sma Sub-millisecond time-resolved small-angle neutron scattering measurements at NIST By scripts.iucr.org Published On :: 2020-04-14 Instrumentation for time-resolved small-angle neutron scattering measurements with sub-millisecond time resolution, based on Gähler's TISANE (time-involved small-angle neutron experiments) concept, is in operation at NIST's Center for Neutron Research. This implementation of the technique includes novel electronics for synchronizing the neutron pulses from high-speed counter-rotating choppers with a periodic stimulus applied to a sample. Instrumentation details are described along with measurements demonstrating the utility of the technique for elucidating the reorientation dynamics of anisometric magnetic particles. Full Article text
sma Radiation damage in small-molecule crystallography: fact not fiction By scripts.iucr.org Published On :: 2019-06-14 Traditionally small-molecule crystallographers have not usually observed or recognized significant radiation damage to their samples during diffraction experiments. However, the increased flux densities provided by third-generation synchrotrons have resulted in increasing numbers of observations of this phenomenon. The diversity of types of small-molecule systems means it is not yet possible to propose a general mechanism for their radiation-induced sample decay, however characterization of the effects will permit attempts to understand and mitigate it. Here, systematic experiments are reported on the effects that sample temperature and beam attenuation have on radiation damage progression, allowing qualitative and quantitative assessment of their impact on crystals of a small-molecule test sample. To allow inter-comparison of different measurements, radiation-damage metrics (diffraction-intensity decline, resolution fall-off, scaling B-factor increase) are plotted against the absorbed dose. For ease-of-dose calculations, the software developed for protein crystallography, RADDOSE-3D, has been modified for use in small-molecule crystallography. It is intended that these initial experiments will assist in establishing protocols for small-molecule crystallographers to optimize the diffraction signal from their samples prior to the onset of the deleterious effects of radiation damage. Full Article text
sma A new small-angle X-ray scattering model for polymer spherulites with a limited lateral size of the lamellar crystals By scripts.iucr.org Published On :: 2019-08-31 As is well known, polymers commonly form lamellar crystals, and these assemble further into lamellar stacks and spherulites during quiescent crystallization. Fifty years ago, Vonk and Kortleve constructed the classical small-angle X-ray scattering theory (SAXS) for a lamellar system, in which it was assumed that the lamellar stack had an infinite lateral size [Vonk & Kortleve (1967), Kolloid Z. Z. Polym. 220, 19–24]. Under this assumption, only crystal planes satisfying the Bragg condition can form strong scattering, and the scattering from the lamellar stack arises from the difference between the scattering intensities in the amorphous and crystalline layers, induced by the incident X-ray beam. This assumption is now deemed unreasonable. In a real polymer spherulite, the lamellar crystal commonly has dimensions of only a few hundred nanometres. At such a limited lateral size, lamellar stacks in a broad orientation have similar scattering, so interference between these lamellar stacks must be considered. Scattering from lamellar stacks parallel to the incident X-ray beam also needs to be considered when total reflection occurs. In this study, various scattering contributions from lamellar stacks in a spherulite are determined. It is found that, for a limited lateral size, the scattering induced by the incident X-ray beam is not the main origin of SAXS. It forms double peaks, which are not observed in real scattering because of destructive interference between the lamellar stacks. The scattering induced by the evanescent wave is the main origin. It can form a similar interference pattern to that observed in a real SAXS measurement: a Guinier region in the small-q range, a signal region in the intermediate-q range and a Porod region in the high-q range. It is estimated that, to avoid destructive interference, the lateral size needs to be greater than 11 µm, which cannot be satisfied in a real lamellar system. Therefore, SAXS in a real polymer system arises largely from the scattering induced by the evanescent wave. Evidence for the existence of the evanescent wave was identified in the scattering of isotactic polypropylene. This study corrects a long-term misunderstanding of SAXS in a polymer lamellar system. Full Article text
