ino 75-million-year old eggshells suggest most dinosaurs were warm-blooded By www.newscientist.com Published On :: Fri, 14 Feb 2020 19:00:23 +0000 An analysis of eggshells from three kinds of dinosaurs shows they were all warm-blooded, suggesting that dinosaurs’ ancestors were also warm-blooded Full Article
ino Some dinosaurs might have had fluorescent horns or feathers By www.newscientist.com Published On :: Thu, 05 Mar 2020 09:00:33 +0000 We know some birds use fluorescent pigments to enhance the brightness of their feathers or beaks – and now it seems some dinosaurs might have done this too Full Article
ino Tiny birdlike dinosaur species identified from skull trapped in amber By www.newscientist.com Published On :: Wed, 11 Mar 2020 16:00:00 +0000 A new species of dinosaur has been named from a skull measuring only 1.4 centimetres across. The dinosaur was smaller than any living bird today Full Article
ino Dino-killing asteroid choked whole world in dust within a few hours By www.newscientist.com Published On :: Thu, 26 Mar 2020 06:00:53 +0000 When a large asteroid hit the Earth 66 million years ago, it sent huge curtains of dust flying tens of kilometres up into the air that quickly covered the planet Full Article
ino Tiny bird-like dinosaur discovered in amber might actually be a lizard By www.newscientist.com Published On :: Wed, 01 Apr 2020 10:00:53 +0000 A 99-million-year-old skull recently discovered in amber might actually belong to a lizard, rather than a tiny bird-like dinosaur as first thought Full Article
ino Massive Spinosaurus dinosaur swam through water propelled by its tail By www.newscientist.com Published On :: Wed, 29 Apr 2020 16:00:45 +0000 A well-preserved fossilised tail from Spinosaurus suggests this massive dinosaur may have been able to propel itself and hunt for prey in the water Full Article
ino Dinosaur extinction lines up closely with timing of volcanic eruptions By www.newscientist.com Published On :: Thu, 21 Feb 2019 19:00:43 +0000 Many people assume an asteroid triggered the mass extinction that killed the dinosaurs, but geologists say massive volcanic eruptions occurred at the same time Full Article
ino We've discovered a massive dinosaur-era river delta under the sea By www.newscientist.com Published On :: Tue, 26 Mar 2019 20:00:45 +0000 Some of the first dinosaurs may have lived and hunted on the largest delta plain ever discovered, which was 10 times the size of the Amazon river delta Full Article
ino The smuggled Mongolian dinosaur fossil that seemed too good to be true By www.newscientist.com Published On :: Wed, 12 Feb 2020 18:00:00 +0000 When a bizarre fossil appeared for sale in Europe, it looked so odd it had to be fake. But a high-tech investigation introduced us to Halzkaraptor escullei – part velociraptor, part penguin Full Article
ino Massive Spinosaurus dinosaur swam through water propelled by its tail By www.newscientist.com Published On :: Wed, 29 Apr 2020 16:00:45 +0000 A well-preserved fossilised tail from Spinosaurus suggests this massive dinosaur may have been able to propel itself and hunt for prey in the water Full Article
ino Health Tip: Promptly Treat a Minor Burn By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Health Tip: Promptly Treat a Minor BurnCategory: Health NewsCreated: 4/28/2015 12:00:00 AMLast Editorial Review: 4/28/2015 12:00:00 AM Full Article
ino Why Are Minorities Hardest Hit By COVID-19? By www.webmd.com Published On :: Wed, 06 May 2020 14:55:45 EST The new coronavirus is disproportionately striking minority populations—particularly urban blacks and Navajo Indians living on their reservation. Experts say social and economic factors that predate the COVID-19 crisis may help explain why. Full Article
ino Endocrinologists Navigate Deferments, Telehealth Amid COVID-19 By www.webmd.com Published On :: Fri, 08 May 2020 11:47:51 EST Three physicians describe their impressions of video-based evaluations and things to watch out for. Full Article
ino Long Noncoding RNA MALAT1 Contributes to Sorafenib Resistance by Targeting miR-140-5p/Aurora-A Signaling in Hepatocellular Carcinoma By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 Long noncoding RNAs (lncRNA) have been found to play critical roles in tumorigenesis and the development of various cancers, including hepatocellular carcinoma (HCC). Metastasis associated with lung adenocarcinoma transcript-1 (MALAT1) has been identified as an oncogene and prognostic biomarker in HCC. Here, we demonstrated that MALAT1 expression was obviously high in sorafenib-resistant HCC cells. Furthermore, knockdown of MALAT1 increased sorafenib sensitivity in nonresponsive HCC cells, whereas forced expression of MALAT1 conferred sorafenib resistance to responsive HCC cells in vitro. In addition, loss/gain-of-function assays revealed that MALAT1 promoted cell proliferation, migration, and epithelial–mesenchymal transition in HCC cells. Mechanistically, MALAT1 regulated Aurora-A expression by sponging miR-140-5p, thus promoting sorafenib resistance in HCC cells. Moreover, MALAT1 inhibition enhanced the antitumor efficacy of sorafenib in vivo. Clinically, we found that MALAT1 expression was negatively correlated with miR-140-5p expression but positively correlated with Aurora-A expression in patients with HCC and that upregulated MALAT1 was closely correlated with poor survival outcomes in patients with HCC. These findings indicated that MALAT1 may be a novel target for prognosis prediction and therapeutic strategies in patients with HCC treated with sorafenib. Full Article
ino Collaborative Cross Mice Yield Genetic Modifiers for Pseudomonas aeruginosa Infection in Human Lung Disease By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Human genetics influence a range of pathological and clinical phenotypes in respiratory infections; however, the contributions of disease modifiers remain underappreciated. We exploited the Collaborative Cross (CC) mouse genetic-reference population to map genetic modifiers that affect the severity of Pseudomonas aeruginosa lung infection. Screening for P. aeruginosa respiratory infection in a cohort of 39 CC lines exhibits distinct disease phenotypes ranging from complete resistance to lethal disease. Based on major changes in the survival times, a quantitative-trait locus (QTL) was mapped on murine chromosome 3 to the genomic interval of Mb 110.4 to 120.5. Within this locus, composed of 31 protein-coding genes, two candidate genes, namely, dihydropyrimidine dehydrogenase (Dpyd) and sphingosine-1-phosphate receptor 1 (S1pr1), were identified according to the level of genome-wide significance and disease gene prioritization. Functional validation of the S1pr1 gene by pharmacological targeting in C57BL/6NCrl mice confirmed its relevance in P. aeruginosa pathophysiology. However, in a cohort of Canadian patients with cystic fibrosis (CF) disease, regional genetic-association analysis of the syntenic human locus on chromosome 1 (Mb 97.0 to 105.0) identified two single-nucleotide polymorphisms (rs10875080 and rs11582736) annotated to the Dpyd gene that were significantly associated with age at first P. aeruginosa infection. Thus, there is evidence that both genes might be implicated in this disease. Our results demonstrate that the discovery of murine modifier loci may generate information that is relevant to human disease progression. IMPORTANCE Respiratory infection caused by P. aeruginosa is one of the most critical health burdens worldwide. People affected by P. aeruginosa infection include patients with a weakened immune system, such as those with cystic fibrosis (CF) genetic disease or non-CF bronchiectasis. Disease outcomes range from fatal pneumonia to chronic life-threatening infection and inflammation leading to the progressive deterioration of pulmonary function. The development of these respiratory infections is mediated by multiple causes. However, the genetic factors underlying infection susceptibility are poorly known and difficult to predict. Our study employed novel approaches and improved mouse disease models to identify genetic modifiers that affect the severity of P. aeruginosa lung infection. We identified candidate genes to enhance our understanding of P. aeruginosa infection in humans and provide a proof of concept that could be exploited for other human pathologies mediated by bacterial infection. Full Article
