We demonstrate that administration of MJN110 significantly and dose dependently alleviates spontaneous pain behavior during acute administration compared with vehicle control. In addition, MJN110 maintains its efficacy in a chronic-dosing paradigm over the course of 7 days without signs of receptor sensitization. In vitro analysis of MJN110 demonstrated a dose-dependent and significant decrease in cell viability and proliferation of 66.1 breast adenocarcinoma cells to a greater extent than KML29, an alternate MAGL inhibitor, or the CB2 agonist JWH015. Chronic administration of the compound did not appear to affect tumor burden, as evidenced by radiograph or histologic analysis. Together, these data support the application for MJN110 as a novel therapeutic for cancer-induced bone pain.

SIGNIFICANCE STATEMENT

Current standard of care for metastatic breast cancer pain is opioid-based therapies with adjunctive chemotherapy, which have highly addictive and other deleterious side effects. The need for effective, non–opioid-based therapies is essential, and harnessing the endogenous cannabinoid system is proving to be a new target to treat various types of pain conditions. We present a novel drug targeting the endogenous cannabinoid system that is effective at reducing pain in a mouse model of metastatic breast cancer to bone.




ino

Impact of a Multidisciplinary, Endocrinologist-Led Shared Medical Appointment Model on Diabetes-Related Outcomes in an Underserved Population

A multidisciplinary endocrinologist-led shared medical appointment (SMA) model showed statistically significant reductions in A1C from baseline over 3 years that were not significantly different from appointments with endocrinologists or primary care providers alone within a resource-poor population. Similarly, the SMA model achieved clinical outcomes on par with endocrinologist-only visits with the added benefit of improving endocrine provider productivity and specialty access for patients. Greater patient engagement with the SMA model was associated with significantly lower A1C.




ino

Medical Cannabinoid Products in Children and Adolescents




ino

The M Protein of Streptococcus pyogenes Strain AP53 Retains Cell Surface Functional Plasminogen Binding after Inactivation of the Sortase A Gene [Article]

Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a β-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala–l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 srtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface.

IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.




ino

Diabetes, Cognitive Decline, and Mild Cognitive Impairment Among Diverse Hispanics/Latinos: Study of Latinos-Investigation of Neurocognitive Aging Results (HCHS/SOL)

OBJECTIVE

Hispanics/Latinos are the largest ethnic/racial group in the U.S., have the highest prevalence of diabetes, and are at increased risk for neurodegenerative disorders. Currently, little is known about the relationship between diabetes and cognitive decline and disorders among diverse Hispanics/Latinos. The purpose of this study is to clarify these relationships in diverse middle-aged and older Hispanics/Latinos.

RESEARCH DESIGN AND METHODS

The Study of Latinos–Investigation of Neurocognitive Aging (SOL-INCA) is an ancillary study of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). HCHS/SOL is a multisite (Bronx, NY; Chicago, IL; Miami, FL; and San Diego, CA), probability-sampled (i.e., representative of targeted populations), and prospective cohort study. Between 2016 and 2018, SOL-INCA enrolled diverse Hispanics/Latinos aged ≥50 years (n = 6,377). Global cognitive decline and mild cognitive impairment (MCI) were the primary outcomes.

RESULTS

Prevalent diabetes at visit 1, but not incident diabetes at visit 2, was associated with significantly steeper global cognitive decline (βGC = –0.16 [95% CI –0.25; –0.07]; P < 0.001), domain-specific cognitive decline, and higher odds of MCI (odds ratio 1.74 [95% CI 1.34; 2.26]; P < 0.001) compared with no diabetes in age- and sex-adjusted models.

CONCLUSIONS

Diabetes was associated with cognitive decline and increased MCI prevalence among diverse Hispanics/Latinos, primarily among those with prevalent diabetes at visit 1. Our findings suggest that significant cognitive decline and MCI may be considered additional disease complications of diabetes among diverse middle-aged and older Hispanics/Latinos.




ino

Phase I/Ib study of carfilzomib and panobinostat with or without dexamethasone in patients with relapsed/refractory multiple myeloma




ino

Inorganic Nitrate Promotes Glucose Uptake and Oxidative Catabolism in White Adipose Tissue Through the XOR-Catalyzed Nitric Oxide Pathway

An aging global population combined with sedentary lifestyles and unhealthy diets has contributed to an increasing incidence of obesity and type 2 diabetes. These metabolic disorders are associated with perturbations to nitric oxide (NO) signaling and impaired glucose metabolism. Dietary inorganic nitrate, found in high concentration in green leafy vegetables, can be converted to NO in vivo and demonstrates antidiabetic and antiobesity properties in rodents. Alongside tissues including skeletal muscle and liver, white adipose tissue is also an important physiological site of glucose disposal. However, the distinct molecular mechanisms governing the effect of nitrate on adipose tissue glucose metabolism and the contribution of this tissue to the glucose-tolerant phenotype remain to be determined. Using a metabolomic and stable-isotope labeling approach, combined with transcriptional analysis, we found that nitrate increases glucose uptake and oxidative catabolism in primary adipocytes and white adipose tissue of nitrate-treated rats. Mechanistically, we determined that nitrate induces these phenotypic changes in primary adipocytes through the xanthine oxidoreductase–catalyzed reduction of nitrate to NO and independently of peroxisome proliferator–activated receptor-α. The nitrate-mediated enhancement of glucose uptake and catabolism in white adipose tissue may be a key contributor to the antidiabetic effects of this anion.