sma Small-angle neutron scattering studies suggest the mechanism of BinAB protein internalization By scripts.iucr.org Published On :: 2020-01-25 Small-angle neutron scattering (SANS) is one of the most widely used neutron-based approaches to study the solution structure of biological macromolecular systems. The selective deuterium labelling of different protein components of a complex provides a means to probe conformational changes in multiprotein complexes. The Lysinibacillus sphaericus mosquito-larvicidal BinAB proteins exert toxicity through interaction with the receptor Cqm1 protein; however, the nature of the complex is not known. Rationally engineered deuterated BinB (dBinB) protein from the L. sphaericus ISPC-8 species was synthesized using an Escherichia coli-based protein-expression system in M9 medium in D2O for `contrast-matched' SANS experiments. SANS data were independently analysed by ab initio indirect Fourier transform-based modelling and using crystal structures. These studies confirm the dimeric status of Cqm1 in 100% D2O with a longest intramolecular vector (Dmax) of ∼94 Å and a radius of gyration (Rg) of ∼31 Å. Notably, BinB binds to Cqm1, forming a heterodimeric complex (Dmax of ∼129 Å and Rg of ∼40 Å) and alters its oligomeric status from a dimer to a monomer, as confirmed by matched-out Cqm1–dBinB (Dmax of ∼70 Å and Rg of ∼22 Å). The present study thus provides the first insight into the events involved in the internalization of larvicidal proteins, likely by raft-dependent endocytosis. Full Article text
sma Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals By scripts.iucr.org Published On :: 2020-02-26 Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme. Full Article text
sma Controlled dehydration, structural flexibility and gadolinium MRI contrast compound binding in the human plasma glycoprotein afamin By scripts.iucr.org Published On :: 2019-11-19 Afamin, which is a human blood plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome, poses multiple challenges for crystallographic structure determination, both practically and in analysis of the models. Several hundred crystals were analysed, and an unusual variability in cell volume and difficulty in solving the structure despite an ∼34% sequence identity with nonglycosylated human serum albumin indicated that the molecule exhibits variable and context-sensitive packing, despite the simplified glycosylation in insect cell-expressed recombinant afamin. Controlled dehydration of the crystals was able to stabilize the orthorhombic crystal form, reducing the number of molecules in the asymmetric unit from the monoclinic form and changing the conformational state of the protein. An iterative strategy using fully automatic experiments available on MASSIF-1 was used to quickly determine the optimal protocol to achieve the phase transition, which should be readily applicable to many types of sample. The study also highlights the drawback of using a single crystallographic structure model for computational modelling purposes given that the conformational state of the binding sites and the electron density in the binding site, which is likely to result from PEGs, greatly varies between models. This also holds for the analysis of nonspecific low-affinity ligands, where often a variety of fragments with similar uncertainty can be modelled, inviting interpretative bias. As a promiscuous transporter, afamin also seems to bind gadoteridol, a magnetic resonance imaging contrast compound, in at least two sites. One pair of gadoteridol molecules is located near the human albumin Sudlow site, and a second gadoteridol molecule is located at an intermolecular site in proximity to domain IA. The data from the co-crystals support modern metrics of data quality in the context of the information that can be gleaned from data sets that would be abandoned on classical measures. Full Article text
sma The crystal structure of the heme d1 biosynthesis-associated small c-type cytochrome NirC reveals mixed oligomeric states in crystallo By scripts.iucr.org Published On :: 2020-03-25 Monoheme c-type cytochromes are important electron transporters in all domains of life. They possess a common fold hallmarked by three α-helices that surround a covalently attached heme. An intriguing feature of many monoheme c-type cytochromes is their capacity to form oligomers by exchanging at least one of their α-helices, which is often referred to as 3D domain swapping. Here, the crystal structure of NirC, a c-type cytochrome co-encoded with other proteins involved in nitrite reduction by the opportunistic pathogen Pseudomonas aeruginosa, has been determined. The crystals diffracted anisotropically to a maximum resolution of 2.12 Å (spherical resolution of 2.83 Å) and initial phases were obtained by Fe-SAD phasing, revealing the presence of 11 NirC chains in the asymmetric unit. Surprisingly, these protomers arrange into one monomer and two different types of 3D domain-swapped dimers, one of which shows pronounced asymmetry. While the simultaneous observation of monomers and dimers probably reflects the interplay between the high protein concentration required for crystallization and the structural plasticity of monoheme c-type cytochromes, the identification of conserved structural motifs in the monomer together with a comparison with similar proteins may offer new leads to unravel the unknown function of NirC. Full Article text