ino Host Mucin Is Exploited by Pseudomonas aeruginosa To Provide Monosaccharides Required for a Successful Infection By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT One of the primary functions of the mucosal barrier, found lining epithelial cells, is to serve as a first-line of defense against microbial pathogens. The major structural components of mucus are heavily glycosylated proteins called mucins. Mucins are key components of the innate immune system as they aid in the clearance of pathogens and can decrease pathogen virulence. It has also been recently reported that individual mucins and derived glycans can attenuate the virulence of the human pathogen Pseudomonas aeruginosa. Here, we show data indicating that mucins not only play a role in host defense but that they can also be subverted by P. aeruginosa to cause disease. We found that the mucin MUL-1 and mucin-derived monosaccharides N-acetyl-galactosamine and N-acetylglucosamine are required for P. aeruginosa killing of Caenorhabditis elegans. We also found that the defective adhesion of P. aeruginosa to human lung alveolar epithelial cells, deficient in the mucin MUC1, can be reversed by the addition of individual monosaccharides. The monosaccharides identified in this study are found in a wide range of organisms where they act as host factors required for bacterial pathogenesis. While mucins in C. elegans lack sialic acid caps, which makes their monosaccharides readily available, they are capped in other species. Pathogens such as P. aeruginosa that lack sialidases may rely on enzymes from other bacteria to utilize mucin-derived monosaccharides. IMPORTANCE One of the first lines of defense present at mucosal epithelial tissues is mucus, which is a highly viscous material formed by mucin glycoproteins. Mucins serve various functions, but importantly they aid in the clearance of pathogens and debris from epithelial barriers and serve as innate immune factors. In this study, we describe a requirement of host monosaccharides, likely derived from host mucins, for the ability of Pseudomonas aeruginosa to colonize the intestine and ultimately cause death in Caenorhabditis elegans. We also demonstrate that monosaccharides alter the ability of bacteria to bind to both Caenorhabditis elegans intestinal cells and human lung alveolar epithelial cells, suggesting that there are conserved mechanisms underlying host-pathogen interactions in a range of organisms. By gaining a better understanding of pathogen-mucin interactions, we can develop better approaches to protect against pathogen infection. Full Article
ino A Shift in Central Metabolism Accompanies Virulence Activation in Pseudomonas aeruginosa By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT The availability of energy has significant impact on cell physiology. However, the role of cellular metabolism in bacterial pathogenesis is not understood. We investigated the dynamics of central metabolism during virulence induction by surface sensing and quorum sensing in early-stage biofilms of the multidrug-resistant bacterium Pseudomonas aeruginosa. We established a metabolic profile for P. aeruginosa using fluorescence lifetime imaging microscopy (FLIM), which reports the activity of NADH in live cells. We identified a critical growth transition period during which virulence is activated. We performed FLIM measurements and direct measurements of NADH and NAD+ concentrations during this period. Here, planktonic (low-virulence) and surface-attached (virulence-activated) populations diverged into distinct metabolic states, with the surface-attached population exhibiting FLIM lifetimes that were associated with lower levels of enzyme-bound NADH and decreasing total NAD(H) production. We inhibited virulence by perturbing central metabolism using citrate and pyruvate, which further decreased the enzyme-bound NADH fraction and total NAD(H) production and suggested the involvement of the glyoxylate pathway in virulence activation in surface-attached populations. In addition, we induced virulence at an earlier time using the electron transport chain oxidase inhibitor antimycin A. Our results demonstrate the use of FLIM to noninvasively measure NADH dynamics in biofilms and suggest a model in which a metabolic rearrangement accompanies the virulence activation period. IMPORTANCE The rise of antibiotic resistance requires the development of new strategies to combat bacterial infection and pathogenesis. A major direction has been the development of drugs that broadly target virulence. However, few targets have been identified due to the species-specific nature of many virulence regulators. The lack of a virulence regulator that is conserved across species has presented a further challenge to the development of therapeutics. Here, we identify that NADH activity has an important role in the induction of virulence in the pathogen P. aeruginosa. This finding, coupled with the ubiquity of NADH in bacterial pathogens, opens up the possibility of targeting enzymes that process NADH as a potential broad antivirulence approach. Full Article
ino Host and Symbiont Cell Cycle Coordination Is Mediated by Symbiotic State, Nutrition, and Partner Identity in a Model Cnidarian-Dinoflagellate Symbiosis By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT The cell cycle is a critical component of cellular proliferation, differentiation, and response to stress, yet its role in the regulation of intracellular symbioses is not well understood. To explore host-symbiont cell cycle coordination in a marine symbiosis, we employed a model for coral-dinoflagellate associations: the tropical sea anemone Aiptasia (Exaiptasia pallida) and its native microalgal photosymbionts (Breviolum minutum and Breviolum psygmophilum). Using fluorescent labeling and spatial point-pattern image analyses to characterize cell population distributions in both partners, we developed protocols that are tailored to the three-dimensional cellular landscape of a symbiotic sea anemone tentacle. Introducing cultured symbiont cells to symbiont-free adult hosts increased overall host cell proliferation rates. The acceleration occurred predominantly in the symbiont-containing gastrodermis near clusters of symbionts but was also observed in symbiont-free epidermal tissue layers, indicating that the presence of symbionts contributes to elevated proliferation rates in the entire host during colonization. Symbiont cell cycle progression differed between cultured algae and those residing within hosts; the endosymbiotic state resulted in increased S-phase but decreased G2/M-phase symbiont populations. These phenotypes and the deceleration of cell cycle progression varied with symbiont identity and host nutritional status. These results demonstrate that host and symbiont cells have substantial and species-specific effects on the proliferation rates of their mutualistic partners. This is the first empirical evidence to support species-specific regulation of the symbiont cell cycle within a single cnidarian-dinoflagellate association; similar regulatory mechanisms likely govern interpartner coordination in other coral-algal symbioses and shape their ecophysiological responses to a changing climate. IMPORTANCE Biomass regulation is critical to the overall health of cnidarian-dinoflagellate symbioses. Despite the central role of the cell cycle in the growth and proliferation of cnidarian host cells and dinoflagellate symbionts, there are few studies that have examined the potential for host-symbiont coregulation. This study provides evidence for the acceleration of host cell proliferation when in local proximity to clusters of symbionts within cnidarian tentacles. The findings suggest that symbionts augment the cell cycle of not only their enveloping host cells but also neighboring cells in the epidermis and gastrodermis. This provides a possible mechanism for rapid colonization of cnidarian tissues. In addition, the cell cycles of symbionts differed depending on nutritional regime, symbiotic state, and species identity. The responses of cell cycle profiles to these different factors implicate a role for species-specific regulation of symbiont cell cycles within host cnidarian tissues. Full Article
ino The Pseudomonas aeruginosa Lectin LecB Causes Integrin Internalization and Inhibits Epithelial Wound Healing By mbio.asm.org Published On :: 2020-03-10T01:30:42-07:00 ABSTRACT The opportunistic bacterium Pseudomonas aeruginosa produces the fucose-specific lectin LecB, which has been identified as a virulence factor. LecB has a tetrameric structure with four opposing binding sites and has been shown to act as a cross-linker. Here, we demonstrate that LecB strongly binds to the glycosylated moieties of β1-integrins on the basolateral plasma membrane of epithelial cells and causes rapid integrin endocytosis. Whereas internalized integrins were degraded via a lysosomal pathway, washout of LecB restored integrin cell surface localization, thus indicating a specific and direct action of LecB on integrins to bring about their endocytosis. Interestingly, LecB was able to trigger uptake of active and inactive β1-integrins and also of complete α3β1-integrin–laminin complexes. We provide a mechanistic explanation for this unique endocytic process by showing that LecB has the additional ability to recognize fucose-bearing glycosphingolipids and causes the formation of membrane invaginations on giant unilamellar vesicles. In cells, LecB recruited integrins to these invaginations by cross-linking integrins and glycosphingolipids. In epithelial wound healing assays, LecB specifically cleared integrins from the surface of cells located at the wound edge and blocked cell migration and wound healing in a dose-dependent manner. Moreover, the wild-type P. aeruginosa strain PAO1 was able to loosen cell-substrate adhesion in order to crawl underneath exposed cells, whereas knockout of LecB significantly reduced crawling events. Based on these results, we suggest that LecB has a role in disseminating bacteria along the cell-basement membrane interface. IMPORTANCE Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the leading causes of nosocomial infections. P. aeruginosa is able to switch between planktonic, intracellular, and biofilm-based lifestyles, which allows it to evade the immune system as well as antibiotic treatment. Hence, alternatives to antibiotic treatment are urgently required to combat P. aeruginosa infections. Lectins, like the fucose-specific LecB, are promising targets, because removal of LecB resulted in decreased virulence in mouse models. Currently, several research groups are developing LecB inhibitors. However, the role of LecB in host-pathogen interactions is not well understood. The significance of our research is in identifying cellular mechanisms of how LecB facilitates P. aeruginosa infection. We introduce LecB as a new member of the list of bacterial molecules that bind integrins and show that P. aeruginosa can move forward underneath attached epithelial cells by loosening cell-basement membrane attachment in a LecB-dependent manner. Full Article