ino

RIPK3 Orchestrates Fatty Acid Metabolism in Tumor-Associated Macrophages and Hepatocarcinogenesis

Metabolic reprogramming is critical for the polarization and function of tumor-associated macrophages (TAM) and hepatocarcinogenesis, but how this reprogramming occurs is unknown. Here, we showed that receptor-interacting protein kinase 3 (RIPK3), a central factor in necroptosis, is downregulated in hepatocellular carcinoma (HCC)–associated macrophages, which correlated with tumorigenesis and enhanced the accumulation and polarization of M2 TAMs. Mechanistically, RIPK3 deficiency in TAMs reduced reactive oxygen species and significantly inhibited caspase1-mediated cleavage of PPAR. These effects enabled PPAR activation and facilitated fatty acid metabolism, including fatty acid oxidation (FAO), and induced M2 polarization in the tumor microenvironment. RIPK3 upregulation or FAO blockade reversed the immunosuppressive activity of TAMs and dampened HCC tumorigenesis. Our findings provide molecular basis for the regulation of RIPK3-mediated, lipid metabolic reprogramming of TAMs, thus highlighting a potential strategy for targeting the immunometabolism of HCC.




ino

Prevalent and Diverse Intratumoral Oncoprotein-Specific CD8+ T Cells within Polyomavirus-Driven Merkel Cell Carcinomas

Merkel cell carcinoma (MCC) is often caused by persistent expression of Merkel cell polyomavirus (MCPyV) T-antigen (T-Ag). These non-self proteins comprise about 400 amino acids (AA). Clinical responses to immune checkpoint inhibitors, seen in about half of patients, may relate to T-Ag–specific T cells. Strategies to increase CD8+ T-cell number, breadth, or function could augment checkpoint inhibition, but vaccines to augment immunity must avoid delivery of oncogenic T-antigen domains. We probed MCC tumor-infiltrating lymphocytes (TIL) with an artificial antigen-presenting cell (aAPC) system and confirmed T-Ag recognition with synthetic peptides, HLA-peptide tetramers, and dendritic cells (DC). TILs from 9 of 12 (75%) subjects contained CD8+ T cells recognizing 1–8 MCPyV epitopes per person. Analysis of 16 MCPyV CD8+ TIL epitopes and prior TIL data indicated that 97% of patients with MCPyV+ MCC had HLA alleles with the genetic potential that restrict CD8+ T-cell responses to MCPyV T-Ag. The LT AA 70–110 region was epitope rich, whereas the oncogenic domains of T-Ag were not commonly recognized. Specific recognition of T-Ag–expressing DCs was documented. Recovery of MCPyV oncoprotein–specific CD8+ TILs from most tumors indicated that antigen indifference was unlikely to be a major cause of checkpoint inhibition failure. The myriad of epitopes restricted by diverse HLA alleles indicates that vaccination can be a rational component of immunotherapy if tumor immune suppression can be overcome, and the oncogenic regions of T-Ag can be modified without impacting immunogenicity.




ino

Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in Pseudomonas sp. Strain SG-MS2 [Biodegradation]

Burkholderia sp. strain SG-MS1 and Pseudomonas sp. strain SG-MS2 have previously been found to mineralize (+)-pinoresinol through a common catabolic pathway. Here, we used comparative genomics, proteomics, protein semipurification, and heterologous expression to identify a flavoprotein from the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family in SG-MS2 that carries out the initial hydroxylation of (+)-pinoresinol at the benzylic carbon. The cognate gene is translationally coupled with a downstream cytochrome gene, and the cytochrome is required for activity. The flavoprotein has a unique combination of cofactor binding and cytochrome requirements for the VAO/PCMH family. The heterologously expressed enzyme has a Km of 1.17 μM for (+)-pinoresinol. The enzyme is overexpressed in strain SG-MS2 upon exposure to (+)-pinoresinol, along with 45 other proteins, 22 of which were found to be encoded by genes in an approximately 35.1-kb cluster also containing the flavoprotein and cytochrome genes. Homologs of 18 of these 22 genes, plus the flavoprotein and cytochrome genes, were also found in a 38.7-kb cluster in SG-MS1. The amino acid identities of four of the other proteins within the SG-MS2 cluster suggest they catalyze conversion of hydroxylated pinoresinol to protocatechuate and 2-methoxyhydroquinone. Nine other proteins upregulated in SG-MS2 on exposure to (+)-pinoresinol appear to be homologs of proteins known to comprise the protocatechuate and 2-methoxyhydroquinone catabolic pathways, but only three of the cognate genes lie within the cluster containing the flavoprotein and cytochrome genes.

