ino Crystal structure and DFT study of benzyl 1-benzyl-2-oxo-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2019-06-11 In the title quinoline derivative, C24H19NO3, the two benzyl rings are inclined to the quinoline ring mean plane by 74.09 (8) and 89.43 (7)°, and to each other by 63.97 (10)°. The carboxylate group is twisted from the quinoline ring mean plane by 32.2 (2)°. There is a short intramolecular C—H⋯O contact forming an S(6) ring motif. In the crystal, molecules are linked by bifurcated C—H,H⋯O hydrogen bonds, forming layers parallel to the ac plane. The layers are linked by C—H⋯π interactions, forming a supramolecular three-dimensional structure. Full Article text
ino Crystal structure, DFT and MEP study of (E)-2-[(2-hydroxy-5-methoxybenzylidene)amino]benzonitrile By scripts.iucr.org Published On :: 2019-06-14 The asymmetric unit of the title compound, C15H12N2O2, contains two crystallographically independent molecules in which the dihedral angles between the benzene rings in each are 13.26 (5) and 7.87 (5)°. An intramolecular O—H⋯N hydrogen bonds results in the formation of an S(6) ring motif. In the crystal, molecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (011). In addition, π–π stacking interactions with centroid–centroid distances in the range 3.693 (2)–3.931 (2) Å complete the three-dimensional network. Full Article text
ino Synthesis and crystal structure of a new hybrid organic–inorganic material containing neutral molecules, cations and heptamolybdate anions By scripts.iucr.org Published On :: 2019-06-21 The title compound, hexakis(2-methyl-1H-imidazol-3-ium) heptamolybdate 2-methyl-1H-imidazole disolvate dihydrate, (C4H7N2)6[Mo7O24]·2C4H6N2·2H2O, was prepared from 2-methylimidazole and ammonium heptamolybdate tetrahydrate in acid solution. The [Mo7O24]6− heptamolybdate cluster anion is accompanied by six protonated (C4H7N2)+ 2-methylimidazolium cations, two neutral C4H6N2 2-methylimidazole molecules and two water molecules of crystallization. The cluster consists of seven distorted MoO6 octahedra sharing edges or vertices. In the crystal, the components are linked by N—H⋯N, N—H⋯O, O—H⋯O, N—H⋯(O,O) and O—H⋯(O,O) hydrogen bonds, generating a three-dimensional network. Weak C—H⋯O interactions consolidate the packing. Full Article text
ino 5-Methyl-1,3-phenylene bis[5-(dimethylamino)naphthalene-1-sulfonate]: crystal structure and DFT calculations By scripts.iucr.org Published On :: 2019-06-28 The title compound, C31H30N2S2O6, possesses crystallographically imposed twofold symmetry with the two C atoms of the central benzene ring and the C atom of its methyl substituent lying on the twofold rotation axis. The two dansyl groups are twisted away from the plane of methylphenyl bridging unit in opposite directions. The three-dimensional arrangement in the crystal is mainly stabilized by weak hydrogen bonds between the sulfonyl oxygen atoms and the hydrogen atoms from the N-methyl groups. Stacking of the dansyl group is not observed. From the DFT calculations, the HOMO–LUMO energy gap was found to be 2.99 eV and indicates n→π* and π→π* transitions within the molecule. Full Article text
ino Crystal structures of two new isocoumarin derivatives: 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one By scripts.iucr.org Published On :: 2019-07-09 The title compounds, 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one, C22H17NO2, (I), and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one, C14H17NO2, (II), are new isocoumarin derivatives in which the isochromene ring systems are planar. Compound II crystallizes with two independent molecules (A and B) in the asymmetric unit. In I, the two phenyl rings are inclined to each other by 56.41 (7)° and to the mean plane of the 1H-isochromene ring system by 67.64 (6) and 44.92 (6)°. In both compounds, there is an intramolecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal of I, molecules are linked by N—H⋯π interactions, forming chains along the b-axis direction. A C—H⋯π interaction links the chains to form layers parallel to (100). The layers are then linked by a second C—H⋯π interaction, forming a three-dimensional structure. In the crystal of II, the two independent molecules (A and B) are linked by N—H⋯O hydrogen bonds, forming –A–B–A–B– chains along the [101] direction. The chains are linked into ribbons by C—H⋯π interactions involving inversion-related A molecules. The latter are linked by offset π–π interactions [intercentroid distances vary from 3.506 (1) to 3.870 (2) Å], forming a three-dimensional structure. Full Article text
ino Crystal structure of 2-(methylamino)tropone By scripts.iucr.org Published On :: 2019-07-09 The title compound, 2-(methylamino)cyclohepta-2,4,6-trien-1-one, C8H9NO, crystallizes in the monoclinic space group P21/c, with three independent molecules in the asymmetric unit. The planarity of the molecules is indicated by planes fitted through the seven ring carbon atoms. Small deviations from the planes, with an extremal r.m.s. deviation of 0.0345 Å, are present. In complexes of transition metals with similar ligands, the large planar seven-membered aromatic rings have shown to improve the stability of the complex. Two types of hydrogen-bonding interactions, C—H⋯O and N—H⋯O, are observed, as well as bifurcation of these interactions. The N—H⋯O interactions link molecules to form infinite chains. The packing of molecules in the unit cell shows a pattern of overlapping aromatic rings, forming column-like formations. π–π interactions are observed between the overlapping aromatic rings at 3.4462 (19) Å from each other. Full Article text
ino Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-chlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide By scripts.iucr.org Published On :: 2019-07-12 The title salt, C16H15ClN3S+·Br−, is isotypic with (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide [Khalilov et al. (2019). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thiazolidine ring and the atom joining the thiazolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thiazolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide, C—H⋯π interactions and π–π stacking interactions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the molecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) interactions. Full Article text