ino Pyocin S5 Import into Pseudomonas aeruginosa Reveals a Generic Mode of Bacteriocin Transport By mbio.asm.org Published On :: 2020-03-10T01:30:42-07:00 ABSTRACT Pyocin S5 (PyoS5) is a potent protein bacteriocin that eradicates the human pathogen Pseudomonas aeruginosa in animal infection models, but its import mechanism is poorly understood. Here, using crystallography, biophysical and biochemical analyses, and live-cell imaging, we define the entry process of PyoS5 and reveal links to the transport mechanisms of other bacteriocins. In addition to its C-terminal pore-forming domain, elongated PyoS5 comprises two novel tandemly repeated kinked 3-helix bundle domains that structure-based alignments identify as key import domains in other pyocins. The central domain binds the lipid-bound common polysaccharide antigen, allowing the pyocin to accumulate on the cell surface. The N-terminal domain binds the ferric pyochelin transporter FptA while its associated disordered region binds the inner membrane protein TonB1, which together drive import of the bacteriocin across the outer membrane. Finally, we identify the minimal requirements for sensitizing Escherichia coli toward PyoS5, as well as other pyocins, and suggest that a generic pathway likely underpins the import of all TonB-dependent bacteriocins across the outer membrane of Gram-negative bacteria. IMPORTANCE Bacteriocins are toxic polypeptides made by bacteria to kill their competitors, making them interesting as potential antibiotics. Here, we reveal unsuspected commonalities in bacteriocin uptake pathways, through molecular and cellular dissection of the import pathway for the pore-forming bacteriocin pyocin S5 (PyoS5), which targets Pseudomonas aeruginosa. In addition to its C-terminal pore-forming domain, PyoS5 is composed of two tandemly repeated helical domains that we also identify in other pyocins. Functional analyses demonstrate that they have distinct roles in the import process. One recognizes conserved sugars projected from the surface, while the other recognizes a specific outer membrane siderophore transporter, FptA, in the case of PyoS5. Through engineering of Escherichia coli cells, we show that pyocins can be readily repurposed to kill other species. This suggests basic ground rules for the outer membrane translocation step that likely apply to many bacteriocins targeting Gram-negative bacteria. Full Article
ino Cooperation and Cheating through a Secreted Aminopeptidase in the Pseudomonas aeruginosa RpoS Response By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT The global stress response controlled by the alternative sigma factor RpoS protects enteric bacteria from a variety of environmental stressors. The role of RpoS in other, nonenteric bacteria, such as the opportunistic pathogen Pseudomonas aeruginosa, is less well understood. Here, we employed experimental social evolution to reveal that cooperative behavior via secreted public goods is an important function in the RpoS response of P. aeruginosa. Using whole-genome sequencing, we identified rpoS loss-of-function mutants among isolates evolved in a protein growth medium that requires extracellular proteolysis. We found that rpoS mutants comprise up to 25% of the evolved population and that they behave as social cheaters, with low fitness in isolation but high fitness in mixed culture with the cooperating wild type. We conclude that rpoS mutants cheat because they exploit an RpoS-controlled public good produced by the wild type, the secreted aminopeptidase PaAP, and because they do not carry the metabolic costs of expressing PaAP and many other gene products in the large RpoS regulon. Our results suggest that PaAP is an integral part of a proteolytic sequence in P. aeruginosa that permits the utilization of protein as a nutrient source. Our work broadens the scope of stress response functions in bacteria. IMPORTANCE Bacterial stress responses are generally considered protective measures taken by individual cells. Enabled by an experimental evolution approach, we describe a contrasting property, collective nutrient acquisition, in the RpoS-dependent stress response of the opportunistic human pathogen P. aeruginosa. Specifically, we identify the secreted P. aeruginosa aminopeptidase (PaAP) as an essential RpoS-controlled function in extracellular proteolysis. As a secreted "public good," PaAP permits cheating by rpoS mutants that save the metabolic costs of expressing RpoS-controlled genes dispensable under the given growth conditions. Proteolytic enzymes are important virulence factors in P. aeruginosa pathogenesis and constitute a potential target for antimicrobial therapy. More broadly, our work contributes to recent findings in higher organisms that stress affects not only individual fitness and competitiveness but also cooperative behavior. Full Article
ino Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen, particularly noted for causing infections in the lungs of people with cystic fibrosis (CF). Previous studies have shown that the gene expression profile of P. aeruginosa appears to converge toward a common metabolic program as the organism adapts to the CF airway environment. However, we still have only a limited understanding of how these transcriptional changes impact metabolic flux at the systems level. To address this, we analyzed the transcriptome, proteome, and fluxome of P. aeruginosa grown on glycerol or acetate. These carbon sources were chosen because they are the primary breakdown products of an airway surfactant, phosphatidylcholine, which is known to be a major carbon source for P. aeruginosa in CF airways. We show that the fluxes of carbon throughout central metabolism are radically different among carbon sources. For example, the newly recognized "EDEMP cycle" (which incorporates elements of the Entner-Doudoroff [ED] pathway, the Embden-Meyerhof-Parnas [EMP] pathway, and the pentose phosphate [PP] pathway) plays an important role in supplying NADPH during growth on glycerol. In contrast, the EDEMP cycle is attenuated during growth on acetate, and instead, NADPH is primarily supplied by the reaction catalyzed by isocitrate dehydrogenase(s). Perhaps more importantly, our proteomic and transcriptomic analyses revealed a global remodeling of gene expression during growth on the different carbon sources, with unanticipated impacts on aerobic denitrification, electron transport chain architecture, and the redox economy of the cell. Collectively, these data highlight the remarkable metabolic plasticity of P. aeruginosa; that plasticity allows the organism to seamlessly segue between different carbon sources, maximizing the energetic yield from each. IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen that is well known for causing infections in the airways of people with cystic fibrosis. Although it is clear that P. aeruginosa is metabolically well adapted to life in the CF lung, little is currently known about how the organism metabolizes the nutrients available in the airways. In this work, we used a combination of gene expression and isotope tracer ("fluxomic") analyses to find out exactly where the input carbon goes during growth on two CF-relevant carbon sources, acetate and glycerol (derived from the breakdown of lung surfactant). We found that carbon is routed ("fluxed") through very different pathways during growth on these substrates and that this is accompanied by an unexpected remodeling of the cell’s electron transfer pathways. Having access to this "blueprint" is important because the metabolism of P. aeruginosa is increasingly being recognized as a target for the development of much-needed antimicrobial agents. Full Article