IMPORTANCE (+)-Pinoresinol is an important plant defense compound, a major food lignan for humans and some other animals, and the model compound used to study degradation of the β-β' linkages in lignin. We report a gene cluster, in one strain each of Pseudomonas and Burkholderia, that is involved in the oxidative catabolism of (+)-pinoresinol. The flavoprotein component of the α-hydroxylase which heads the pathway belongs to the 4-phenol oxidizing (4PO) subgroup of the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family but constitutes a novel combination of cofactor and electron acceptor properties for the family. It is translationally coupled with a cytochrome gene whose product is also required for activity. The work casts new light on the biology of (+)-pinoresinol and its transformation to other bioactive molecules. Potential applications of the findings include new options for deconstructing lignin into useful chemicals and the generation of new phytoestrogenic enterolactones from lignans.




ino

Multifunctional Acidocin 4356 Combats Pseudomonas aeruginosa through Membrane Perturbation and Virulence Attenuation: Experimental Results Confirm Molecular Dynamics Simulation [Biotechnology]

A longstanding awareness in generating resistance to common antimicrobial therapies by Gram-negative bacteria has made them a major threat to global health. The application of antimicrobial peptides as a therapeutic agent would be a great opportunity to combat bacterial diseases. Here, we introduce a new antimicrobial peptide (~8.3 kDa) from probiotic strain Lactobacillus acidophilus ATCC 4356, designated acidocin 4356 (ACD). This multifunctional peptide exerts its anti-infective ability against Pseudomonas aeruginosa through an inhibitory action on virulence factors, bacterial killing, and biofilm degradation. Reliable performance over tough physiological conditions and low hemolytic activity confirmed a new hope for the therapeutic setting. Antibacterial kinetic studies using flow cytometry technique showed that the ACD activity is related to the change in permeability of the membrane. The results obtained from molecular dynamic (MD) simulation were perfectly suited to the experimental data of ACD behavior. The structure-function relationship of this natural compound, along with the results of transmission electron microscopy analysis and MD simulation, confirmed the ability of the ACD aimed at enhancing bacterial membrane perturbation. The peptide was effective in the treatment of P. aeruginosa infection in mouse model. The results support the therapeutic potential of ACD for the treatment of Pseudomonas infections.

IMPORTANCE Multidrug-resistant bacteria are a major threat to global health, and the Pseudomonas bacterium with the ability to form biofilms is considered one of the main causative agents of nosocomial infections. Traditional antibiotics have failed because of increased resistance. Thus, finding new biocompatible antibacterial drugs is essential. Antimicrobial peptides are produced by various organisms as a natural defense mechanism against pathogens, inspiring the possible design of the next generation of antibiotics. In this study, a new antimicrobial peptide was isolated from Lactobacillus acidophilus ATCC 4356, counteracting both biofilm and planktonic cells of Pseudomonas aeruginosa. A detailed investigation was then conducted concerning the functional mechanism of this peptide by using fluorescence techniques, electron microscopy, and in silico methods. The antibacterial and antibiofilm properties of this peptide may be important in the treatment of Pseudomonas infections.




ino

Inactivation of Pseudomonas aeruginosa Biofilms by 405-Nanometer-Light-Emitting Diode Illumination [Physiology]

Biofilm formation by Pseudomonas aeruginosa contributes to its survival on surfaces and represents a major clinical threat because of the increased tolerance of biofilms to disinfecting agents. This study aimed to investigate the efficacy of 405-nm light-emitting diode (LED) illumination in eliminating P. aeruginosa biofilms formed on stainless steel coupons under different temperatures. Time-dependent killing assays using planktonic and biofilm cells were used to determine the antimicrobial and antibiofilm activities of LED illumination. We also evaluated the effects of LED illumination on the disinfectant susceptibility, biofilm structure, extracellular polymeric substance (EPS) structure and composition, and biofilm-related gene expression of P. aeruginosa biofilm cells. Results showed that the abundance of planktonic P. aeruginosa cells was reduced by 0.88, 0.53, and 0.85 log CFU/ml following LED treatment for 2 h compared with untreated controls at 4, 10, and 25°C, respectively. For cells in biofilms, significant reductions (1.73, 1.59, and 1.68 log CFU/cm2) were observed following LED illumination for 2 h at 4, 10, and 25°C, respectively. Moreover, illuminated P. aeruginosa biofilm cells were more sensitive to benzalkonium chloride or chlorhexidine than untreated cells. Scanning electron microscopy and confocal laser scanning microscopic observation indicated that both the biofilm structure and EPS structure were disrupted by LED illumination. Further, reverse transcription-quantitative PCR revealed that LED illumination downregulated the transcription of several genes associated with biofilm formation. These findings suggest that LED illumination has the potential to be developed as an alternative method for prevention and control of P. aeruginosa biofilm contamination.