ino Crystal structure of tetra-μ-acetato-bis[(5-amino-2-methylsulfanyl-1,3,4-thiadiazole-κN1)copper(II)] By scripts.iucr.org Published On :: 2019-07-23 The reaction of 2-methylthio-5-amino-1,3,4-thiadiazole (Me-SNTD; C3H5N3S2) with copper(II) acetate monohydrate [Cu(OAc)2·H2O; C4H8CuO5] resulted in the formation of the title binuclear compound, [Cu2(C2H3O2)4(C3H5N3S2)2] or [Cu2(OAc)4(Me-SNTD)2]. The structure has triclinic (P overline{1}) symmetry with a crystallographic inversion centre located at the midpoint of the line connecting the Cu atoms in the dimer. These two Cu atoms of the dimer [Cu⋯Cu = 2.6727 (6) Å] are held together by four carboxylate groups. Each Cu atom is further coordinated to the N atom of an Me-SNTD molecule and exhibits a Jahn–Teller-distorted octahedral geometry. The dimers are connected into infinite chains by hydrogen bonds between the NH (Me-SNTD) and the carboxylate groups of neighbouring molecules, generating an R22(12) ring motif. The molecules are further linked by C—H⋯π interactions between the thiadiazole rings and the methyl groups of the acetate units. Full Article text
ino The synthesis and crystal structure of bis[3,3-diethyl-1-(phenylimino-κN)thiourea-κS]silver hexafluoridophosphate By scripts.iucr.org Published On :: 2019-08-30 The structure of the title complex, [Ag(C11H15N3S)2]PF6, has monoclinic (P21/c) symmetry, and the silver atom has a distorted square-planar geometry. The coordination complex crystallized from mixing silver hexafluoridophosphate with a concentrated tetrahydrofuran solution of N,N-diethylphenylazothioformamide [ATF; systematic name: 3,3-diethyl-1-(phenylimino)thiourea] under ambient conditions. The resultant coordination complex exhibits a 2:1 ligand-to-metal ratio, with the silver(I) atom having a fourfold AgN2S2 coordination sphere, with a single PF6 counter-ion. In the crystal, however, one sulfur atom from an ATF ligand of a neighboring complex coordinates to the silver atom, with a bond distance of 2.9884 (14) Å. This creates a polymeric zigzag chain propagating along the c-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming slabs parallel to the ac plane. Full Article text
ino Synthesis and redetermination of the crystal structure of salicylaldehyde N(4)-morpholinothiosemicarbazone By scripts.iucr.org Published On :: 2019-08-30 The structure of the title compound (systematic name: N-{[(2-hydroxyphenyl)methylidene]amino}morpholine-4-carbothioamide), C12H15N3O2S, was previously determined (Koo et al., 1977) using multiple-film equi-inclination Weissenberg data, but has been redetermined with higher precision to explore its conformation and the hydrogen-bonding patterns and supramolecular interactions. The molecular structure shows intramolecular O—H⋯N and C—H⋯S interactions. The configuration of the C=N bond is E. The molecule is slightly twisted about the central N—N bond. The best planes through the phenyl ring and the morpholino ring make an angle of 43.44 (17)°. In the crystal, the molecules are connected into chains by N—H⋯O and C—H⋯O hydrogen bonds, which combine to generate sheets lying parallel to (002). The most prominent contribution to the surface contacts are H⋯H contacts (51.6%), as concluded from a Hirshfeld surface analysis. Full Article text
ino Crystal structure of (1S,2R)-2-[(3R,4S)-3-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-2-yl]-1,2-diphenylethanol By scripts.iucr.org Published On :: 2019-09-03 The synthesis and crystal structure of the title compound, C30H29NO, are described. This compound is a member of the chiral dihydroisoquinoline-derived family, used as building blocks for functional materials and as source of chirality in asymmetric synthesis, and was isolated as one of two diastereomeric β-amino alcohols, the title molecule being found to be the (S,R) diastereoisomer. In the crystal, molecules are packed in a herringbone manner parallel to (103) and (10overline{3}) via weak C—H⋯O and C—H⋯π(ring) interactions. Hirshfeld surface analysis showed that the surface contacts are predominantly H⋯H interactions (ca 75%). The crystal studied was refined as a two-component inversion twin. Full Article text
ino Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 2-chloroethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2019-09-06 The title compound, C15H12ClNO3, consists of a 1,2-dihydroquinoline-4-carboxylate unit with 2-chloroethyl and propynyl substituents, where the quinoline moiety is almost planar and the propynyl substituent is nearly perpendicular to its mean plane. In the crystal, the molecules form zigzag stacks along the a-axis direction through slightly offset π-stacking interactions between inversion-related quinoline moieties which are tied together by intermolecular C—HPrpnyl⋯OCarbx and C—HChlethy⋯OCarbx (Prpnyl = propynyl, Carbx = carboxylate and Chlethy = chloroethyl) hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.9%), H⋯O/O⋯H (21.4%), H⋯C/C⋯ H (19.4%), H⋯Cl/Cl⋯H (16.3%) and C⋯C (8.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPrpnyl⋯OCarbx and C—HChlethy⋯OCarbx hydrogen bond energies are 67.1 and 61.7 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ino The crystal structure of ((cyclohexylamino){(Z)-2-[(E)-5-methoxy-3-nitro-2-oxidobenzylidene-κO]hydrazin-1-ylidene-κN2}methanethiolato-κS)(dimethyl sulfoxide-κS)platinum(II): a supramolecular two-dimens By scripts.iucr.org Published On :: 2019-09-12 The PtII atom in the title complex, [Pt(C15H18N4O4S)(C2H6OS)], exists within a square-planar NS2O donor set provided by the N, S, O atoms of the di-anionic tridentate thiosemicarbazo ligand and a dimethyl sulfoxide S atom. The two chelate rings are coplanar, subtending a dihedral angle of 1.51 (7)°. The maximum deviation from an ideal square-planar geometry is seen in the five-membered chelate ring with an S—Pt—S bite angle of 96.45 (2)°. In the crystal, molecules are linked via N—H⋯O, C—H⋯O, C—H⋯N and C—H⋯π interactions into two-dimensional networks lying parallel to the ab plane. The conformations of related cyclohexylhydrazine-1-carbothioamide ligands are compared to that of the title compound. Full Article text
ino Crystal structures of 3-chloro-2-nitrobenzoic acid with quinoline derivatives: 3-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), 3-chloro-2-nitrobenzoic acid–6-nitroquinoline (1/1) and 8-hydroxyquinolinium 3-ch By scripts.iucr.org Published On :: 2019-09-27 The structures of three compounds of 3-chloro-2-nitrobenzoic acid with 5-nitroquinoline, (I), 6-nitroquinoline, (II), and 8-hydroxyquinoline, (III), have been determined at 190 K. In each of the two isomeric compounds, (I) and (II), C7H4ClNO4·C9H6N2O2, the acid and base molecules are held together by O—H⋯N and C—H⋯O hydrogen bonds. In compound (III), C9H8NO+·C7H3ClNO4−, an acid–base interaction involving H-atom transfer occurs and the H atom is located at the N site of the base molecule. In the crystal of (I), the hydrogen-bonded acid–base units are linked by C—H⋯O hydrogen bonds, forming a tape structure along the b-axis direction. Adjacent tapes, which are related by a twofold rotation axis, are linked by a third C—H⋯O hydrogen bond, forming wide ribbons parallel