ino Adaptive Evolution of Geobacter sulfurreducens in Coculture with Pseudomonas aeruginosa By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Interactions between microorganisms in mixed communities are highly complex, being either syntrophic, neutral, predatory, or competitive. Evolutionary changes can occur in the interaction dynamics between community members as they adapt to coexistence. Here, we report that the syntrophic interaction between Geobacter sulfurreducens and Pseudomonas aeruginosa coculture change in their dynamics over evolutionary time. Specifically, Geobacter sp. dominance increases with adaptation within the cocultures, as determined through quantitative PCR and fluorescence in situ hybridization. This suggests a transition from syntrophy to competition and demonstrates the rapid adaptive capacity of Geobacter spp. to dominate in cocultures with P. aeruginosa. Early in coculture establishment, two single-nucleotide variants in the G. sulfurreducens fabI and tetR genes emerged that were strongly selected for throughout coculture evolution with P. aeruginosa phenazine wild-type and phenazine-deficient mutants. Sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS) proteomics revealed that the tetR variant cooccurred with the upregulation of an adenylate cyclase transporter, CyaE, and a resistance-nodulation-division (RND) efflux pump notably known for antibiotic efflux. To determine whether antibiotic production was driving the increased expression of the multidrug efflux pump, we tested Pseudomonas-derived phenazine-1-carboxylic acid (PHZ-1-CA) for its potential to inhibit Geobacter growth and drive selection of the tetR and fabI genetic variants. Despite its inhibitory properties, PHZ-1-CA did not drive variant selection, indicating that other antibiotics may drive overexpression of the efflux pump and CyaE or that a novel role exists for these proteins in the context of this interaction. IMPORTANCE Geobacter and Pseudomonas spp. cohabit many of the same environments, where Geobacter spp. often dominate. Both bacteria are capable of extracellular electron transfer (EET) and play important roles in biogeochemical cycling. Although they recently in 2017 were demonstrated to undergo direct interspecies electron transfer (DIET) with one another, the genetic evolution of this syntrophic interaction has not been examined. Here, we use whole-genome sequencing of the cocultures before and after adaptive evolution to determine whether genetic selection is occurring. We also probe their interaction on a temporal level and determine whether their interaction dynamics change over the course of adaptive evolution. This study brings to light the multifaceted nature of interactions between just two microorganisms within a controlled environment and will aid in improving metabolic models of microbial communities comprising these two bacteria. Full Article
ino RhlR-Regulated Acyl-Homoserine Lactone Quorum Sensing in a Cystic Fibrosis Isolate of Pseudomonas aeruginosa By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of airway infection in cystic fibrosis (CF) patients. P. aeruginosa employs several hierarchically arranged and interconnected quorum sensing (QS) regulatory circuits to produce a battery of virulence factors such as elastase, phenazines, and rhamnolipids. The QS transcription factor LasR sits atop this hierarchy and activates the transcription of dozens of genes, including that encoding the QS regulator RhlR. Paradoxically, inactivating lasR mutations are frequently observed in isolates from CF patients with chronic P. aeruginosa infections. In contrast, mutations in rhlR are rare. We have recently shown that in CF isolates, the QS circuitry is often rewired such that RhlR acts in a LasR-independent manner. To begin understanding how QS activity differs in this rewired background, we characterized QS activation and RhlR-regulated gene expression in P. aeruginosa E90, a LasR-null, RhlR-active chronic infection isolate. In this isolate, RhlR activates the expression of 53 genes in response to increasing cell density. The genes regulated by RhlR include several that encode virulence factors. Some, but not all, of these genes are present in the QS regulon described in the well-studied laboratory strain PAO1. We also demonstrate that E90 produces virulence factors at similar concentrations as PAO1, and in E90, RhlR plays a significant role in mediating cytotoxicity in a three-dimensional lung epithelium cell model. These data illuminate a rewired LasR-independent RhlR regulon in chronic infection isolates and suggest further investigation of RhlR as a possible target for therapeutic development in chronic infections. IMPORTANCE Pseudomonas aeruginosa is a prominent cystic fibrosis (CF) pathogen that uses quorum sensing (QS) to regulate virulence. In laboratory strains, the key QS regulator is LasR. Many isolates from patients with chronic CF infections appear to use an alternate QS circuitry in which another transcriptional regulator, RhlR, mediates QS. We show that a LasR-null CF clinical isolate engages in QS through RhlR and remains capable of inducing cell death in an in vivo-like lung epithelium cell model. Our findings support the notion that LasR-null clinical isolates can engage in RhlR QS and highlight the centrality of RhlR in chronic P. aeruginosa infections. Full Article
ino TGM6 L517W is not a pathogenic variant for spinocerebellar ataxia type 35 By ng.neurology.org Published On :: 2020-04-22T12:45:11-07:00 Objective To investigate the pathogenicity of the TGM6 variant for spinocerebellar ataxia 35 (SCA35), which was previously reported to be caused by pathogenic mutations in the gene TGM6. Methods Neurologic assessment and brain MRI were performed to provide detailed description of the phenotype. Whole-exome sequencing and dynamic mutation analysis were performed to identify the genotype. Results The proband, presenting with myoclonic epilepsy, cognitive decline, and ataxia, harbored both the TGM6 p.L517W variant and expanded CAG repeats in gene ATN1. Further analysis of the other living family members in this pedigree revealed that the CAG repeat number was expanded in all the patients and within normal range in all the unaffected family members. However, the TGM6 p.L517W variant was absent in 2 affected family members, but present in 3 healthy individuals. Conclusions The nonsegregation of the TGM6 variant with phenotype does not support this variant as the disease-causing gene in this pedigree, questioning the pathogenicity of TGM6 in SCA35. Full Article
ino The Unfolded Protein Response Modulates a Phosphoinositide-Binding Protein through the IRE1-bZIP60 Pathway By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Phosphoinositides function as lipid signals in plant development and stress tolerance by binding with partner proteins. We previously reported that Arabidopsis (Arabidopsis thaliana) phosphoinositide-specific phospholipase C2 functions in the endoplasmic reticulum (ER) stress response. However, the underlying molecular mechanisms of how phosphoinositides act in the ER stress response remain elusive. Here, we report that a phosphoinositide-binding protein, SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB), is involved in the ER stress tolerance. SVB contains a DUF538 domain with unknown function; orthologs are exclusively found in Viridiplantae. We established that SVB is ubiquitously expressed in plant tissues and is localized to the ER, Golgi apparatus, prevacuolar compartment, and plasma membrane. The knockout mutants of svb showed enhanced tolerance to ER stress, which was genetically complemented by transducing genomic SVB. SVB showed time-dependent induction after tunicamycin-induced ER stress, which depended on IRE1 and bZIP60 but not bZIP17 and bZIP28 in the unfolded protein response (UPR). A protein–lipid overlay assay showed specific binding of SVB to phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. SVB is therefore suggested to be the plant-specific phosphoinositide-binding protein whose expression is controlled by the UPR through the IRE1-bZIP60 pathway in Arabidopsis. Full Article
ino The Occurrence of Sulfated Salicinoids in Poplar and Their Formation by Sulfotransferase1 By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Salicinoids form a specific class of phenolic glycosides characteristic of the Salicaceae. Although salicinoids accumulate in large amounts and have been shown to be involved in plant defense, their biosynthesis is unclear. We identified two sulfated salicinoids, salicin-7-sulfate and salirepin-7-sulfate, in black cottonwood (Populus trichocarpa). Both compounds accumulated in high amounts in above-ground tissues including leaves, petioles, and stems, but were also found at lower concentrations in roots. A survey of salicin-7-sulfate and salirepin-7-sulfate in a subset of poplar (Populus sp.) and willow (Salix sp.) species revealed a broader distribution within the Salicaceae. To elucidate the formation of these compounds, we studied the sulfotransferase (SOT) gene family in P. trichocarpa (PtSOT). One of the identified genes, PtSOT1, was shown to encode an enzyme able to convert salicin and salirepin into salicin-7-sulfate and salirepin-7-sulfate, respectively. The expression of PtSOT1 in different organs of P. trichocarpa matched the accumulation of sulfated salicinoids in planta. Moreover, RNA interference-mediated knockdown of SOT1 in gray poplar (Populus x canescens) resulted in decreased levels of sulfated salicinoids in comparison to wild-type plants, indicating that SOT1 is responsible for their formation in planta. The presence of a nonfunctional SOT1 allele in black poplar (Populus nigra) was shown to correlate with the absence of salicin-7-sulfate and salirepin-7-sulfate in this species. Food choice experiments with leaves from wild-type and SOT1 knockdown trees suggest that sulfated salicinoids do not affect the feeding preference of the generalist caterpillar Lymantria dispar. A potential role of the sulfated salicinoids in sulfur storage and homeostasis is discussed. Full Article