sma ID30A-3 (MASSIF-3) – a beamline for macromolecular crystallography at the ESRF with a small intense beam By scripts.iucr.org Published On :: 2020-04-29 ID30A-3 (or MASSIF-3) is a mini-focus (beam size 18 µm × 14 µm) highly intense (2.0 × 1013 photons s−1), fixed-energy (12.81 keV) beamline for macromolecular crystallography (MX) experiments at the European Synchrotron Radiation Facility (ESRF). MASSIF-3 is one of two fixed-energy beamlines sited on the first branch of the canted undulator setup on the ESRF ID30 port and is equipped with a MD2 micro-diffractometer, a Flex HCD sample changer, and an Eiger X 4M fast hybrid photon-counting detector. MASSIF-3 is recommended for collecting diffraction data from single small crystals (≤15 µm in one dimension) or for experiments using serial methods. The end-station has been in full user operation since December 2014, and here its current characteristics and capabilities are described. Full Article text
sma Validation study of small-angle X-ray scattering tensor tomography By scripts.iucr.org Published On :: 2020-04-22 Small-angle scattering tensor tomography (SASTT) is a recently developed technique able to tomographically reconstruct the 3D reciprocal space from voxels within a bulk volume. SASTT extends the concept of X-ray computed tomography, which typically reconstructs scalar values, by reconstructing a tensor per voxel, which represents the local nanostructure 3D organization. In this study, the nanostructure orientation in a human trabecular-bone sample obtained by SASTT was validated by sectioning the sample and using 3D scanning small-angle X-ray scattering (3D sSAXS) to measure and analyze the orientation from single voxels within each thin section. Besides the presence of cutting artefacts from the slicing process, the nanostructure orientations obtained with the two independent methods were in good agreement, as quantified with the absolute value of the dot product calculated between the nanostructure main orientations obtained in each voxel. The average dot product per voxel over the full sample containing over 10 000 voxels was 0.84, and in six slices, in which fewer cutting artefacts were observed, the dot product increased to 0.91. In addition, SAXS tensor tomography not only yields orientation information but can also reconstruct the full 3D reciprocal-space map. It is shown that the measured anisotropic scattering for individual voxels was reproduced from the SASTT reconstruction in each voxel of the 3D sample. The scattering curves along different 3D directions are validated with data from single voxels, demonstrating SASTT's potential for a separate analysis of nanostructure orientation and structural information from the angle-dependent intensity distribution. Full Article text
sma Classification of grazing-incidence small-angle X-ray scattering patterns by convolutional neural network By journals.iucr.org Published On :: Convolutional neural networks are useful for classifying grazing-incidence small-angle X-ray scattering patterns. They are also useful for classifying real experimental data. Full Article text
sma PDB2INS: bridging the gap between small-molecule and macromolecular refinement By scripts.iucr.org Published On :: 2019-05-14 The open-source Python program PDB2INS is designed to prepare a .ins file for refinement with SHELXL [Sheldrick (2015). Acta Cryst. C71, 3–8], taking atom coordinates and other information from a Protein Data Bank (PDB)-format file. If PDB2INS is provided with a four-character PDB code, both the PDB file and the accompanying mmCIF-format reflection data file (if available) are accessed via the internet from the PDB public archive [Read et al. (2011). Structure, 19, 1395–1412] or optionally from the PDB_REDO server [Joosten, Long, Murshudov & Perrakis (2014). IUCrJ, 1, 213–220]. The SHELX-format .ins (refinement instructions and atomic coordinates) and .hkl (reflection data) files can then be generated without further user intervention, appropriate restraints etc. being added automatically. PDB2INS was tested on the 23 974 X-ray structures deposited in the PDB between 2008 and 2018 that included reflection data to 1.7 Å or better resolution in a recognizable format. After creating the two input files for SHELXL without user intervention, ten cycles of conjugate-gradient least-squares refinement were performed. For 96% of these structures PDB2INS and SHELXL completed successfully without error messages. Full Article text