to the (overline{1}03) plane. These ribbons are stacked via π–π interactions between the quinoline ring systems [centroid–centroid distances = 3.4935 (5)–3.7721 (6) Å], forming layers parallel to the ab plane. In the crystal of (II), the hydrogen-bonded acid–base units are also linked into a tape structure along the b-axis direction via C—H⋯O hydrogen bonds. Inversion-related tapes are linked by further C—H⋯O hydrogen bonds to form wide ribbons parallel to the (overline{3}08) plane. The ribbons are linked by weak π–π interactions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], forming a three-dimensional structure. In the crystal of (III), the cations and the anions are alternately linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a 21 helix running along the b-axis direction. The cations and the anions are further stacked alternately in columns along the a-axis direction via π–π interactions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], and the molecular chains are linked into layers parallel to the ab plane through these interactions. Full Article text
ino The crystal structures and Hirshfeld surface analysis of 6-(naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexahydrospiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,11'-indeno[1,2-b]quinoxaline] and 6'-(naphthalen-1-yl)-6a By scripts.iucr.org Published On :: 2019-09-27 The title compounds, 6-(naphthalen-1-yl)-6a-nitro-6,6a,6 b,7,9,11a-hexahydrospiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,11'-indeno[1,2-b]quinoxaline], C37H26N4O3S, (I), and 6'-(naphthalen-1-yl)-6a'-nitro-6',6a',6b',7',8',9',10',12a'-octahydro-2H-spiro[acenaphthylene-1,12'-chromeno[3,4-a]indolizin]-2-one, C36H28N2O4, (II), are new spiro derivatives, in which both the pyrrolidine rings adopt twisted conformations. In (I), the five-membered thiazole ring adopts an envelope conformation, while the eight-membered pyrrolidine-thiazole ring adopts a boat conformation. An intramolecular C—H⋯N hydrogen bond occurs, involving a C atom of the pyran ring and an N atom of the pyrazine ring. In (II), the six-membered piperidine ring adopts a chair conformation. An intramolecular C—H⋯O hydrogen bond occurs, involving a C atom of the pyrrolidine ring and the keto O atom. For both compounds, the crystal structure is stabilized by intermolecular C—H⋯O hydrogen bonds. In (I), the C—H⋯O hydrogen bonds link adjacent molecules, forming R22(16) loops propagating along the b-axis direction, while in (II) they form zigzag chains along the b-axis direction. In both compounds, C—H⋯π interactions help to consolidate the structure, but no significant π–π interactions with centroid–centroid distances of less than 4 Å are observed. Full Article text
ino Crystal structure and Hirshfeld surface analysis of 2-aminopyridinium hydrogen phthalate By scripts.iucr.org Published On :: 2019-10-08 Aminopyridine and phthalic acid are well known synthons for supramolecular architectures for the synthesis of new materials for optical applications. The 2-aminopyridinium hydrogen phthalate title salt, C5H7N2+·C8H5O4−, crystallizes in the non-centrosymmetric space group P21. The nitrogen atom of the –NH2 group in the cation deviates from the fitted pyridine plane by 0.035 (7) Å. The plane of the pyridinium ring and phenyl ring of the anion are oriented at an angle of 80.5 (3)° to each other in the asymmetric unit. The anion features a strong intramolecular O—H⋯O hydrogen bond, forming a self-associated S(7) ring motif. The crystal packing is dominated by intermolecular N—H⋯O hydrogen bonds leading to the formation of 21 helices, with a C(11) chain motif. They propagate along the b axis and enclose R22(8) ring motifs. The helices are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ab plane. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate and quantify the intermolecular interactions in the crystal. Full Article text
ino Crystal structure and Hirshfeld surface analysis of 3-amino-5-phenylthiazolidin-2-iminium bromide By scripts.iucr.org Published On :: 2019-09-27 In the cation of the title salt, C9H12N3S+·Br−, the thiazolidine ring adopts an envelope conformation with the C atom adjacent to the phenyl ring as the flap. In the crystal, N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak π–π stacking interactions between the phenyl rings of adjacent cations also contribute to the molecular packing. A Hirshfeld surface analysis was conducted to quantify the contributions of the different intermolecular interactions and contacts. Full Article text
ino Crystal structure, Hirshfeld surface analysis and physicochemical characterization of bis[4-(dimethylamino)pyridinium] di-μ-chlorido-bis[dichloridomercurate(II)] By scripts.iucr.org Published On :: 2019-10-03 The title molecular salt, (C7H11N2)2[Hg2Cl6], crystallizes with two 4-(dimethylamino)pyridinium cations (A and B) and two half hexachloridodimercurate(II) anions in the asymmetric unit. The organic cations exhibit essentially the same features with an almost planar pyridyl ring (r.m.s. deviations of 0.0028 and 0.0109 Å), which forms an inclined dihedral angle with the dimethyamino group [3.06 (1) and 1.61 (1)°, respectively]. The dimethylamino groups in the two cations are planar, and the C—N bond lengths are shorter than that in 4-(dimethylamino)pyridine. In the crystal, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H⋯Cl hydrogen bonds and adjacent layers are linked by C—H⋯Cl hydrogen bonds, forming a three-dimensional network. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above intermolecular interactions, but also serve to further differentiate the weaker intermolecular interactions formed by the organic cations and inorganic anions, such as π–π and Cl⋯Cl interactions. The powder XRD data confirms the phase purity of the crystalline sample. Furthermore, the vibrational absorption bands were identified by IR spectroscopy and the optical properties were studied by using optical UV–visible absorption spectroscopy. Full Article text
ino Crystal structures of two 4H-chromene derivatives: 2-amino-3-cyano-4-(3,4-dichlorophenyl)-7-hydroxy-4H-benzo[1,2-b]pyran 1,4-dioxane monosolvate and 2-amino-3-cyano-4-(2,6-dichlorophenyl)-7-hydroxy-4H-benzo[ By scripts.iucr.org Published On :: 2019-09-27 In the title compounds, C16H9Cl2N2O2·C4H8O2 and C16H9Cl2N2O2, the bicyclic 4H-chromene cores are nearly planar with maximum deviations of 0.081 (2) and 0.087 (2) Å. In both structures, the chromene derivative molecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds, forming R22(16) motifs. These dimers are further linked in the 3,4-dichlorophenyl derivative by N—H⋯N hydrogen bonds into double layers parallel to (100) and in the 2,6-dichlorophenyl derivative by O—H⋯N hydrogen bonds into ribbons along the [1overline{1}0] direction. In the 3,4-dichlorophenyl derivative, the 1,4-dioxane solvent molecules are connected to the chromene molecules via O—H⋯O hydrogen bonds. Full Article text