ino Sulfotransferase1 Is the Enzymatic Hub of Sulfated Salicinoids in Poplar By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
ino Eosinophils, basophils and type 2 immune microenvironments in COPD-affected lung tissue By erj.ersjournals.com Published On :: 2020-05-07T01:15:54-07:00 Although elevated blood or sputum eosinophils are present in many patients with COPD, uncertainties remain regarding the anatomical distribution pattern of lung-infiltrating eosinophils. Basophils have remained virtually unexplored in COPD. This study mapped tissue-infiltrating eosinophils, basophils and eosinophil-promoting immune mechanisms in COPD-affected lungs. Surgical lung tissue and biopsies from major anatomical compartments were obtained from COPD patients with severity grades Global Initiative for Chronic Obstructive Lung Disease stages I–IV; never-smokers/smokers served as controls. Automated immunohistochemistry and in situ hybridisation identified immune cells, the type 2 immunity marker GATA3 and eotaxins (CCL11, CCL24). Eosinophils and basophils were present in all anatomical compartments of COPD-affected lungs and increased significantly in very severe COPD. The eosinophilia was strikingly patchy, and focal eosinophil-rich microenvironments were spatially linked with GATA3+ cells, including type 2 helper T-cell lymphocytes and type 2 innate lymphoid cells. A similarly localised and interleukin-33/ST2-dependent eosinophilia was demonstrated in influenza-infected mice. Both mice and patients displayed spatially confined eotaxin signatures with CCL11+ fibroblasts and CCL24+ macrophages. In addition to identifying tissue basophilia as a novel feature of advanced COPD, the identification of spatially confined eosinophil-rich type 2 microenvironments represents a novel type of heterogeneity in the immunopathology of COPD that is likely to have implications for personalised treatment. Full Article
ino Asking for Identification and Retail Tobacco Sales to Minors By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 BACKGROUND AND OBJECTIVES: A previous single-county study found that retail stores usually asked young-looking tobacco customers to show proof-of-age identification, but a large proportion of illegal tobacco sales to minors occurred after the customers had shown identification proving they were too young to purchase tobacco. We sought to investigate these findings on a larger scale. METHODS: We obtained state reports for federal fiscal years 2017 and 2018 from a federal agency that tracks tobacco sales to supervised minors conducting compliance checks in retail stores. We used descriptive and multivariable logistic regression methods to determine (1) how often stores in 17 states requested identifications, (2) what proportion of violations occurred after identification requests, and (3) if violation rates differed when minors were required versus forbidden to carry identification. RESULTS: Stores asked minors for identification in 79.6% (95% confidence interval: 79.3%–80.8%) of compliance checks (N = 17 276). Violations after identification requests constituted 22.8% (95% confidence interval: 20.0%–25.6%; interstate range, 1.7%–66.2%) of all violations and were nearly 3 times as likely when minors were required to carry identification in compliance checks. Violations were 42% more likely when minors asked for a vaping product versus cigarettes. CONCLUSIONS: Stores that sell tobacco to underage customers are more likely to be detected and penalized when youth inspectors carry identification during undercover tobacco sales compliance checks. The new age-21 tobacco sales requirement presents an opportunity to require identifications be carried and address other long-standing weaknesses in compliance-check protocols to help combat the current adolescent vaping epidemic. Full Article
ino Porphyromonas gingivalis Cell Wall Components Induce Programmed Death Ligand 1 (PD-L1) Expression on Human Oral Carcinoma Cells by a Receptor-Interacting Protein Kinase 2 (RIP2)-Dependent Mechanism [Cellular Microbiology: Pathogen-Host Cell Molecular Inte By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Programmed death-ligand 1 (PD-L1/B7-H1) serves as a cosignaling molecule in cell-mediated immune responses and contributes to chronicity of inflammation and the escape of tumor cells from immunosurveillance. Here, we investigated the molecular mechanisms leading to PD-L1 upregulation in human oral carcinoma cells and in primary human gingival keratinocytes in response to infection with Porphyromonas gingivalis (P. gingivalis), a keystone pathogen for the development of periodontitis. The bacterial cell wall component peptidoglycan uses bacterial outer membrane vesicles to be taken up by cells. Internalized peptidoglycan triggers cytosolic receptors to induce PD-L1 expression in a myeloid differentiation primary response 88 (Myd88)-independent and receptor-interacting serine/threonine-protein kinase 2 (RIP2)-dependent fashion. Interference with the kinase activity of RIP2 or mitogen-activated protein (MAP) kinases interferes with inducible PD-L1 expression. Full Article
ino Distinct Contributions of CD18 Integrins for Binding and Phagocytic Internalization of Pseudomonas aeruginosa [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Phagocytosis is the key mechanism for host control of Pseudomonas aeruginosa, a motile Gram-negative, opportunistic bacterial pathogen which frequently undergoes adaptation and selection for traits that are advantageous for survival. One such clinically relevant adaptation is the loss of bacterial motility, observed within chronic infections, that is associated with increased antibiotic tolerance and phagocytic resistance. Previous studies using phagocytes from a leukocyte adhesion deficiency type 1 (LAD-I) patient identified CD18 as a putative cell surface receptor for uptake of live P. aeruginosa. However, how bacterial motility alters direct engagement with CD18-containing integrins remains unknown. Here we demonstrate, with the use of motile and isogenic nonmotile deletion mutants of two independent strains of P. aeruginosa and with CRISPR-generated CD18-deficient cell lines in human monocytes and murine neutrophils, that CD18 expression facilitates the uptake of both motile and nonmotile P. aeruginosa. However, unexpectedly, mechanistic studies revealed that CD18 expression was dispensable for the initial attachment of the bacteria to the host cells, which was validated with ectopic expression of complement receptor 3 (CR3) by CHO cells. Our data support that surface N-linked glycan chains (N-glycans) likely facilitate the initial interaction of bacteria with monocytes and cooperate with CD18 integrins in trans to promote internalization of bacteria. Moreover, talin-1 and kindlin-3 proteins promote uptake, but not binding, of P. aeruginosa by murine neutrophils, which supports a role for CD18 integrin signaling in this process. These findings provide novel insights into the cellular determinants for phagocytic recognition and uptake of P. aeruginosa. Full Article
ino Characterization and Genomic Analysis of ValSw3-3, a New Siphoviridae Bacteriophage Infecting Vibrio alginolyticus [Genetic Diversity and Evolution] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 A novel lytic bacteriophage, ValSw3-3, which efficiently infects pathogenic strains of Vibrio alginolyticus, was isolated from sewage water and characterized by microbiological and in silico genomic analyses. Transmission electron microscopy indicated that ValSw3-3 has the morphology of siphoviruses. This phage can infect four species in the Vibrio genus and has a latent period of 15 min and a burst size of 95 ± 2 PFU/infected bacterium. Genome sequencing results show that ValSw3-3 has a 39,846-bp double-stranded DNA genome with a GC content of 43.1%. The similarity between the genome sequences of ValSw3-3 and those of other phages recorded in the GenBank database was below 50% (42%), suggesting that ValSw3-3 significantly differs from previously reported phages at the DNA level. Multiple genome comparisons and phylogenetic analysis based on the major capsid protein revealed that phage ValSw3-3 is grouped in a clade with five other phages, including Listonella phage phiHSIC (GenBank accession no. NC_006953.1), Vibrio phage P23 (MK097141.1), Vibrio phage pYD8-B (NC_021561.1), Vibrio phage 2E1 (KX507045.1), and Vibrio phage 12G5 (HQ632860.1), and is distinct from all known genera within the Siphoviridae family that have been ratified by the International Committee on Taxonomy of Viruses (ICTV). An in silico proteomic comparison of diverse phages from the Siphoviridae family supported this clustering result and suggested that ValSw3-3, phiHSIC, P23, pYD8-B, 2E1, and 12G5 should be classified as a novel genus cluster of Siphoviridae. A subsequent analysis of core genes also revealed the common genes shared within this new cluster. Overall, these results provide a characterization of Vibrio phage ValSw3-3 and support our proposal of a new viral genus within the family Siphoviridae. IMPORTANCE Phage therapy has been considered a potential alternative to antibiotic therapy in treating bacterial infections. For controlling the vibriosis-causing pathogen Vibrio alginolyticus, well-documented phage candidates are still lacking. Here, we characterize a novel lytic Vibrio phage, ValSw3-3, based on its morphology, host range and infectivity, growth characteristics, stability under various conditions, and genomic features. Our results show that ValSw3-3 could be a potent candidate for phage therapy to treat V. alginolyticus infections due to its stronger infectivity and better pH and thermal stability than those of previously reported Vibrio phages. Moreover, genome sequence alignments, phylogenetic analysis, in silico proteomic comparison, and core gene analysis all support that this novel phage, ValSw3-3, and five unclassified phages form a clade distant from those of other known genera ratified by the ICTV. Thus, we propose a new viral genus within the Siphoviridae family to accommodate this clade, with ValSw3-3 as a representative member. Full Article