IMPORTANCE Pseudomonas aeruginosa can form biofilms on medical implants, industrial equipment, and domestic surfaces, contributing to high morbidity and mortality rates. This study examined the antibiofilm activity of 405-nm light-emitting diode (LED) illumination against mature biofilms formed on stainless steel coupons. We found that the disinfectant susceptibility, biofilm structure, and extracellular polymeric substance structure and composition were disrupted by LED illumination. We then investigated the transcription of several critical P. aeruginosa biofilm-related genes and analyzed the effect of illumination temperature on the above characteristics. Our results confirmed that LED illumination could be developed into an effective and safe method to counter P. aeruginosa biofilm contamination. Further research will be focused on the efficacy and application of LED illumination for elimination of complicated biofilms in the environment.




ino

Levothyroxine prescribing and laboratory test use after a minor change in reference range for thyroid-stimulating hormone [Research]

BACKGROUND:

Prescribing of levothyroxine and rates of thyroid function testing may be sensitive to minor changes in the upper limit of the reference range for thyroid-stimulating hormone (TSH) that increase the proportion of abnormal results. We evaluated the population-level change in levothyroxine prescribing and TSH testing after a minor planned decrease in the upper limit of the reference range for TSH in a large urban centre with a single medical laboratory.

METHODS:

Using provincial administrative data, we compared predicted volumes of TSH tests with actual TSH test volumes before and after a planned change in the TSH reference range. We also determined the number of new levothyroxine prescriptions for previously untreated patients and the rate of changes to the prescribed dose for those on previously stable, long-term levothyroxine therapy before and after the change in the TSH reference range.

RESULTS:

Before the change in the TSH reference range, actual and predicted monthly volumes of TSH testing followed an identical course. After the change, actual test volumes exceeded predicted test volumes by 7.3% (95% confidence interval [CI] 5.3%–9.3%) or about 3000 to 5000 extra tests per month. The proportion of patients with newly "abnormal" TSH results almost tripled, from 3.3% (95% CI 3.2%–3.4%) to 9.1% (95% CI 9.0%–9.2%). The rate of new levothyroxine prescriptions increased from 3.24 (95% CI 3.15–3.33) per 1000 population in 2013 to 4.06 (95% CI 3.96–4.15) per 1000 population in 2014. Among patients with preexisting stable levothyroxine therapy, there was a significant increase in the number of dose escalations (p < 0.001) and a total increase of 500 new prescriptions per month.

INTERPRETATION:

Our findings suggest that clinicians may have responded to mildly elevated TSH results with new or increased levothyroxine prescriptions and more TSH testing. Knowledge translation efforts may be useful to accompany minor changes in reference ranges.




ino

Correction: EGFR Exon 20 Insertion Mutations Display Sensitivity to Hsp90 Inhibition in Preclinical Models and Lung Adenocarcinomas




ino

Predominance of Central Memory T Cells with High T-Cell Receptor Repertoire Diversity is Associated with Response to PD-1/PD-L1 Inhibition in Merkel Cell Carcinoma

Purpose:

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer, which can be effectively controlled by immunotherapy with PD-1/PD-L1 checkpoint inhibitors. However, a significant proportion of patients are characterized by primary therapy resistance. Predictive biomarkers for response to immunotherapy are lacking.

Experimental Design:

We applied Bayesian inference analyses on 41 patients with MCC testing various clinical and biomolecular characteristics to predict treatment response. Further, we performed a comprehensive analysis of tumor tissue–based immunologic parameters including multiplexed immunofluorescence for T-cell activation and differentiation markers, expression of immune-related genes and T-cell receptor (TCR) repertoire analyses in 18 patients, seven objective responders, and 11 nonresponders.

Results:

Bayesian inference analyses demonstrated that among currently discussed biomarkers only unimpaired overall performance status and absence of immunosuppression were associated with response to therapy. However, in responders, a predominance of central memory T cells and expression of genes associated with lymphocyte attraction and activation was evident. In addition, TCR repertoire usage of tumor-infiltrating lymphocytes (TILs) demonstrated low T-cell clonality, but high TCR diversity in responding patients. In nonresponders, terminally differentiated effector T cells with a constrained TCR repertoire prevailed. Sequential analyses of tumor tissue obtained during immunotherapy revealed a more pronounced and diverse clonal expansion of TILs in responders indicating an impaired proliferative capacity among TILs of nonresponders upon checkpoint blockade.

Conclusions:

Our explorative study identified new tumor tissue–based molecular characteristics associated with response to anti–PD-1/PD-L1 therapy in MCC. These observations warrant further investigations in larger patient cohorts to confirm their potential value as predictive markers.




ino

Surfactant Expression Defines an Inflamed Subtype of Lung Adenocarcinoma Brain Metastases that Correlates with Prolonged Survival

Purpose:

To provide a better understanding of the interplay between the immune system and brain metastases to advance therapeutic options for this life-threatening disease.

Experimental Design:

Tumor-infiltrating lymphocytes (TIL) were quantified by semiautomated whole-slide analysis in brain metastases from 81 lung adenocarcinomas. Multi-color staining enabled phenotyping of TILs (CD3, CD8, and FOXP3) on a single-cell resolution. Molecular determinants of the extent of TILs in brain metastases were analyzed by transcriptomics in a subset of 63 patients. Findings in lung adenocarcinoma brain metastases were related to published multi-omic primary lung adenocarcinoma The Cancer Genome Atlas data (n = 230) and single-cell RNA-sequencing (scRNA-seq) data (n = 52,698).