sma A novel methodology to study nanoporous alumina by small-angle neutron scattering By scripts.iucr.org Published On :: 2019-06-28 Nanoporous anodic aluminium oxide (AAO) membranes are promising host systems for confinement of condensed matter. Characterizing their structure and composition is thus of primary importance for studying the behavior of confined objects. Here a novel methodology to extract quantitative information on the structure and composition of well defined AAO membranes by combining small-angle neutron scattering (SANS) measurements and scanning electron microscopy (SEM) imaging is reported. In particular, (i) information about the pore hexagonal arrangement is extracted from SEM analysis, (ii) the best SANS experimental conditions to perform reliable measurements are determined and (iii) a detailed fitting method is proposed, in which the probed length in the fitting model is a critical parameter related to the longitudinal pore ordering. Finally, to validate this strategy, it is applied to characterize AAOs prepared under different conditions and it is shown that the experimental SANS data can be fully reproduced by a core/shell model, indicating the existence of a contaminated shell. This original approach, based on a detailed and complete description of the SANS data, can be applied to a variety of confining media and will allow the further investigation of condensed matter under confinement. Full Article text
sma The nondestructive measurement of strain distributions in air plasma sprayed thermal barrier coatings as a function of depth from entire Debye–Scherrer rings By scripts.iucr.org Published On :: 2020-02-01 The residual strain distribution has been measured as a function of depth in both top coat and bond coat in as-received and heat-treated air plasma sprayed thermal barrier coating samples. High-energy synchrotron X-ray beams were used in transmission to produce full Debye–Scherrer rings whose non-circular aspect ratio gave the in-plane and out-of-plane strains far more efficiently than the sin2ψ method. The residual strain in the bond coat is found to be tensile and the strain in the β phase of the as-received sample was measured. The residual strains observed in the top coat were generally compressive (increasing towards the interface), with two kinds of nonlinear trend. These was a `jump' feature near the interface, and in some cases there was another `jump' feature near the surface. It is shown how these trend differences can be correlated to cracks in the coating. Full Article text
sma Improving grazing-incidence small-angle X-ray scattering–computed tomography images by total variation minimization By scripts.iucr.org Published On :: 2020-02-01 Grazing-incidence small-angle X-ray scattering (GISAXS) coupled with computed tomography (CT) has enabled the visualization of the spatial distribution of nanostructures in thin films. 2D GISAXS images are obtained by scanning along the direction perpendicular to the X-ray beam at each rotation angle. Because the intensities at the q positions contain nanostructural information, the reconstructed CT images individually represent the spatial distributions of this information (e.g. size, shape, surface, characteristic length). These images are reconstructed from the intensities acquired at angular intervals over 180°, but the total measurement time is prolonged. This increase in the radiation dosage can cause damage to the sample. One way to reduce the overall measurement time is to perform a scanning GISAXS measurement along the direction perpendicular to the X-ray beam with a limited interval angle. Using filtered back-projection (FBP), CT images are reconstructed from sinograms with limited interval angles from 3 to 48° (FBP-CT images). However, these images are blurred and have a low image quality. In this study, to optimize the CT image quality, total variation (TV) regularization is introduced to minimize sinogram image noise and artifacts. It is proposed that the TV method can be applied to downsampling of sinograms in order to improve the CT images in comparison with the FBP-CT images. Full Article text
sma BornAgain: software for simulating and fitting grazing-incidence small-angle scattering By scripts.iucr.org Published On :: 2020-02-01 BornAgain is a free and open-source multi-platform software framework for simulating and fitting X-ray and neutron reflectometry, off-specular scattering, and grazing-incidence small-angle scattering (GISAS). This paper concentrates on GISAS. Support for reflectometry and off-specular scattering has been added more recently, is still under intense development and will be described in a later publication. BornAgain supports neutron polarization and magnetic scattering. Users can define sample and instrument models through Python scripting. A large subset of the functionality is also available through a graphical user interface. This paper describes the software in terms of the realized non-functional and functional requirements. The web site https://www.bornagainproject.org/ provides further documentation. Full Article text