ino Cannabinoid exposure in rat adolescence reprograms the initial behavioral, molecular, and epigenetic response to cocaine [Neuroscience] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 The initial response to an addictive substance can facilitate repeated use: That is, individuals experiencing more positive effects are more likely to use that drug again. Increasing evidence suggests that psychoactive cannabinoid use in adolescence enhances the behavioral effects of cocaine. However, despite the behavioral data, there is no neurobiological... Full Article
ino A minor population of macrophage-tropic HIV-1 variants is identified in recrudescing viremia following analytic treatment interruption [Microbiology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 HIV-1 persists in cellular reservoirs that can reignite viremia if antiretroviral therapy (ART) is interrupted. Therefore, insight into the nature of those reservoirs may be revealed from the composition of recrudescing viremia following treatment cessation. A minor population of macrophage-tropic (M-tropic) viruses was identified in a library of recombinant viruses... Full Article
ino NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein [Research Article] By mcb.asm.org Published On :: 2020-04-28T08:00:17-07:00 Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap ’n’ collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins. Full Article
ino E2F6-Mediated Downregulation of MIR22HG Facilitates the Progression of Laryngocarcinoma by Targeting the miR-5000-3p/FBXW7 Axis [Research Article] By mcb.asm.org Published On :: 2020-04-28T08:00:17-07:00 Recently, abundant evidence has clarified that long noncoding RNAs (lncRNAs) play an oncogenic or anticancer role in the tumorigenesis and development of diverse human cancers. Described as a crucial regulator in some cancers, MIR22HG has not yet been studied in laryngocarcinoma and therefore the underlying regulatory role of MIR22HG in laryngocarcinoma is worth detecting. In this study, MIR22HG expression in laryngocarcinoma cells was confirmed to be downregulated, and upregulated MIR22HG expression led to suppressive effects on laryngocarcinoma cell proliferation and migration. Molecular mechanism assays revealed that MIR22HG sponges miR-5000-3p in laryngocarcinoma cells. Besides, decreased expression of miR-5000-3p suppressed laryngocarcinoma cell proliferation and migration. Moreover, the FBXW7 gene was reported to be a downstream target gene of miR-5000-3p in laryngocarcinoma cells. More importantly, rescue assays verified that FBXW7 depletion or miR-5000-3p upregulation countervailed the repressive effects of MIR22HG overexpression on laryngocarcinoma progression. In addition, E2F6 was proved to be capable of inhibiting MIR22HG transcription in laryngocarcinoma cells. To sum up, E2F6-induced downregulation of MIR22HG promotes laryngocarcinoma progression through the miR-5000-3p/FBXW7 axis. Full Article
ino Re: Abnormally Low Hemoglobin A1c as Harbinger of Hemoglobinopathy By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 Full Article
ino Chitotriosidase as a Novel Biomarker for Therapeutic Monitoring of Nephropathic Cystinosis By jasn.asnjournals.org Published On :: 2020-04-30T10:00:30-07:00 Background Nephropathic cystinosis, a hereditary lysosomal storage disorder caused by dysfunction of the lysosomal cotransporter cystinosin, leads to cystine accumulation and cellular damage in various organs, particularly in the kidney. Close therapeutic monitoring of cysteamine, the only available disease-modifying treatment, is recommended. White blood cell cystine concentration is the current gold standard for therapeutic monitoring, but the assay is technically demanding and is available only on a limited basis. Because macrophage-mediated inflammation plays an important role in the pathogenesis of cystinosis, biomarkers of macrophage activation could have potential for the therapeutic monitoring of cystinosis. Methods We conducted a 2-year prospective, longitudinal study in which 61 patients with cystinosis who were receiving cysteamine therapy were recruited from three European reference centers. Each regular care visit included measuring four biomarkers of macrophage activation: IL-1β, IL-6, IL-18, and chitotriosidase enzyme activity. Results A multivariate linear regression analysis of the longitudinal data for 57 analyzable patients found chitotriosidase enzyme activity and IL-6 to be significant independent predictors for white blood cell cystine levels in patients of all ages with cystinosis; a receiver operating characteristic analysis ranked chitotriosidase as superior to IL-6 in distinguishing good from poor therapeutic control (on the basis of white blood cell cystine levels of <2 nmol 1/2 cystine/mg protein or ≥2 nmol 1/2 cystine/mg protein, respectively). Moreover, in patients with at least one extrarenal complication, chitotriosidase significantly correlated with the number of extrarenal complications and was superior to white blood cell cystine levels in predicting the presence of multiple extrarenal complications. Conclusions Chitotriosidase enzyme activity holds promise as a biomarker for use in therapeutic monitoring of nephropathic cystinosis. Full Article
ino Use of Human Induced Pluripotent Stem Cells and Kidney Organoids To Develop a Cysteamine/mTOR Inhibition Combination Therapy for Cystinosis By jasn.asnjournals.org Published On :: 2020-04-30T10:00:29-07:00 Background Mutations in CTNS—a gene encoding the cystine transporter cystinosin—cause the rare, autosomal, recessive, lysosomal-storage disease cystinosis. Research has also implicated cystinosin in modulating the mTORC1 pathway, which serves as a core regulator of cellular metabolism, proliferation, survival, and autophagy. In its severest form, cystinosis is characterized by cystine accumulation, renal proximal tubule dysfunction, and kidney failure. Because treatment with the cystine-depleting drug cysteamine only slows disease progression, there is an urgent need for better treatments. Methods To address a lack of good human-based cell culture models for studying cystinosis, we generated the first human induced pluripotent stem cell (iPSC) and kidney organoid models of the disorder. We used a variety of techniques to examine hallmarks of cystinosis—including cystine accumulation, lysosome size, the autophagy pathway, and apoptosis—and performed RNA sequencing on isogenic lines to identify differentially expressed genes in the cystinosis models compared with controls. Results Compared with controls, these cystinosis models exhibit elevated cystine levels, increased apoptosis, and defective basal autophagy. Cysteamine treatment ameliorates this phenotype, except for abnormalities in apoptosis and basal autophagy. We found that treatment with everolimus, an inhibitor of the mTOR pathway, reduces the number of large lysosomes, decreases apoptosis, and activates autophagy, but it does not rescue the defect in cystine loading. However, dual treatment of cystinotic iPSCs or kidney organoids with cysteamine and everolimus corrects all of the observed phenotypic abnormalities. Conclusions These observations suggest that combination therapy with a cystine-depleting drug such as cysteamine and an mTOR pathway inhibitor such as everolimus has potential to improve treatment of cystinosis. Full Article