Results:

TIL numbers within tumor islands was an independent prognostic marker in patients with lung adenocarcinoma brain metastases. Comparative transcriptomics revealed that expression of three surfactant metabolism-related genes (SFTPA1, SFTPB, and NAPSA) was closely associated with TIL numbers. Their expression was not only prognostic in brain metastasis but also in primary lung adenocarcinoma. Correlation with scRNA-seq data revealed that brain metastases with high expression of surfactant genes might originate from tumor cells resembling alveolar type 2 cells. Methylome-based estimation of immune cell fractions in primary lung adenocarcinoma confirmed a positive association between lymphocyte infiltration and surfactant expression. Tumors with a high surfactant expression displayed a transcriptomic profile of an inflammatory microenvironment.

Conclusions:

The expression of surfactant metabolism-related genes (SFTPA1, SFTPB, and NAPSA) defines an inflamed subtype of lung adenocarcinoma brain metastases characterized by high abundance of TILs in close vicinity to tumor cells, a prolonged survival, and a tumor microenvironment which might be more accessible to immunotherapeutic approaches.




ino

Novel Endochin-Like Quinolones Exhibit Potent In Vitro Activity against Plasmodium knowlesi but Do Not Synergize with Proguanil [Susceptibility]

Quinolones, such as the antimalarial atovaquone, are inhibitors of the malarial mitochondrial cytochrome bc1 complex, a target critical to the survival of both liver- and blood-stage parasites, making these drugs useful as both prophylaxis and treatment. Recently, several derivatives of endochin have been optimized to produce novel quinolones that are active in vitro and in animal models. While these quinolones exhibit potent ex vivo activity against Plasmodium falciparum and Plasmodium vivax, their activity against the zoonotic agent Plasmodium knowlesi is unknown. We screened several of these novel endochin-like quinolones (ELQs) for their activity against P. knowlesi in vitro and compared this with their activity against P. falciparum tested under identical conditions. We demonstrated that ELQs are potent against P. knowlesi (50% effective concentration, <117 nM) and equally effective against P. falciparum. We then screened selected quinolones and partner drugs using a longer exposure (2.5 life cycles) and found that proguanil is 10-fold less potent against P. knowlesi than P. falciparum, while the quinolones demonstrate similar potency. Finally, we used isobologram analysis to compare combinations of the ELQs with either proguanil or atovaquone. We show that all quinolone combinations with proguanil are synergistic against P. falciparum. However, against P. knowlesi, no evidence of synergy between proguanil and the quinolones was found. Importantly, the combination of the novel quinolone ELQ-300 with atovaquone was synergistic against both species. Our data identify potentially important species differences in proguanil susceptibility and in the interaction of proguanil with quinolones and support the ongoing development of novel quinolones as potent antimalarials that target multiple species.




ino

Novel Insights into the Classification of Staphylococcal {beta}-Lactamases in Relation to the Cefazolin Inoculum Effect [Mechanisms of Resistance]

Cefazolin has become a prominent therapy for methicillin-susceptible Staphylococcus aureus (MSSA) infections. However, an important concern is the cefazolin inoculum effect (CzIE), a phenomenon mediated by staphylococcal β-lactamases. Four variants of staphylococcal β-lactamases have been described based on serological methodologies and limited sequence information. Here, we sought to reassess the classification of staphylococcal β-lactamases and their correlation with the CzIE. We included a large collection of 690 contemporary bloodstream MSSA isolates recovered from Latin America, a region with a high prevalence of the CzIE. We determined cefazolin MICs at standard and high inoculums by broth microdilution. Whole-genome sequencing was performed to classify the β-lactamase in each isolate based on the predicted full sequence of BlaZ. We used the classical schemes for β-lactamase classification and compared it to BlaZ allotypes found in unique sequences using the genomic information. Phylogenetic analyses were performed based on the BlaZ and core-genome sequences. The overall prevalence of the CzIE was 40%. Among 641 genomes, type C was the most predominant β-lactamase (37%), followed by type A (33%). We found 29 allotypes and 43 different substitutions in BlaZ. A single allotype, designated BlaZ-2, showed a robust and statistically significant association with the CzIE. Two other allotypes (BlaZ-3 and BlaZ-5) were associated with a lack of the CzIE. Three amino acid substitutions (A9V, E112A, and G145E) showed statistically significant association with the CzIE (P = <0.01). CC30 was the predominant clone among isolates displaying the CzIE. Thus, we provide a novel approach to the classification of the staphylococcal β-lactamases with the potential to more accurately identify MSSA strains exhibiting the CzIE.




ino

Activity of Plazomicin Tested against Enterobacterales Isolates Collected from U.S. Hospitals in 2016-2017: Effect of Different Breakpoint Criteria on Susceptibility Rates among Aminoglycosides [Susceptibility]

Plazomicin was active against 97.0% of 8,783 Enterobacterales isolates collected in the United States (2016 and 2017), and only 6 isolates carried 16S rRNA methyltransferases conferring resistance to virtually all aminoglycosides. Plazomicin (89.2% to 95.9% susceptible) displayed greater activity than amikacin (72.5% to 78.6%), gentamicin (30.4% to 45.9%), and tobramycin (7.8% to 22.4%) against carbapenem-resistant and extensively drug-resistant isolates. The discrepancies among the susceptibility rates for these agents was greater when applying breakpoints generated using the same stringent contemporary methods applied to determine plazomicin breakpoints.