ino Crystal structures, syntheses, and spectroscopic and electrochemical measurements of two push–pull chromophores: 2-[4-(dimethylamino)benzylidene]-1H-indene-1,3(2H)-dione and (E)-2-{3-[4-(dimethylamino)phenyl By scripts.iucr.org Published On :: 2019-10-03 The title pull–push chromophores, 2-[4-(dimethylamino)benzylidene]-1H-indene-1,3(2H)-dione, C18H15NO2 (ID[1]) and (E)-2-{3-[4-(dimethylamino)phenyl]allylidene}-1H-indene-1,3(2H)-dione, C20H17NO2 (ID[2]), have donor–π-bridge–acceptor structures. The molecule with the short π-bridge, ID[1], is almost planar while for the molecule with a longer bridge, ID[2], is less planar. The benzene ring is inclined to the mean plane of the 2,3-dihydro-1H-indene unit by 3.19 (4)° in ID[1] and 13.06 (8)° in ID[2]. The structures of three polymorphs of compound ID[1] have been reported: the α-polymorph [space group P21/c; Magomedova & Zvonkova (1978). Kristallografiya, 23, 281–288], the β-polymorph [space group P21/c; Magomedova & Zvonkova (1980). Kristallografiya, 25 1183–1187] and the γ-polymorph [space group Pna21; Magomedova, Neigauz, Zvonkova & Novakovskaya (1980). Kristallografiya, 25, 400–402]. The molecular packing in ID[1] studied here is centrosymmetric (space group P21/c) and corresponds to the β-polymorph structure. The molecular packing in ID[2] is non-centrosymmetric (space group P21), which suggests potential NLO properties for this crystalline material. In both compounds, there is short intramolecular C—H⋯O contact present, enclosing an S(7) ring motif. In the crystal of ID[1], molecules are linked by C—H⋯O hydrogen bonds and C—H⋯π interactions, forming layers parallel to the bc plane. In the crystal of ID[2], molecules are liked by C—H⋯O hydrogen bonds to form 21 helices propagating along the b-axis direction. The molecules in the helix are linked by offset π–π interactions with, for example, a centroid–centroid distance of 3.9664 (13) Å (= b axis) separating the indene rings, and an offset of 1.869 Å. Spectroscopic and electrochemical measurements show the ability of these compounds to easily transfer electrons through the π-conjugated chain. Full Article text
ino Crystal structure, DFT and Hirshfeld surface analysis of 2-amino-4-(2-chlorophenyl)-7-hydroxy-4H-benzo[1,2-b]pyran-3-carbonitrile By scripts.iucr.org Published On :: 2019-10-22 The benzopyran ring of the title compound, C16H11ClN2O2, is planar [maximum deviation = 0.079 (2) Å] and is almost perpendicular to the chlorophenyl ring [dihedral angle = 86.85 (6)°]. In the crystal, N—H⋯O, O—H⋯N, C—H⋯O and C—H⋯Cl hydrogen bonds form inter- and intramolecular interactions. The DFT/B3LYP/6-311G(d,p) method was used to determine the HOMO–LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule. Full Article text
ino Crystal structures of the two isomeric hydrogen-bonded cocrystals 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1) and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1) By scripts.iucr.org Published On :: 2019-10-22 The structures of two isomeric compounds of 5-nitroquinoline with chloro- and nitro-substituted benzoic acid, namely, 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1), (I), and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), (II), both C7H4ClNO4·C9H6N2O2, have been determined at 190 K. In each compound, the acid and base molecules are held together by an O—H⋯N hydrogen bond. In the crystal of (I), the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond, forming a tape structure along [1overline{2}0]. The tapes are stacked into a layer parallel to the ab plane via N—O⋯π interactions between the nitro group of the base molecule and the quinoline ring system. The layers are further linked by other C—H⋯O hydrogen bonds, forming a three-dimensional network. In the crystal of (II), the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [1overline{1}0] via C—H⋯O hydrogen bonds. The ribbons are further linked via another C—H⋯O hydrogen bond, forming a layer parallel to (110). Weak π–π interactions [centroid–centroid distances of 3.7080 (10) and 3.7543 (9) Å] are observed between the quinoline ring systems of adjacent layers. Hirshfeld surfaces for the 5-nitroquinoline molecules of the two compounds mapped over shape index and dnorm were generated to visualize the weak intermolecular interactions. Full Article text
ino Crystal structure, Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitrobenzylidene)amino]-2(R,S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one By scripts.iucr.org Published On :: 2019-10-29 A 1:1 epimeric mixture of 3-[(4-nitrobenzylidene)amino]-2(R,S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one, C19H19N5O5, was isolated from a reaction mixture of 2(S)-amino-3-methyl-1-oxobutanehydrazine and 4-nitrobenzaldehyde in ethanol. The product was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxobutanehydrazine at its hydrazine group to provide a 4-nitrobenzylidene derivative, followed by a cyclization reaction with another molecule of 4-nitrobenzaldehyde to form the chiral five-membered imidazolidin-4-one ring. The formation of the five-membered imidazolidin-4-one ring occurred with retention of the configuration at the 5-position, but with racemization at the 2-position. In the crystal, N—H⋯O(nitro) hydrogen bonds, weak C—H⋯O(carbonyl) and C—H⋯O(nitro) hydrogen bonds, as well as C—H⋯π, N—H⋯π and π–π interactions, are present. These combine to generate a three-dimensional array. Hirshfeld surface analysis and PIXEL calculations are also reported. Full Article text
ino Crystal structure, Hirshfeld surface analysis and DFT studies of ethyl 2-{4-[(2-ethoxy-2-oxoethyl)(phenyl)carbamoyl]-2-oxo-1,2-dihydroquinolin-1-yl}acetate By scripts.iucr.org Published On :: 2019-10-29 The title compound, C24H24N2O6, consists of ethyl 2-(1,2,3,4-tetrahydro-2-oxoquinolin-1-yl)acetate and 4-[(2-ethoxy-2-oxoethyl)(phenyl)carbomoyl] units, where the oxoquinoline unit is almost planar and the acetate substituent is nearly perpendicular to its mean plane. In the crystal, C—HOxqn⋯OEthx and C—HPhyl⋯OCarbx (Oxqn = oxoquinolin, Ethx = ethoxy, Phyl = phenyl and Carbx = carboxylate) weak hydrogen bonds link the molecules into a three-dimensional network sturucture. A π–π interaction between the constituent rings of the oxoquinoline unit, with a centroid–centroid distance of 3.675 (1) Å may further stabilize the structure. Both terminal ethyl groups are disordered over two sets of sites. The ratios of the refined occupanies are 0.821 (8):0.179 (8) and 0.651 (18):0.349 (18). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (53.9%), H⋯O/O⋯H (28.5%) and H⋯C/C⋯H (11.8%) interactions. Weak intermolecular hydrogen-bond interactions and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) geometric optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO molecular orbital behaviour was elucidated to determine the energy gap. Full Article text