ino Characterization of Antineovascularization Activity and Ocular Pharmacokinetics of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GNE-947 [Articles] By dmd.aspetjournals.org Published On :: 2020-04-21T21:06:36-07:00 The objectives of the present study were to characterize GNE-947 for its phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitory activities, in vitro anti–cell migration activity in human umbilical vein endothelial cells (HUVECs), in vivo antineovascularization activity in laser-induced rat choroidal neovascular (CNV) eyes, pharmacokinetics in rabbit plasma and eyes, and ocular distribution using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) and autoradioluminography. Its PI3K and mTOR Ki were 0.0005 and 0.045 µM, respectively, and its HUVEC IC50 was 0.093 µM. GNE-947 prevented neovascularization in the rat CNV model at 50 or 100 µg per eye with repeat dosing. After a single intravenous injection at 2.5 and 500 μg/kg in rabbits, its plasma terminal half-lives (t1/2) were 9.11 and 9.59 hours, respectively. After a single intravitreal injection of a solution at 2.5 μg per eye in rabbits, its apparent t1/2 values were 14.4, 16.3, and 23.2 hours in the plasma, vitreous humor, and aqueous humor, respectively. After a single intravitreal injection of a suspension at 33.5, 100, 200 μg per eye in rabbits, the t1/2 were 29, 74, and 219 days in the plasma and 46, 143, and 191 days in the eyes, respectively. MALDI-IMS and autoradioluminography images show that GNE-947 did not homogenously distribute in the vitreous humor and aggregated at the injection sites after injection of the suspension, which was responsible for the long t1/2 of the suspension because of the slow dissolution process. This hypothesis was supported by pharmacokinetic modeling analyses. In conclusion, the PI3K/mTOR inhibitor GNE-947 prevented neovascularization in a rat CNV model, with t1/2 up to approximately 6 months after a single intravitreal injection of the suspension in rabbit eyes. SIGNIFICANCE STATEMENT GNE-947 is a potent phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor and exhibits anti–choroidal neovascular activity in rat eyes. The duration of GNE-947 in the rabbit eyes after intravitreal injection in a solution is short, with a half-life (t1/2) of less than a day. However, the duration after intravitreal dose of a suspension is long, with t1/2 up to 6 months due to low solubility and slow dissolution. These results indicate that intravitreal injection of a suspension for low-solubility drugs can be used to achieve long-term drug exposure. Full Article
ino Acetaminophen-Induced Liver Injury Alters Expression and Activities of Cytochrome P450 Enzymes in an Age-Dependent Manner in Mouse Liver [Articles] By dmd.aspetjournals.org Published On :: 2020-04-09T08:02:00-07:00 Drug-induced liver injury (DILI) is a global medical problem. The risk of DILI is often related to expression and activities of drug-metabolizing enzymes, especially cytochrome P450s (P450s). However, changes on expression and activities of P450s after DILI have not been determined. The aim of this study is to fill this knowledge gap. Acetaminophen (APAP) was used as a model drug to induce DILI in C57BL/6J mice at different ages of days 10 (infant), 22 (child), and 60 (adult). DILI was assessed by levels of alanine aminotransferase and aspartate aminotransferase in plasma with a confirmation by H&E staining on liver tissue sections. The expression of selected P450s at mRNA and protein levels was measured by real-time polymerase chain reaction and liquid chromatography–tandem mass spectrometry, respectively. The activities of these P450s were determined by the formation of metabolites from probe drugs for each P450 using ultraperformance liquid chromatography–quadrupole time of flight mass spectrometry. DILI was induced at mild to severe levels in a dose-dependent manner in 200, 300, and 400 mg/kg APAP-treated groups at child and adult ages, but not at the infant age. Significantly decreased expression at mRNA and protein levels as well as enzymatic activities of CYP2E1, 3A11, 1A2, and 2C29 were found at child and adult ages. Adult male mice were more susceptible to APAP-induced liver injury than female mice with more decreased expression of P450s. These results suggest that altered levels of P450s in livers severely injured by drugs may affect the therapeutic efficacy of drugs, which are metabolized by P450s, more particularly for males. SIGNIFICANCE STATEMENT The current study in an animal model demonstrates that acetaminophen-induced liver injury results in decreased expression and enzyme activities of several examined drug-metabolizing cytochrome P450s (P450s). The extent of such decreases is correlated to the degree of liver injury severity. The generated data may be translated to human health for patients who have drug-induced liver injury with decreased capability to metabolize drugs by certain P450s. Full Article
ino {alpha}-Synuclein filaments from transgenic mouse and human synucleinopathy-containing brains are maȷor seed-competent species [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Assembled α-synuclein in nerve cells and glial cells is the defining pathological feature of neurodegenerative diseases called synucleinopathies. Seeds of α-synuclein can induce the assembly of monomeric protein. Here, we used sucrose gradient centrifugation and transiently transfected HEK 293T cells to identify the species of α-synuclein from the brains of homozygous, symptomatic mice transgenic for human mutant A53T α-synuclein (line M83) that seed aggregation. The most potent fractions contained Sarkosyl-insoluble assemblies enriched in filaments. We also analyzed six cases of idiopathic Parkinson's disease (PD), one case of familial PD, and six cases of multiple system atrophy (MSA) for their ability to induce α-synuclein aggregation. The MSA samples were more potent than those of idiopathic PD in seeding aggregation. We found that following sucrose gradient centrifugation, the most seed-competent fractions from PD and MSA brains are those that contain Sarkosyl-insoluble α-synuclein. The fractions differed between PD and MSA, consistent with the presence of distinct conformers of assembled α-synuclein in these different samples. We conclude that α-synuclein filaments are the main driving force for amplification and propagation of pathology in synucleinopathies. Full Article
ino Roles of active-site residues in catalysis, substrate binding, cooperativity, and the reaction mechanism of the quinoprotein glycine oxidase [Enzymology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 The quinoprotein glycine oxidase from the marine bacterium Pseudoalteromonas luteoviolacea (PlGoxA) uses a protein-derived cysteine tryptophylquinone (CTQ) cofactor to catalyze conversion of glycine to glyoxylate and ammonia. This homotetrameric enzyme exhibits strong cooperativity toward glycine binding. It is a good model for studying enzyme kinetics and cooperativity, specifically for being able to separate those aspects of protein function through directed mutagenesis. Variant proteins were generated with mutations in four active-site residues, Phe-316, His-583, Tyr-766, and His-767. Structures for glycine-soaked crystals were obtained for each. Different mutations had differential effects on kcat and K0.5 for catalysis, K0.5 for substrate binding, and the Hill coefficients describing the steady-state kinetics or substrate binding. Phe-316 and Tyr-766 variants retained catalytic activity, albeit with altered kinetics and cooperativity. Substitutions of His-583 revealed that it is essential for glycine binding, and the structure of H583C PlGoxA had no active-site glycine present in glycine-soaked crystals. The structure of H767A PlGoxA revealed a previously undetected reaction intermediate, a carbinolamine product-reduced CTQ adduct, and exhibited only negligible activity. The results of these experiments, as well as those with the native enzyme and previous variants, enabled construction of a detailed mechanism for the reductive half-reaction of glycine oxidation. This proposed mechanism includes three discrete reaction intermediates that are covalently bound to CTQ during the reaction, two of which have now been structurally characterized by X-ray crystallography. Full Article
ino A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in Mycobacterium tuberculosis [Enzymology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Allostery exploits the conformational dynamics of enzymes by triggering a shift in population ensembles toward functionally distinct conformational or dynamic states. Allostery extensively regulates the activities of key enzymes within biosynthetic pathways to meet metabolic demand for their end products. Here, we have examined a critical enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS), at the gateway to aromatic amino acid biosynthesis in Mycobacterium tuberculosis, which shows extremely complex dynamic allostery: three distinct aromatic amino acids jointly communicate occupancy to the active site via subtle changes in dynamics, enabling exquisite fine-tuning of delivery of these essential metabolites. Furthermore, this allosteric mechanism is co-opted by pathway branchpoint enzyme chorismate mutase upon complex formation. In this study, using statistical coupling analysis, site-directed mutagenesis, isothermal calorimetry, small-angle X-ray scattering, and X-ray crystallography analyses, we have pinpointed a critical node within the complex dynamic communication network responsible for this sophisticated allosteric machinery. Through a facile Gly to Pro substitution, we have altered backbone dynamics, completely severing the allosteric signal yet remarkably, generating a nonallosteric enzyme that retains full catalytic activity. We also identified a second residue of prime importance to the inter-enzyme communication with chorismate mutase. Our results reveal that highly complex dynamic allostery is surprisingly vulnerable and provide further insights into the intimate link between catalysis and allostery. Full Article