ino

Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic Pathways To Develop Multidrug Resistance during Long-Term Infections in the Airways of Cystic Fibrosis Patients [Mechanisms of Resistance]

Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolates recovered from cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a hallmark of chronic infections in CF patients. However, the within-patient genetic diversity of P. aeruginosa populations related to antibiotic resistance remains unexplored. Here, we show the evolution of the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years of chronic infection. Our results show the accumulation of thousands of mutations, with an overall evolutionary history characterized by purifying selection. However, mutations in antibiotic resistance genes appear to have been positively selected, driven by antibiotic treatment. Antibiotic resistance increased as infection progressed toward the establishment of a population constituted by genotypically diversified coexisting sublineages, all of which converged to multidrug resistance. These sublineages emerged by parallel evolution through distinct evolutionary pathways, which affected genes of the same functional categories. Interestingly, ampC and ftsI, encoding the β-lactamase and penicillin-binding protein 3, respectively, were found to be among the most frequently mutated genes. In fact, both genes were targeted by multiple independent mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. aeruginosa strategies for persistence.




ino

Antimicrobial Activity of the Quinoline Derivative HT61 against Staphylococcus aureus Biofilms [Susceptibility]

Staphylococcus aureus biofilms are a significant problem in health care settings, partly due to the presence of a nondividing, antibiotic-tolerant subpopulation. Here we evaluated treatment of S. aureus UAMS-1 biofilms with HT61, a quinoline derivative shown to be effective against nondividing Staphylococcus spp. HT61 was effective at reducing biofilm viability and was associated with increased expression of cell wall stress and division proteins, confirming its potential as a treatment for S. aureus biofilm infections.




ino

Erratum for Asempa et al., "In Vitro Activity of Imipenem-Relebactam Alone or in Combination with Amikacin or Colistin against Pseudomonas aeruginosa" [Errata]




ino

Structural Insights into Ceftobiprole Inhibition of Pseudomonas aeruginosa Penicillin-Binding Protein 3 [Experimental Therapeutics]

Ceftobiprole is an advanced-generation broad-spectrum cephalosporin antibiotic with potent and rapid bactericidal activity against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, as well as susceptible Gram-negative pathogens, including Pseudomonas sp. pathogens. In the case of Pseudomonas aeruginosa, ceftobiprole acts by inhibiting P. aeruginosa penicillin-binding protein 3 (PBP3). Structural studies were pursued to elucidate the molecular details of this PBP inhibition. The crystal structure of the His-tagged PBP3-ceftobiprole complex revealed a covalent bond between the ligand and the catalytic residue S294. Ceftobiprole binding leads to large active site changes near binding sites for the pyrrolidinone and pyrrolidine rings. The S528 to L536 region adopts a conformation previously not observed in PBP3, including partial unwinding of the α11 helix. These molecular insights can lead to a deeper understanding of β-lactam-PBP interactions that result in major changes in protein structure, as well as suggesting how to fine-tune current inhibitors and to develop novel inhibitors of this PBP.




ino

Levonadifloxacin, a Novel Benzoquinolizine Fluoroquinolone, Modulates Lipopolysaccharide-Induced Inflammatory Responses in Human Whole-Blood Assay and Murine Acute Lung Injury Model [Pharmacology]

Fluoroquinolones are reported to possess immunomodulatory activity; hence, a novel benzoquinolizine fluoroquinolone, levonadifloxacin, was evaluated in lipopolysaccharide-stimulated human whole-blood (HWB) and mouse acute lung injury (ALI) models. Levonadifloxacin significantly mitigated the inflammatory responses in an HWB assay through inhibition of proinflammatory cytokines and in the ALI model by lowering lung total white blood cell count, myeloperoxidase, and cytokine levels. The immunomodulatory effect of levonadifloxacin, along with promising antibacterial activity, is expected to provide clinical benefits in the treatment of infections.




ino

Pemigatinib Is Active in Some FGFR2-Altered Cholangiocarcinomas [Clinical Trials]

Pemigatinib was effective in patients with cholangiocarcinomas with FGFR2 fusions or rearrangements.




ino

Bemarituzumab Is Active in FGFR2b-High Gastroesophageal Adenocarcinoma [Clinical Trials]

The FGFR2b inhibitor bemarituzumab was effective in high-FGFR2b gastroesophageal adenocarcinoma.




ino

Retinoic Acid Mediates Monocyte Differentiation and Immune Response [Immunology]

Tumor-derived retinoic acid promotes monocyte differentiation into immunosuppressive macrophages.




ino

The diagnostic challenges and clinical course of a myeloid/lymphoid neoplasm with eosinophilia and ZBTB20-JAK2 gene fusion presenting as B-lymphoblastic leukemia [RESEARCH REPORT]