sma Li-ion half-cells studied operando during cycling by small-angle neutron scattering By scripts.iucr.org Published On :: 2020-01-31 Small-angle neutron scattering (SANS) was recently applied to the in situ and operando study of the charge/discharge process in Li-ion battery full-cells based on a pouch cell design. Here, this work is continued in a half-cell with a graphite electrode cycled versus a metallic lithium counter electrode, in a study conducted on the SANS-1 instrument of the neutron source FRM II at the Heinz Maier-Leibnitz Zentrum in Garching, Germany. It is confirmed that the SANS integrated intensity signal varies as a function of graphite lithiation, and this variation can be explained by changes in the squared difference in scattering length density between graphite and the electrolyte. The scattering contrast change upon graphite lithiation/delithiation calculated from a multi-phase neutron scattering model is in good agreement with the experimentally measured values. Due to the finite coherence length, the observed SANS contrast, which mostly stems from scattering between the (lithiated) graphite and the electrolyte phase, contains local information on the mesoscopic scale, which allows the development of lithiated phases in the graphite to be followed. The shape of the SANS signal curve can be explained by a core–shell model with step-wise (de)lithiation from the surface. Here, for the first time, X-ray diffraction, SANS and theory are combined to give a full picture of graphite lithiation in a half-cell. The goal of this contribution is to confirm the correlation between the integrated SANS data obtained during operando measurements of an Li-ion half-cell and the electrochemical processes of lithiation/delithiation in micro-scaled graphite particles. For a deeper understanding of this correlation, modelling and experimental data for SANS and results from X-ray diffraction were taken into account. Full Article text
sma Quantifying nanoparticles in clays and soils with a small-angle X-ray scattering method By scripts.iucr.org Published On :: 2020-02-01 Clays and soils produce strong small-angle X-ray scattering (SAXS) because they contain large numbers of nanoparticles, namely allophane and ferrihydrite. These nanoparticles are amorphous and have approximately spherical shape with a size of around 3–10 nm. The weight ratios of these nanoparticles will affect the properties of the clays and soils. However, the nanoparticles in clays and soils are not generally quantified and are sometimes ignored because there is no standard method to quantify them. This paper describes a method to quantify nanoparticles in clays and soils with SAXS. This is achieved by deriving normalized SAXS intensities from unit weight of the sample, which are not affected by absorption. By integrating the normalized SAXS intensities over the reciprocal space, one obtains a value that is proportional to the weight ratio of the nanoparticles, proportional to the square of the difference of density between the nanoparticles and the liquid surrounding the nanoparticles, and inversely proportional to the density of the nanoparticles. If the density of the nanoparticles is known, the weight ratio of the nanoparticles can be calculated from the SAXS intensities. The density of nanoparticles was estimated from the chemical composition of the sample. Nanoparticles in colloidal silica, silica gels, mixtures of silica gel and α-aluminium oxide, and synthetic clays have been quantified with the integral SAXS method. The results show that the errors of the weight ratios of nanoparticles are around 25% of the weight ratio. It is also shown that some natural clays contain large fractions of nanoparticles; montmorillonite clay from the Mikawa deposit, pyrophillite clay from the Shokozan deposit and kaolinite clay from the Kanpaku deposit contain 25 (7), 10 (2) and 19 (5) wt% nanoparticles, respectively, where errors are shown in parentheses. Full Article text
sma Simulation of small-angle X-ray scattering data of biological macromolecules in solution By scripts.iucr.org Published On :: 2020-02-18 This article presents IMSIM, an application to simulate two-dimensional small-angle X-ray scattering patterns and, further, one-dimensional profiles from biological macromolecules in solution. IMSIM implements a statistical approach yielding two-dimensional images in TIFF, CBF or EDF format, which may be readily processed by existing data-analysis pipelines. Intensities and error estimates of one-dimensional patterns obtained from the radial average of the two-dimensional images exhibit the same statistical properties as observed with actual experimental data. With initial input on an absolute scale, [cm−1]/c[mg ml−1], the simulated data frames may also be scaled to absolute scale such that the forward scattering after subtraction of the background is proportional to the molecular weight of the solute. The effects of changes of concentration, exposure time, flux, wavelength, sample–detector distance, detector dimensions, pixel size, and the mask as well as incident beam position can be considered for the simulation. The simulated data may be used in method development, for educational purposes, and also to determine the most suitable beamline setup for a project prior to the application and use of the actual beamtime. IMSIM is available as part of the ATSAS software package (3.0.0) and is freely available for academic use (http://www.embl-hamburg.de/biosaxs/download.html). Full Article text
sma Microstructure and water distribution in catalysts for polymer electrolyte fuel cells, elucidated by contrast variation small-angle neutron scattering By journals.iucr.org Published On :: By using small-angle neutron scattering (SANS) reinforced by scanning electron microscopy, the fine structure of catalysts for polymer electrolyte fuel cells has been investigated. The experimental data resulting from contrast variation with mixed light and heavy water (H2O/D2O) are well described by a core–shell model with fluctuations in concentration between water and Nafion. Full Article text