ino Crystal structure and Hirshfeld surface analysis of 2,2'-{(1E,1'E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[4-(trifluoromethoxy)phenol]copper(II) hydroquinone hemisolvate By scripts.iucr.org Published On :: 2019-10-29 In the title complex, [Cu(C18H12F6N2O4)]·0.5C6H6O2, the CuII ion has a square-planar coordination geometry, being ligated by two N and two O atoms of the tetradentate open-chain Schiff base ligand 6,6'-{(1E,1'E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol]. The crystal packing is stabilized by intramolecular O—H⋯O and intermolecular C—H⋯F, C—H⋯O and C—H⋯π hydrogen bonds. In addition, weak π–π interactions form a three-dimensional structure. Hirshfeld surface analysis and two-dimensional fingerprint plots were performed and created to analyze the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from F⋯H/H⋯F (25.7%), H⋯H (23.5%) and C⋯H/H⋯C (12.6%) interactions. Full Article text
ino Crystal structure of benzo[h]quinoline-3-carboxamide By scripts.iucr.org Published On :: 2019-11-05 The title compound, C14H10N2O, crystallizes in the monoclinic space group P21/c with four molecules in the unit cell. All 17 non-H atoms of one molecule lie essentially in one plane. In the unit cell, two pairs of molecules are exactly coplanar, while the angle between these two orientations is close to perfectly perpendicular at 87.64 (6)°. In the crystal, molecules adopt a 50:50 crisscross arrangement, which is held together by two nonclassical and two classical intermolecular hydrogen bonds. The hydrogen-bonding network together with off-centre π–π stacking interactions between the pyridine and outermost benzene rings, stack the molecules along the b-axis direction. Full Article text
ino Crystal structure of 4-chloro-2-nitrobenzoic acid with 4-hydroxyquinoline: a disordered structure over two states of 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1) and 4-hydroxyquinolinium 4-chloro-2-nitrob By scripts.iucr.org Published On :: 2019-11-08 The title compound, C9H7.5NO·C7H3.5ClNO4, was analysed as a disordered structure over two states, viz. co-crystal and salt, accompanied by a keto–enol tautomerization in the base molecule. The co-crystal is 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1), C7H4ClNO4·C9H7NO, and the salt is 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate, C9H8NO+·C7H3ClNO4−. In the compound, the acid and base molecules are held together by a short hydrogen bond [O⋯O = 2.4393 (15) Å], in which the H atom is disordered over two positions with equal occupancies. In the crystal, the hydrogen-bonded acid–base units are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a tape structure along the a-axis direction. The tapes are stacked into a layer parallel to the ab plane via π–π interactions [centroid–centroid distances = 3.5504 (8)–3.9010 (11) Å]. The layers are further linked by another C—H⋯O hydrogen bond, forming a three-dimensional network. Hirshfeld surfaces for the title compound mapped over shape-index and dnorm were generated to visualize the intermolecular interactions. Full Article text
ino (E)-3-{[(2-Bromo-3-methylphenyl)imino]methyl}benzene-1,2-diol: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2019-11-26 The title compound, C14H12BrNO2, was synthesized by the condensation reaction of 2,3-dihydroxybenzaldehyde and 2-bromo-3-methylaniline. It crystallizes in the centrosymmetric triclinic space group Poverline{1}. The configuration about the C=N bond is E. The dihedral angle between the planes of the 5-(2-bromo-3-methylphenyl ring and the catechol ring is 2.80 (17)°. In the crystal, O—H⋯O hydrogen-bond interactions consolidate the crystal packing. Full Article text
ino Crystal structure, computational study and Hirshfeld surface analysis of ethyl (2S,3R)-3-(3-amino-1H-1,2,4-triazol-1-yl)-2-hydroxy-3-phenylpropanoate By scripts.iucr.org Published On :: 2019-11-26 In the title molecule, C13H16N4O3, the mean planes of the phenyl and triazole rings are nearly perpendicular to one another as a result of the intramolecular C—H⋯O and C—H⋯π(ring) interactions. In the crystal, layers parallel to (101) are generated by O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds. The layers are connected by inversion-related pairs of C—H⋯O hydrogen bonds. The experimental molecular structure is close to the gas-phase geometry-optimized structure calculated by DFT methods. Hirshfeld surface analysis indicates that the most important interaction involving hydrogen in the title compound is the H⋯H contact. The contribution of the H⋯O, H⋯N, and H⋯H contacts are 13.6, 16.1, and 54.6%, respectively. Full Article text
ino Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)methyl]amino}benzoic acid By scripts.iucr.org Published On :: 2020-01-01 In the molecule of the title anthracene derivative, C22H17NO2, the benzene ring is inclined to the mean plane of the anthracene ring system (r.m.s. deviation = 0.024 Å) by 75.21 (9)°. In the crystal, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical carboxylic acid inversion dimers with an R22(8) ring motif. The dimers are linked by C—H⋯π interactions, forming a supramolecular framework. Full Article text
ino Crystal structures of chlorido[dihydroxybis(1-iminoethoxy)]arsanido-κ3N,As,N']platinum(II) and of a polymorph of chlorido[dihydroxybis(1-iminopropoxy)arsanido-κ3N,As,N']platinum(II) By scripts.iucr.org Published On :: 2020-01-10 Each central platinum(II) atom in the crystal structures of chlorido[dihydroxybis(1-iminoethoxy)arsanido-κ3N,As,N']platinum(II), [Pt(C4H10AsN2O4)Cl] (1), and of chlorido[dihydroxybis(1-iminopropoxy)arsanido-κ3N,As,N']platinum(II), [Pt(C6H14AsN2O4)Cl] (2), is coordinated by two nitrogen donor atoms, a chlorido ligand and to arsenic, which, in turn, is coordinated by two oxygen donor ligands, two hydroxyl ligands and the platinum(II) atom. The square-planar and trigonal–bipyramidal coordination environments around platinum and arsenic, respectively, are significantly distorted with the largest outliers being 173.90 (13) and 106.98 (14)° for platinum and arsenic in (1), and 173.20 (14)° and 94.20 (9)° for (2), respectively. One intramolecular and four classical intermolecular hydrogen-bonding interactions are observed in the crystal structure of (1), which give rise to an infinite three-dimensional network. A similar situation (one intramolecular and four classical intermolecular hydrogen-bonding interactions) is observed in the crystal structure of (2). Various π-interactions are present in (1) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.7225 (7) Å, and between the centroids of five-membered (Pt, As, C, N, O) rings of neighbouring molecules with distances of 3.7456 (4) and 3.7960 (6) Å. Likewise, weak π-interactions are observed in (2) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.8213 (2) Å, as well as between the Cl atom and the centroid of a symmetry-related five-membered ring with a distance of 3.8252 (12) Å. Differences between (2) and the reported polymorph [Miodragović et al. (2013). Angew. Chem. Int. Ed. 52, 10749–10752] are discussed. Full Article text