ino Fluorescent Hybridization of Mycobacterium leprae in Skin Samples Collected in Burkina Faso [Mycobacteriology and Aerobic Actinomycetes] By jcm.asm.org Published On :: 2020-04-23T08:00:29-07:00 Leprosy is caused by Mycobacterium leprae, and it remains underdiagnosed in Burkina Faso. We investigated the use of fluorescent in situ hybridization (FISH) for detecting M. leprae in 27 skin samples (skin biopsy samples, slit skin samples, and skin lesion swabs) collected from 21 patients from Burkina Faso and three from Côte d’Ivoire who were suspected of having cutaneous leprosy. In all seven Ziehl-Neelsen-positive skin samples (four skin biopsy samples and three skin swabs collected from the same patient), FISH specifically identified M. leprae, including one FISH-positive skin biopsy sample that remained negative after testing with PCR targeting the rpoB gene and with the GenoType LepraeDR assay. Twenty other skin samples and three negative controls all remained negative for Ziehl-Neelsen staining, FISH, and rpoB PCR. These data indicate the usefulness of a microscopic examination of skin samples after FISH for first-line diagnosis of cutaneous leprosy. Accordingly, FISH represents a potentially useful point-of-care test for the diagnosis of cutaneous leprosy. Full Article
ino Direct Determination of Pyrazinamide (PZA) Susceptibility by Sputum Microscopic Observation Drug Susceptibility (MODS) Culture at Neutral pH: the MODS-PZA Assay [Mycobacteriology and Aerobic Actinomycetes] By jcm.asm.org Published On :: 2020-04-23T08:00:28-07:00 Pyrazinamide (PZA) is considered the pivot drug in all tuberculosis treatment regimens due to its particular action on the persistent forms of Mycobacterium tuberculosis. However, no drug susceptibility test (DST) is considered sufficiently reliable for routine application. Although molecular tests are endorsed, their application is limited to known PZA resistance associated mutations. Microbiological DSTs for PZA have been restricted by technical limitations, especially the necessity for an acidic pH. Here, for the first time, MODS culture at neutral pH was evaluated using high PZA concentrations (400 and 800 μg/ml) to determine PZA susceptibility directly from sputum samples. Sputum samples were cultured with PZA for up to 21 days at 37°C. Plate reading was performed at two time points: R1 (mean, 10 days) and R2 (mean, 13 days) for each PZA concentration. A consensus reference test, composed of MGIT-PZA, pncA sequencing, and the classic Wayne test, was used. A total of 182 samples were evaluated. The sensitivity and specificity for 400 μg/ml ranged from 76.9 to 89.7 and from 93.0 to 97.9%, respectively, and for 800 μg/ml ranged from 71.8 to 82.1 and from 95.8 to 98.6%, respectively. Compared to MGIT-PZA, our test showed a similar turnaround time (medians of 10 and 12 days for PZA-sensitive and -resistant isolates, respectively). In conclusion, MODS-PZA is presented as a fast, simple, and low-cost DST that could complement the MODS assay to evaluate resistance to the principal first-line antituberculosis drugs. Further optimization of test conditions would be useful in order to increase its performance. Full Article
ino Validation of an Epstein-Barr Virus Antibody Risk Stratification Signature for Nasopharyngeal Carcinoma by Use of Multiplex Serology [Virology] By jcm.asm.org Published On :: 2020-04-23T08:00:28-07:00 Serological testing for nasopharyngeal carcinoma (NPC) has recently been reinvigorated by the implementation of novel Epstein-Barr virus (EBV)-specific IgA and IgG antibodies from a proteome array. Although proteome arrays are well suited for comprehensive antigen selection, they are not applicable for large-scale studies. We adapted a 13-marker EBV antigen signature for NPC risk identified by proteome arrays to multiplex serology to establish an assay for large-scale studies. Taiwanese NPC cases (n = 175) and matched controls (n = 175) were used for assay validation. Spearman’s correlation was calculated, and the diagnostic value of all multiplex markers was assessed independently using the area under the receiver operating characteristic curve (AUC). Two refined signatures were identified using stepwise logistic regression and internally validated with 10-fold cross validation. Array and multiplex serology showed strong correlation for each individual EBV marker, as well as for a 13-marker combined model on continuous data. Two refined signatures with either four (LF2 and BGLF2 IgG, LF2 and BMRF1 IgA) or two (LF2 and BGLF2 IgG) antibodies on dichotomous data were identified as the most parsimonious set of serological markers able to distinguish NPC cases from controls with AUCs of 0.992 (95% confidence interval [CI], 0.983 to 1.000) and 0.984 (95% CI, 0.971 to 0.997), respectively. Neither differed significantly from the 13-marker model (AUC, 0.992; 95% CI, 0.982 to 1.000). All models were internally validated. Multiplex serology successfully validated the original EBV proteome microarray data. Two refined signatures of four and two antibodies were capable of detecting NPC with 99.2% and 98.4% accuracy. Full Article
ino Nucleostemin Modulates Outcomes of Hepatocellular Carcinoma via a Tumor Adaptive Mechanism to Genomic Stress By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 Hepatocellular carcinomas (HCC) are adapted to survive extreme genomic stress conditions imposed by hyperactive DNA replication and genotoxic drug treatment. The underlying mechanisms remain unclear, but may involve intensified DNA damage response/repair programs. Here, we investigate a new role of nucleostemin (NS) in allowing HCC to survive its own malignancy, as NS was previously shown to promote liver regeneration via a damage repair mechanism. We first established that a higher NS transcript level correlates with high-HCC grades and poor prognostic signatures, and is an independent predictor of shorter overall and progression-free survival specifically for HCC and kidney cancer but not for others. Immunostaining confirmed that NS is most abundantly expressed in high-grade and metastatic HCCs. Genome-wide analyses revealed that NS is coenriched with MYC target and homologous recombination (HR) repair genes in human HCC samples and functionally intersects with those involved in replication stress response and HR repair in yeasts. In support, NS-high HCCs are more reliant on the replicative/oxidative stress response pathways, whereas NS-low HCCs depend more on the mTOR pathway. Perturbation studies showed NS function in protecting human HCC cells from replication- and drug-induced DNA damage. Notably, NS depletion in HCC cells increases the amounts of physical DNA damage and cytosolic double-stranded DNA, leading to a reactive increase of cytokines and PD-L1. This study shows that NS provides an essential mechanism for HCC to adapt to high genomic stress for oncogenic maintenance and propagation. NS deficiency sensitizes HCC cells to chemotherapy but also triggers tumor immune responses. Implications: HCC employs a novel, nucleostemin (NS)-mediated-mediated adaptive mechanism to survive high genomic stress conditions, a deficiency of which sensitizes HCC cells to chemotherapy but also triggers tumor immune responses. Full Article
ino Cordycepin Inhibits Cancer Cell Proliferation and Angiogenesis through a DEK Interaction via ERK Signaling in Cholangiocarcinoma [Gastrointestinal, Hepatic, Pulmonary, and Renal] By jpet.aspetjournals.org Published On :: 2020-04-21T06:02:31-07:00 Cholangiocarcinoma (CCA) is a malignant tumor that arises from the epithelial cells of the bile duct and is notorious for its poor prognosis. The clinical outcome remains disappointing, and thus more effective therapeutic options are urgently required. Cordycepin, a traditional Chinese medicine, provides multiple pharmacological strategies in antitumors, but its mechanisms have not been fully elucidated. In this study, we reported that cordycepin inhibited the viability and proliferation capacity of CCA cells in a time- and dose-dependent manner determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and colony formation assay. Flow cytometry and Hoechst dye showed that cordycepin induced cancer cell apoptosis via extracellular signal-regulated kinase (ERK) 1/2 deactivation. Moreover, cordycepin significantly reduced the angiogenetic capabilities of CCA in vitro as examined by tube formation assay. We also discovered that cordycepin inhibited DEK expression by using Western blot assay. DEK serves as an oncogenic protein that is overexpressed in various gastrointestinal tumors. DEK silencing inhibited CCA cell viability and angiogenesis but not apoptosis induction determined by Western blot and flow cytometry. Furthermore, cordycepin significantly inhibited tumor growth and angiogenic capacities in a xenograft model by downregulating the expression of DEK, phosphorylated ERK1/2 CD31 and von Willebrand factor (vWF). Taken together, we demonstrated that cordycepin inhibited CCA cell proliferation and angiogenesis with a DEK interaction via downregulation in ERK signaling. These data indicate that cordycepin may serve as a novel agent for CCA clinical treatment and prognosis improvement. SIGNIFICANCE STATEMENT Cordycepin provides multiple strategies in antitumors, but its mechanisms are not fully elucidated, especially on cholangiocarcinoma (CCA). We reported that cordycepin inhibited the viability of CCA cells, induced apoptosis via extracellular signal-regulated kinase 1/2 deactivation and DEK inhibition, and reduced the angiogenetic capabilities of CCA both in vivo and in vitro. Full Article