sma Small-angle neutron scattering (SANS) and spin-echo SANS measurements reveal the logarithmic fractal structure of the large-scale chromatin organization in HeLa nuclei By journals.iucr.org Published On :: This paper reports on the two-scale fractal structure of chromatin organization in the nucleus of the HeLa cell. Full Article text
sma New attempt to combine scanning electron microscopy and small-angle scattering in reciprocal space By journals.iucr.org Published On :: An attempt has been made to combine small-angle scattering of X-rays or neutrons with scanning electron microscopy in reciprocal space, in order to establish a structural analysis method covering a wide range of sizes from micro- to macro-scales. Full Article text
sma Sub-millisecond time-resolved small-angle neutron scattering measurements at NIST By journals.iucr.org Published On :: Instrumentation for sub-millisecond time-resolved small-angle neutron scattering measurements at NIST is described and applied to the reorientation dynamics of elongated hematite nanoparticles. Full Article text
sma sasPDF: pair distribution function analysis of nanoparticle assemblies from small-angle scattering data By journals.iucr.org Published On :: The sasPDF method, an extension of the atomic pair distribution function (PDF) analysis to the small-angle scattering (SAS) regime, is presented. The method is applied to characterize the structure of nanoparticle assemblies with different levels of structural order. Full Article text
sma A novel experimental approach for nanostructure analysis: simultaneous small-angle X-ray and neutron scattering By journals.iucr.org Published On :: A portable small-angle X-ray scattering instrument with geometrical dimensions suitable for installation at the D22 instrument was designed and constructed for simultaneous small-angle X-ray and neutron scattering experiments at ILL. Full Article text
sma Structure of an RNA helix with pyrimidine mismatches and cross-strand stacking By scripts.iucr.org Published On :: 2019-09-24 The structure of a 22-base-pair RNA helix with mismatched pyrimidine base pairs is reported. The helix contains two symmetry-related CUG sequences: a triplet-repeat motif implicated in myotonic dystrophy type 1. The CUG repeat contains a U–U mismatch sandwiched between Watson–Crick pairs. Additionally, the center of the helix contains a dimerized UUCG motif with tandem pyrimidine (U–C/C–U) mismatches flanked by U–G wobble pairs. This region of the structure is significantly different from previously observed structures that share the same sequence and neighboring base pairs. The tandem pyrimidine mismatches are unusual and display sheared, cross-strand stacking geometries that locally constrict the helical width, a type of stacking previously associated with purines in internal loops. Thus, pyrimidine-rich regions of RNA have a high degree of structural diversity. Full Article text
sma Laboratory tests reveal precise way to measure vertical lift in bumblebees and other small insects and birds By insider.si.edu Published On :: Thu, 28 Jan 2010 20:01:27 +0000 Birds do it. Bees do it. And in a laboratory in northern California, scientists using bumblebees recently figured out the best way to measure it--vertical lift! The post Laboratory tests reveal precise way to measure vertical lift in bumblebees and other small insects and birds appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature animal flight bees birds insects Tropical Research Institute
sma Only large, fast-flying bats can handle life in the big city; small bats can’t adapt By insider.si.edu Published On :: Thu, 03 Feb 2011 13:26:06 +0000 Bats living in the dense urban area of Panama City, the scientists learned, represent just a small fraction of the roughly 25 species of high-flying insectivorous bats found in Panama’s rainforests. The post Only large, fast-flying bats can handle life in the big city; small bats can’t adapt appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature bats Caribbean conservation conservation biology endangered species mammals Tropical Research Institute
sma Keepers are optimistic about Zoo’s new breeding pair of Asian small-clawed otters By insider.si.edu Published On :: Tue, 07 Jun 2011 12:03:18 +0000 The National Zoo has received a breeding pair of Asian small-clawed otters at Asia Trail for the first time. Mac, a three-year-old male from the Point Defiance Zoo in Tacoma, Wash., and Smidge, a five-year-old female from the Columbus Zoo in Ohio, arrived in April and are now in their exhibit. The post Keepers are optimistic about Zoo’s new breeding pair of Asian small-clawed otters appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature animal births biodiversity captive breeding conservation endangered species mammals new acquisitions Smithsonian's National Zoo