ino Bis{4-[(2-hydroxy-5-methoxy-3-nitrobenzylidene)amino]phenyl} ether By scripts.iucr.org Published On :: 2020-01-01 The molecule of the title compound, C28H22N4O9, exhibits crystallographically imposed twofold rotational symmetry, with a dihedral angle of 66.0 (2)° between the planes of the two central benzene rings bounded to the central oxygen atom. The dihedral angle between the planes of the central benzene ring and the terminal phenol ring is 4.9 (2)°. Each half of the molecule exhibits an imine E configuration. An intramolecular O—H⋯N hydrogen bond is present. In the crystal, the molecules are linked into layers parallel to the ab plane via C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component pseudomerohedral twin. Full Article text
ino Synthesis and crystal structures of a bis(3-hydroxy-cyclohex-2-en-1-one) and two hexahydroquinoline derivatives By scripts.iucr.org Published On :: 2020-01-03 The title compound I, 2,2'-[(2-nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone), C23H27NO6, features a 1,3-ketone–enol conformation which is stabilized by two intramolecular hydrogen bonds. The most prominent intermolecular interactions in compound I are C—H⋯O hydrogen bonds, which link molecules into a two-dimensional network parallel to the (001) plane and a chain perpendicular to (1overline{1}1). Both title compounds II, ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C23H29NO6, and III, ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C29H29NO3, share the same structural features, such as a shallow boat conformation of the dihydropyridine group and an orthogonal aryl group attached to the dihydropyridine. Intermolecular N—H⋯O bonding is present in the crystal packing of both compound II and III. Full Article text
ino Crystal structure, DFT and MEP study of (E)-2-{[(3-chlorophenyl)imino]methyl}-6-methylphenol By scripts.iucr.org Published On :: 2020-01-07 In the crystal structure of the title compound, C14H12ClNO, the molecules are linked through C—H⋯O hydrogen bonds and C—H⋯π interactions, forming chains parallel to the [010] direction. π–π interactions and intramolecular hydrogen bonds are also observed. The molecular geometry of the title compound in the ground state has been calculated using density functional theory at the B3LYP level with the 6–311++G(2d,2p) basis set. Additionally, frontier molecular orbital and molecular electrostatic potential map analyses were performed. Full Article text
ino The synthesis, crystal structure and Hirshfeld analysis of 4-(3,4-dimethylanilino)-N-(3,4-dimethylphenyl)quinoline-3-carboxamide By scripts.iucr.org Published On :: 2020-01-17 The structure of the title quinoline carboxamide derivative, C26H25N3O, is described. The quinoline moiety is not planar as a result of a slight puckering of the pyridine ring. The secondary amine has a slightly pyramidal geometry, certainly not planar. Both intra- and intermolecular hydrogen bonds are present. Hirshfeld surface analysis and lattice energies were used to investigate the intermolecular interactions. Full Article text
ino (E)-{[(Butylsulfanyl)methanethioyl]amino}(4-methoxybenzylidene)amine: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2020-01-17 The title hydrazine carbodithioate, C13H18N2OS2, is constructed about a central and almost planar C2N2S2 chromophore (r.m.s. deviation = 0.0263 Å); the terminal methoxybenzene group is close to coplanar with this plane [dihedral angle = 3.92 (11)°]. The n-butyl group has an extended all-trans conformation [torsion angles S—Cm—Cm—Cm = −173.2 (3)° and Cm—Cm—Cm—Cme = 180.0 (4)°; m = methylene and me = methyl]. The most prominent feature of the molecular packing is the formation of centrosymmetric eight-membered {⋯HNCS}2 synthons, as a result of thioamide-N—H⋯S(thioamide) hydrogen bonds; these are linked via methoxy-C–H⋯π(methoxybenzene) interactions to form a linear supramolecular chain propagating along the a-axis direction. An analysis of the calculated Hirshfeld surfaces and two-dimensional fingerprint plots point to the significance of H⋯H (58.4%), S⋯H/H⋯S (17.1%), C⋯H/H⋯C (8.2%) and O⋯H/H⋯O (4.9%) contacts in the packing. The energies of the most significant interactions, i.e. the N—H⋯S and C—H⋯π interactions have their most significant contributions from electrostatic and dispersive components, respectively. The energies of two other identified close contacts at close to van der Waals distances, i.e. a thione–sulfur and methoxybenzene–hydrogen contact (occurring within the chains along the a axis) and between methylene-H atoms (occurring between chains to consolidate the three-dimensional architecture), are largely dispersive in nature. Full Article text
ino Crystal structure of 2-methyl-1,2,3,4-tetrahydroisoquinoline trihydrate By scripts.iucr.org Published On :: 2020-02-06 The crystal structure of the title compound, C10H13N·3H2O, a heterocyclic amine, was determined in the presence of water. The compound co-crystallizes with three water molecules in the asymmetric unit, which leads to the formation of hydrogen bonding in the crystal. Full Article text
ino Crystal structure of poly[(μ3-4-amino-1,2,5-oxadiazole-3-hydroxamato)thallium(I)] By scripts.iucr.org Published On :: 2020-02-11 The title compound represents the thallium(I) salt of a substituted 1,2,5-oxadiazole, [Tl(C3H3N4O3)]n, with amino- and hydroxamate groups in the 4- and 3- positions of the oxadiazole ring, respectively. In the crystal, the deprotonated hydroxamate group represents an intermediate between the keto/enol tautomers and forms a five-membered chelate ring with the thallium(I) cation. The coordination sphere of the cation is augmented to a distorted disphenoid by two monodentately binding O atoms from two adjacent anions, leading to the formation of zigzag chains extending parallel to the b axis. The cohesion within the chains is supported by π–π stacking [centroid–centroid distance = 3.746 (3) Å] and intermolecular N—H⋯N hydrogen bonds. Full Article text