We report the diagnostic challenges and the clinical course of a patient with an extraordinary presentation of B-lymphoblastic leukemia (B-ALL) with eosinophilia. We identified a novel ZBTB20-JAK2 gene fusion as a chimeric RNA transcript using the Archer platform. This gene fusion from the same patient was recently identified by Peterson et al. (2019) at the genomic level using a different sequencing technology platform. The configuration of this gene fusion predicts the production of a kinase-activating JAK2 fusion protein, which would normally lead to a diagnosis of Philadelphia chromosome–like B-ALL (Ph-like B-ALL). However, the unusual presentation of eosinophilia led us to demonstrate the presence of this gene fusion in nonlymphoid hematopoietic cells by fluorescence in situ hybridization (FISH) studies with morphologic correlation. Therefore, we believe this disease, in fact, represents blast crisis arising from an underlying myeloid neoplasm with JAK2 rearrangements. This case illustrates the difficulty in differentiating Ph-like B-ALL and myeloid/lymphoid neoplasm with eosinophilia and gene rearrangements (MLN-EGR) in blast crisis. As currently defined, the diagnosis of MLN-EGR relies on the hematologic presentations and the identification of marker gene fusions (including PCM1-JAK2, ETV6-JAK2, and BCR-JAK2). However, these same gene fusions, when limited to B-lymphoblasts, also define Ph-like B-ALL. Yet, our case does not conform to either condition. Therefore, the assessment for lineage restriction of gene rearrangements to reflect the pathophysiologic difference between B-ALL and MLN-EGR in blast crisis is likely a more robust diagnostic approach and allows the inclusion of MLN-EGR with novel gene fusions.




ino

Prediagnostic Circulating Levels of Sex Steroid Hormones and SHBG in Relation to Risk of Ductal Carcinoma In Situ of the Breast among UK Women

Background:

Sex steroid hormones and sex hormone–binding globulin (SHBG) have been implicated in the etiology of invasive breast cancer, but their associations with risk of the precursor lesion, ductal carcinoma in situ (DCIS) of the breast, remain unclear.

Methods:

We used Cox proportional hazards regression models to estimate the associations of serum levels of estradiol (premenopausal women only), testosterone, and/or SHBG with DCIS risk among 182,935 women. After a median follow-up of 7.1 years, 186 and 531 DCIS cases were ascertained in premenopausal and postmenopausal women, respectively.

Results:

Total and free estradiol were positively associated with risk of DCIS among premenopausal women. The HRs for the highest versus the lowest tertiles were 1.54 (1.06–2.23) and 1.72 [95% confidence interval (CI), 1.15–2.57], respectively. Among postmenopausal women, elevated levels of free testosterone (FT), and to a lesser extent, total testosterone, were positively associated with DCIS risk. The HRs for the highest versus the lowest quartiles were 1.42 (95% CI, 1.09–1.85) and 1.16 (95% CI, 0.91–1.48), respectively. Serum SHBG levels were inversely associated with risk of DCIS among postmenopausal women (HRq4 vs. q1: 0.75; 95% CI, 0.56–0.99).

Conclusions:

This study suggests that elevated levels of estradiol are associated with increased risk of DCIS among premenopausal women, and that among postmenopausal women, elevated levels of testosterone, and particularly those of FT, are associated with increased DCIS risk, while elevated levels of SHBG are associated with reduced risk.

Impact:

These findings may be helpful in developing prevention strategies aimed at reducing breast cancer risk among premenopausal and postmenopausal women.




ino

The Impact of One-week Dietary Supplementation with Kava on Biomarkers of Tobacco Use and Nitrosamine-based Carcinogenesis Risk among Active Smokers

Tobacco smoking is the primary risk factor for lung cancer, driven by the addictive nature of nicotine and the indisputable carcinogenicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as well as other compounds. The integration of lung cancer chemoprevention with smoking cessation is one potential approach to reduce this risk and mitigate lung cancer mortality. Experimental data from our group suggest that kava, commonly consumed in the South Pacific Islands as a beverage to promote relaxation, may reduce lung cancer risk by enhancing NNK detoxification and reducing NNK-derived DNA damage. Building upon these observations, we conducted a pilot clinical trial to evaluate the effects of a 7-day course of kava on NNK metabolism in active smokers. The primary objective was to compare urinary total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL plus its glucuronides, major metabolites of NNK) before and after kava administration as an indicator of NNK detoxification. Secondary objectives included determining kava's safety, its effects on DNA damage, tobacco use, and cortisol (a biomarker of stress). Kava increased urinary excretion of total NNAL and reduced urinary 3-methyladenine in participants, suggestive of its ability to reduce the carcinogenicity of NNK. Kava also reduced urinary total nicotine equivalents, indicative of its potential to facilitate tobacco cessation. Plasma cortisol and urinary total cortisol equivalents were reduced upon kava use, which may contribute to reductions in tobacco use. These results demonstrate the potential of kava intake to reduce lung cancer risk among smokers.




ino

[PERSPECTIVES] Discouraging Elective Genetic Testing of Minors: A Norm under Siege in a New Era of Genomic Medicine

Consistently, the field of genetic counseling has advocated that parents be advised to defer elective genetic testing of minors until adulthood to prevent a range of potential harms, including stigma, discrimination, and the loss of the child's ability to decide for him- or herself as an adult. However, consensus around the policy of "defer-when-possible" obscures the extent to which this norm is currently under siege. Increasingly, routine use of full or partial genome sequencing challenges our ability to control what is discovered in childhood or, when applied in a prenatal context, even before birth. The expansion of consumer-initiated genetic testing services challenges our ability to restrict what is available to minors. As the barriers to access crumble, medical professionals should proceed with caution, bearing in mind potential risks and continuing to assess the impact of genetic testing on this vulnerable population.




ino

Radiomics Study of Thyroid Ultrasound for Predicting BRAF Mutation in Papillary Thyroid Carcinoma: Preliminary Results [FUNCTIONAL]

BACKGROUND AND PURPOSE:

It is not known how radiomics using ultrasound images contribute to the detection of BRAF mutation. This study aimed to evaluate whether a radiomics study of gray-scale ultrasound can predict the presence or absence of B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutation in papillary thyroid cancer.