sma Whole-genome analysis at center of effort to save Tasmanian devil By insider.si.edu Published On :: Tue, 28 Jun 2011 14:57:41 +0000 The whole-genome analysis of two Tasmanian devils—one that died of a new contagious cancer known as Devil Facial Tumor Disease (DFTD) and one healthy animal—is at the center of a new management strategy to help prevent the extinction of this species. The post Whole-genome analysis at center of effort to save Tasmanian devil appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature biodiversity conservation conservation biology endangered species extinction mammals National Museum of Natural History
sma Members of small monkey groups more likely to fight, researchers find By insider.si.edu Published On :: Wed, 28 Dec 2011 03:13:54 +0000 Small monkey groups may win territorial disputes against larger groups because some members of the larger, invading groups avoid aggressive encounters. The post Members of small monkey groups more likely to fight, researchers find appeared first on Smithsonian Insider. Full Article Animals Anthropology Science & Nature mammals primates Tropical Research Institute
sma Small migratory birds age faster in stressful places, study reveals By insider.si.edu Published On :: Tue, 26 Feb 2013 16:20:32 +0000 Small migratory male birds that winter in a stressful environment age faster than those that winter in a high-quality habitat, according to research stemming from […] The post Small migratory birds age faster in stressful places, study reveals appeared first on Smithsonian Insider. Full Article Animals Science & Nature biodiversity birds conservation conservation biology Feather Identification Lab Migratory Bird Center migratory birds
sma SMA reveals giant star cluster in the making By insider.si.edu Published On :: Wed, 18 Dec 2013 14:36:31 +0000 W49A might be one of the best-kept secrets in our galaxy. This star-forming region shines 100 times brighter than the Orion nebula, but is so […] The post SMA reveals giant star cluster in the making appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian galaxies Smithsonian Astrophysical Observatory
sma Mismatched Twin Stars Spotted in the Delivery Room By insider.si.edu Published On :: Fri, 13 Feb 2015 13:18:31 +0000 The majority of stars in our galaxy come in pairs. In particular, the most massive stars usually have a companion. These fraternal twins tend to […] The post Mismatched Twin Stars Spotted in the Delivery Room appeared first on Smithsonian Insider. Full Article Science & Nature Space Spotlight astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory
sma As Stars Form, Magnetic Fields Influence Regions Big and Small By insider.si.edu Published On :: Mon, 30 Mar 2015 15:57:07 +0000 Stars form when gravity pulls together material within giant clouds of gas and dust. But gravity isn’t the only force at work. Both turbulence and […] The post As Stars Form, Magnetic Fields Influence Regions Big and Small appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory
sma Miniaturized GPS Tags Allow Tracking of Small Songbirds for first time By insider.si.edu Published On :: Mon, 15 Jun 2015 12:10:02 +0000 For the first time, researchers at the Smithsonian Conservation Biology Institute’s Migratory Bird Center have accurately tracked small migratory ovenbirds (Seiurus aurocapilla) to their tropical […] The post Miniaturized GPS Tags Allow Tracking of Small Songbirds for first time appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature birds Migratory Bird Center migratory birds technology
sma Structure of P46, an immunodominant surface protein from Mycoplasma hyopneumoniae: interaction with a monoclonal antibody By scripts.iucr.org Published On :: 2020-04-15 Mycoplasma hyopneumoniae is a prokaryotic pathogen that colonizes the respiratory ciliated epithelial cells in swine. Infected animals suffer respiratory lesions, causing major economic losses in the porcine industry. Characterization of the immunodominant membrane-associated proteins from M. hyopneumoniae may be instrumental in the development of new therapeutic approaches. Here, the crystal structure of P46, one of the main surface-antigen proteins, from M. hyopneumoniae is presented and shows N- and C-terminal α/β domains connected by a hinge. The structures solved in this work include a ligand-free open form of P46 (3.1 Å resolution) and two ligand-bound structures of P46 with maltose (2.5 Å resolution) and xylose (3.5 Å resolution) in open and closed conformations, respectively. The ligand-binding site is buried in the cleft between the domains at the hinge region. The two domains of P46 can rotate with respect to each other, giving open or closed alternative conformations. In agreement with this structural information, sequence analyses show similarities to substrate-binding members of the ABC transporter superfamily, with P46 facing the extracellular side as a functional subunit. In the structure with xylose, P46 was also bound to a high-affinity (Kd = 29 nM) Fab fragment from a monoclonal antibody, allowing the characterization of a structural epitope in P46 that exclusively involves residues from the C-terminal domain. The Fab structure in the complex with P46 shows only small conformational rearrangements in the six complementarity-determining regions (CDRs) with respect to the unbound Fab (the structure of which is also determined in this work at 1.95 Å resolution). The structural information that is now available should contribute to a better understanding of sugar nutrient intake by M. hyopneumoniae. This information will also allow the design of protocols and strategies for the generation of new vaccines against this important swine pathogen. Full Article text