ino Phosphorescent mono- and diiridium(III) complexes cyclometalated by fluorenyl- or phenyl-pyridino ligands with bulky substituents, as prospective OLED dopants By scripts.iucr.org Published On :: 2020-02-18 The crystal structures of tris[9,9-dihexyl-2-(5-methoxypyridin-2-yl-κN)-9H-fluoren-3-yl-κC3]iridium pentane monosolvate, [Ir(C31H38NO)3]·C5H12, (I), di-μ2-chlorido-bis{bis[2-(5-fluoropyridin-2-yl)-9,9-dihexyl-9H-fluoren-3-yl]iridium} pentane 0.3-solvate, [Ir2(C30H35FN)4Cl2]·0.3C5H12, (II), di-μ2-cyanato-bis{bis[9,9-dihexyl-2-(5-methoxypyridin-2-yl)-9H-fluoren-1-yl]iridium} pentane monosolvate, [Ir2(C31H38NO)4(NCO)2(NCO)2]·C5H12, (III), and {μ-N,N'-bis[3,5-bis(trifluoromethyl)phenyl]oxamidato}bis(bis{2-[4-(2,4,6-trimethylphenyl)pyridin-2-yl]phenyl-κ2C1,N'}iridium)–chlorobenzene–pentane (1/2.3/0.4), [Ir2(C20H19N)4(C18H6F12N2O2)]·2.3C6H5Cl·0.4C5H12, (IV), synthesized in the quest for organic light-emitting devices, were determined. The bis-μ2-chloro and bis-μ2-cyanato complexes have ΔΔ and ΛΛ configurations of the distorted octahedral Ir centres in racemic crystals, whereas the oxamido complex has a centrosymmetric (meso) structure with the ΔΛ configuration. The bridging oxamido moiety has a nearly planar anti geometry. All structures show substantial disorder of both host molecules and solvents of crystallization. Full Article text
ino Syntheses and crystal structures of a new pyrazine dicarboxamide ligand, N2,N3-bis(quinolin-8-yl)pyrazine-2,3-dicarboxamide, and of a copper perchlorate binuclear complex By scripts.iucr.org Published On :: 2020-02-14 The title pyrazine dicarboxamide ligand, N2,N3-bis(quinolin-8-yl)pyrazine-2,3-dicarboxamide (H2L1), C24H16N6O2, has a twisted conformation with the outer quinoline groups being inclined to the central pyrazine ring by 9.00 (6) and 78.67 (5)°, and by 79.94 (4)° to each other. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the (10overline{1}) plane, which are in turn linked by offset π–π interactions [intercentroid distances 3.4779 (9) and 3.6526 (8) Å], forming a supramolecular three-dimensional structure. Reaction of the ligand H2L1 with Cu(ClO4)2 in acetonitrile leads to the formation of the binuclear complex, [μ-(3-{hydroxy[(quinolin-8-yl)imino]methyl}pyrazin-2-yl)[(quinolin-8-yl)imino]methanolato]bis[diacetonitrilecopper(II)] tris(perchlorate) acetonitrile disolvate, [Cu2(C24H15N6O2)(CH3CN)4](ClO4)3·2CH3CN or [Cu2(HL1−)(CH3CN)4](ClO4)3·2CH3CN (I). In the cation of complex I, the ligand coordinates to the copper(II) atoms in a bis-tridentate fashion. A resonance-assisted O—H⋯O hydrogen bond is present in the ligand; the position of this H atom was located in a difference-Fourier map. Both copper(II) atoms are fivefold coordinate, being ligated by three N atoms of the ligand and by the N atoms of two acetonitrile molecules. The first copper atom has a perfect square-pyramidal geometry while the second copper atom has a distorted shape. In the crystal, the cation and perchlorate anions are linked by a number of C—H⋯O hydrogen bonds, forming a supramolecular three-dimensional structure. Full Article text
ino Crystal structure and Hirshfeld surface analysis of (E)-3-(benzylideneamino)-5-phenylthiazolidin-2-iminium bromide By scripts.iucr.org Published On :: 2020-02-21 The central thiazolidine ring of the title salt, C16H16N3S+·Br−, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) interactions. Full Article text
ino Crystal structure of ethyl 2-(5-amino-1-benzenesulfonyl-3-oxo-2,3-dihydro-1H-pyrazol-2-yl)acetate By scripts.iucr.org Published On :: 2020-03-03 In the title compound, C13H15N3O5S, the two rings face each other in a `V' form at the S atom, with one N—H⋯O=S and one C—H⋯O=S contact from the pyrazolyl substituents to the sulfonyl group. Two classical hydrogen bonds from the amine group, one of the form N—H⋯O=S and one N—H⋯O=Coxo, link the molecules to form layers parallel to the bc plane. Full Article text
ino Different packing motifs in the crystal structures of three molecular salts containing the 2-amino-5-carboxyanilinium cation: C7H9N2O2+·Cl−, C7H9N2O2+·Br− and C7H9N2O2+·NO3−·H2O By scripts.iucr.org Published On :: 2020-03-13 The syntheses and crystal structures of three molecular salts of protonated 3,4-diaminobenzoic acid, viz. 2-amino-5-carboxyanilinium chloride, C7H9N2O2+·Cl−, (I), 2-amino-5-carboxyanilinium bromide, C7H9N2O2+·Br−, (II), and 2-amino-5-carboxyanilinium nitrate monohydrate, C7H9N2O2+·NO3−·H2O, (III), are described. The cation is protonated at the meta-N atom (with respect to the carboxy group) in each case. In the crystal of (I), carboxylic acid inversion dimers linked by pairwise O—H⋯O hydrogen bonds are seen and each N—H group forms a hydrogen bond to a chloride ion to result in (100) undulating layers of chloride ions bridged by the inversion dimers into a three-dimensional network. The extended structure of (II) features O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds: the last of these generates C(7) chains of cations. Overall, the packing in (II) features undulating (100) sheets of bromide ions alternating with the organic cations. Intermolecular interactions in the crystal of (III) include O—H⋯O, O—H⋯(O,O), N—H⋯O, N—H⋯N and O—H⋯N links. The cations are linked into (001) sheets, and the nitrate ions and water molecules form undulating chains. Taken together, alternating (001) slabs of organic cations plus anions/water molecules result. Hirshfeld surfaces and fingerprint plots were generated to give further insight into the intermolecular interactions in these structures. The crystal used for the data collection of (II) was twinned by rotation about [100] in reciprocal space in a 0.4896 (15):0.5104 (15) ratio. Full Article text
ino Silver(I) nitrate two-dimensional coordination polymers of two new pyrazinethiophane ligands: 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine and 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e By scripts.iucr.org Published On :: 2020-03-13 The two new pyrazineophanes, 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine, C8H8N2S2, L1, and 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e]pyrazine, C12H16N2S4, L2, both crystallize with half a molecule in the asymmetric unit; the whole molecules are generated by inversion symmetry. The molecule of L1, which is planar (r.m.s. deviation = 0.008 Å), consists of two sulfur atoms linked by a rigid tetra-2,3,5,6-methylenepyrazine unit, forming planar five-membered rings. The molecule of L2 is step-shaped and consists of two S–CH2–CH2–S chains linked by the central rigid tetra-2,3,5,6-methylenepyrazine unit, forming eight-membered rings that have twist-boat-chair configurations. In the crystals of both compounds, there are no significant intermolecular interactions present. The reaction of L1 with silver nitrate leads to the formation of a two-dimensional