MATERIALS AND METHODS:

The study retrospectively included 96 thyroid nodules that were surgically confirmed papillary thyroid cancers between January 2012 and June 2013. BRAF mutation was positive in 48 nodules and negative in 48 nodules. For analysis, ROIs from the nodules were demarcated manually on both longitudinal and transverse sonographic images. We extracted a total of 86 radiomics features derived from histogram parameters, gray-level co-occurrence matrix, intensity size zone matrix, and shape features. These features were used to build 3 different classifier models, including logistic regression, support vector machine, and random forest using 5-fold cross-validation. The performance including accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve, of the different models was evaluated.

RESULTS:

The incidence of high-suspicion nodules diagnosed on ultrasound was higher in the BRAF mutation–positive group than in the mutation–negative group (P = .004). The radiomics approach demonstrated that all classification models showed moderate performance for predicting the presence of BRAF mutation in papillary thyroid cancers with an area under the curve value of 0.651, accuracy of 64.3%, sensitivity of 66.8%, and specificity of 61.8%, on average, for the 3 models.

CONCLUSIONS:

Radiomics study using thyroid sonography is limited in predicting the BRAF mutation status of papillary thyroid carcinoma. Further studies will be needed to validate our results using various diagnostic methods.




ino

Miền Bắc có thêm trung tâm công nghiệp giải trí có casino

Ký quyết định số 226/QĐ-TTg, Phó thủ tướng Trịnh Đình Dũng vừa phê duyệt điều chỉnh quy hoạch chung xây dựng khu kinh tế Vân Đồn đến năm 2040.




ino

Neutrinos determined where galaxies formed in the early universe

In the early universe, particles called neutrinos had a starring role in determining where galaxy clusters formed and which elements were created when stars exploded




ino

When Will Vegas Reopen? Social Distancing Guidelines for Casinos, Drive-Ins, and Restaurants

Restaurants and drive-in movie theatres are allowed to reopen in Las Vegas today, with casinos hoping to reopen by Memorial Day.




ino

Raptorial Dinosaurs Did Not Hunt in Coordinated Packs, Paleontologists Say

An analysis of the fossilized teeth of Deinonychus antirrhopus, a species of wolf-sized dromaeosaurid dinosaur that lived between 115 and 108 million years ago (Cretaceous period) in what is now the United States, adds to the growing evidence that this and other raptors were not complex social hunters by modern mammalian standards. The image of [...]




ino

An unequal society means covid-19 is hitting ethnic minorities harder

People from an ethnic minority are disproportionately affected by covid-19. Researchers say the reasons are rooted in existing social and healthcare inequalities




ino

Van Dijk sounds ominous warning to rivals as Liverpool star claims he can get even better

The Netherlands international has become a talismanic presence for club country, but the commanding centre-half believes there is more to come





ino

Chris Martin and Mike Shinoda set for mental health awareness festival

Fans can check out the event, which kicks off at 8.30am PT each day, on 320 Festival's Facebook Live and YouTube Live pages.




ino

New Feathered Carnivorous Dinosaur Found in New Mexico

Dineobellator was a formidable predator and boasts the battle scars to prove it.




ino

After the Dinosaur-Killing Impact, Soot Played a Remarkable Role in Extinction

The famous impact 66 million years ago kicked up soot into the atmosphere that played an even bigger role in blocking sunlight than experts had realized




ino

US Surgeon General Jerome Adams defends drug and drinking coronavirus advice to black and Latino people

Follow our live coronavirus updates HERE Coronavirus: the symptoms




ino

Food For London Now: Former Tottenham boss Mauricio Pochettino backs appeal to help vulnerable

Donate at virginmoneygiving.com/fund/FoodforLondonNOW




ino

Las Vegas mayor sparks fury after calls for casinos to reopen during coronavirus pandemic

The Mayor of Las Vegas has been slammed for an "outrageous" plan to reopen the city's casinos as a "control group" for coronavirus.




ino

Ethnic minorities at greater risk of virus death, says study

People from black and ethnic minorities appear to be at greater risk of dying from coronavirus, according to a study of patients at three London hospitals.




ino

&#39;Crazy beast&#39; lived among last of dinosaurs

The discovery that the badger-like animal lived alongside dinosaurs challenges ideas about mammals.





ino

Glowing flowers created through insertion of DNA from luminous mushroom

Scientists have created glowing flowers after editing the DNA of a plant.






ino

The Walking Dead: AMC reportedly developing film spinoff for Norman Reedus&apos;s character

In the apocalyptic drama series, Reedus plays the popular character Daryl Dixon