coordination polymer, poly[(μ-5,7-dihydro-1H,3H-dithieno[3,4-b;3',4'-e]pyrazine-κ2S:S')(μ-nitrato-κ2O:O')silver(I)], [Ag(NO3)(C8H8N2S2)]n, (I), with the nitrato anion bridging two equivalent silver atoms. The central pyrazine ring is situated about an inversion center and the silver atom lies on a twofold rotation axis that bisects the nitrato anion. The silver atom has a fourfold AgO2S2 coordination sphere with a distorted shape. The reaction of L2 with silver nitrate also leads to the formation of a two-dimensional coordination polymer, poly[[μ33,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b;6',7'-e]pyrazine-κ3S:S':S''](nitrato-κO)silver(I)], [Ag(NO3)(C12H16N2S4)]n, (II), with the nitrate anion coordinating in a monodentate manner to the silver atom. The silver atom has a fourfold AgOS3 coordination sphere with a distorted shape. In the crystals of both complexes, the networks are linked by C—H⋯O hydrogen bonds, forming supramolecular frameworks. There are additional C—H⋯S contacts present in the supramolecular framework of II. Full Article text
ino Crystal structure and Hirshfeld surface analysis of 2-amino-3-hydroxypyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide By scripts.iucr.org Published On :: 2020-03-27 The asymmetric unit of the title compound, C5H7N2O+·C4H4NO4S−, contains one cation and one anion. The 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide anion adopts an envelope conformation with the S atom as the flap. In the crystal, the anions and cations are held together by N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, thus forming a three-dimensional structure. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal packing is dominated by O⋯H/H⋯O (43.1%) and H⋯H (24.2%) contacts. Full Article text
ino Crystal structure of a new phenyl(morpholino)methanethione derivative: 4-[(morpholin-4-yl)carbothioyl]benzoic acid By scripts.iucr.org Published On :: 2020-03-27 4-[(Morpholin-4-yl)carbothioyl]benzoic acid, C12H13NO3S, a novel phenyl(morpholino)methanethione derivative, crystallizes in the monoclinic space group P21/n. The morpholine ring adopts a chair conformation and the carboxylic acid group is bent out slightly from the benzene ring mean plane. The molecular geometry of the carboxylic group is characterized by similar C—O bond lengths [1.266 (2) and 1.268 (2) Å] as the carboxylate H atom is disordered over two positions. This molecular arrangement leads to the formation of dimers through strong and centrosymmetric low barrier O—H⋯O hydrogen bonds between the carboxylic groups. In addition to these intermolecular interactions, the crystal packing consists of two different molecular sheets with an angle between their mean planes of 64.4 (2)°. The cohesion between the different layers is ensured by C—H⋯S and C—H⋯O interactions. Full Article text
ino Crystal structures of {1,1,1-tris[(salicylaldimino)methyl]ethane}gallium as both a pyridine solvate and an acetonitrile 0.75-solvate and {1,1,1-tris[(salicylaldimino)methyl]ethane}indium dichloro By scripts.iucr.org Published On :: 2020-04-03 The sexadentate ligand 1,1,1-tris[(salicylideneamino)methyl]ethane has been reported numerous times in its triply deprotonated form coordinated to transition metals and lanthanides, yet it has been rarely employed with main-group elements, including in substituted forms. Its structures with gallium and indium are reported as solvates, namely, ({[(2,2-bis{[(2-oxidobenzylidene)amino-κ2N,O]methyl}propyl)imino]methyl}phenololato-κ2N,O)gallium(III) pyridine monosolvate, [Ga(C26H24N3O3)]·C5H5N, the acetonitrile 0.75-solvate, [Ga(C26H24N3O3)]·0.75C2H3N, and ({[(2,2-bis{[(2-oxidobenzylidene)amino-κ2N,O]methyl}propyl)imino]methyl}phenololato-κ2N,O)indium(III) dichloromethane monosolvate, [In(C26H24N3O3)]·CH2Cl2. All three metal complexes are pseudo-octahedral and each structure contains multiple weak C—H⋯O and/or C—H⋯N intermolecular hydrogen-bonding interactions. The syntheses and additional characterization in the forms of melting points, high-resolution mass spectra, infra-red (IR) spectra, and 1H and 13C NMR spectra are also reported. Full Article text
ino Crystal structure and Hirshfeld surface analysis of hexyl 1-hexyl-2-oxo-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2020-04-09 The asymmetric unit of the title compound, C22H31NO3, comprises of one molecule. The molecule is not planar, with the carboxylate ester group inclined by 33.47 (4)° to the heterocyclic ring. Individual molecules are linked by aromaticC—H⋯Ocarbonyl hydrogen bonds into chains running parallel to [001]. Slipped π–π stacking interactions between quinoline moieties link these chains into layers extending parallel to (100). Hirshfeld surface analysis, two-dimensional fingerprint plots and molecular electrostatic potential surfaces were used to quantify the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (72%), O⋯H/H⋯O (14.5%) and C⋯H/H⋯C (5.6%) interactions. Full Article text
ino Crystal structure of N'-[4-(dimethylamino)benzylidene]furan-2-carbohydrazide monohydrate By scripts.iucr.org Published On :: 2020-04-09 The condensation of 2-furoic hydrazide and 4-dimethyl aminobenzaldehyde in ethanol yielded a yellow solid formulated as the title compound, C14H15N3O2·H2O. The crystal packing is stabilized by intermolecular O(water)—H⋯O,N(carbohydrazide) and N—H⋯O(water) hydrogen bonds, which form a two-dimensional network along the bc plane. Additional C—H⋯O interactions link the molecules into a three-dimensional network. The dihedral angle between the mean planes of the benzene and the furan ring is 34.47 (6)°. The carbohydrazide moiety, i.e., the C=N—N—C=O fragment and the benzene ring are almost coplanar, with an angle of 6.75 (9)° between their mean planes. Full Article text
ino Crystal structure and DFT computational studies of (E)-2,4-di-tert-butyl-6-{[3-(trifluoromethyl)benzyl]iminomethyl}phenol By scripts.iucr.org Published On :: 2020-04-24 The title compound, C23H28F3NO, is an ortho-hydroxy Schiff base compound, which adopts the enol–imine tautomeric form in the solid state. The molecular structure is not planar and the dihedral angle between the planes of the aromatic rings is 85.52 (10)°. The trifluoromethyl group shows rotational disorder over two sites, with occupancies of 0.798 (6) and 0.202 (6). An intramolecular O—H⋯N hydrogen bonding generates an S(6) ring motif. The crystal structure is consolidated by C—H⋯π interactions. The molecular structure was optimized via density functional theory (DFT) methods with the B3LYP functional and LanL2DZ basis set. The theoretical structure is in good agreement with the experimental data. The frontier orbitals and molecular electrostatic potential map were also examined by DFT computations. Full Article text