sma Sirtuin-1 regulates organismal growth by altering feeding behavior and intestinal morphology in planarians [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-07T06:45:08-07:00 Benjamin Ziman, Peter Karabinis, Paul Barghouth, and Nestor J. OviedoNutrient availability upon feeding leads to an increase in body size in the planarian Schmidtea mediterranea. However, it remains unclear how food consumption integrates with cell division at the organismal level. Here we show that Sirtuins is evolutionarily conserved in planarians and specifically demonstrate that Sirtuin-1 (Smed-Sirt-1) regulates organismal growth by impairing both feeding behavior and intestinal morphology. Disruption of Smed-Sirt-1 with either RNAi or pharmacological treatment leads to reduced animal growth. Conversely, enhancement of Smed-Sirt-1 with resveratrol accelerates growth. Differences in growth rates were associated with changes in the amount of time to locate food and overall consumption. Furthermore, Smed-Sirt-1(RNAi) animals displayed reduced cell death and increased stem cell proliferation accompanied by impaired expression of intestinal lineage progenitors and reduced branching of the gut. Altogether, our findings indicate Sirtuin-1 is a crucial metabolic hub capable of controlling animal behavior, tissue renewal and morphogenesis of the adult intestine. Full Article
sma The small GTPase Rab32 resides on lysosomes to regulate mTORC1 signaling [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-15T01:46:56-07:00 Kristina Drizyte-Miller, Jing Chen, Hong Cao, Micah B. Schott, and Mark A. McNivenEpithelial cells such as liver-resident hepatocytes rely heavily on the Rab family of small GTPases to perform membrane trafficking events that dictate cell physiology and metabolism. Not surprisingly, disruption of several Rabs can manifest in metabolic diseases or cancer. Rab32 is expressed in many secretory epithelial cells but its role in cellular metabolism is virtually unknown. In this study, we find that Rab32 associates with lysosomes and regulates proliferation and cell size of Hep3B hepatoma and HeLa cells. Specifically, we identify that Rab32 supports mTORC1 signaling under basal and amino acid stimulated conditions. Consistent with inhibited mTORC1, an increase in nuclear TFEB localization and lysosome biogenesis is also observed in Rab32-depleted cells. Finally, we find that Rab32 interacts with mTOR kinase and that loss of Rab32 reduces the association of mTOR and mTORC1 pathway proteins with lysosomes, suggesting that Rab32 regulates lysosomal mTOR trafficking. In summary, these findings suggest that Rab32 functions as a novel regulator of cellular metabolism through supporting mTORC1 signaling. Full Article
sma Windows smartphone WiFI phone options? By www.bleepingcomputer.com Published On :: 2016-09-03T13:59:25-05:00 Full Article
sma How do you dismantle a dinosaur? By insider.si.edu Published On :: Thu, 07 Aug 2014 12:58:03 +0000 The National Museum of Natural History in Washington, D.C., has closed its Dinosaur Hall for a five-year renovation. But before the overhaul can begin, the […] The post How do you dismantle a dinosaur? appeared first on Smithsonian Insider. Full Article Dinosaurs & Fossils Science & Nature Video dinosaurs
sma Why do smartphones always get better features than MP3 players? By www.bleepingcomputer.com Published On :: 2016-01-02T11:43:16-05:00 Full Article
sma The small whorled pogonia By insider.si.edu Published On :: Tue, 17 May 2011 16:49:41 +0000 The small-whorled pogonia is a plain, endangered orchid that inhabits the hollows of Virginia, and survives only in collaboration with a particular type of fungus […] The post The small whorled pogonia appeared first on Smithsonian Insider. Full Article Plants Research News Science & Nature Spotlight conservation biology endangered species Smithsonian Environmental Research Center
sma Small-Whorled Pogonia: Endangered Orchid on the Edge By insider.si.edu Published On :: Fri, 07 Sep 2012 14:32:13 +0000 Small-Whorled Pogonia: Endangered Orchid on the Edge. The small-whorled pogonia (Isotria medeoloides) is endangered 16 of the 20 states where it still appears, earning it the title "rarest orchid east of the Mississippi." The post Small-Whorled Pogonia: Endangered Orchid on the Edge appeared first on Smithsonian Insider. Full Article Plants Science & Nature Video Chesapeake Bay climate change conservation conservation biology endangered species orchids Smithsonian Environmental Research Center
sma Of mice and macchiato: Bird Friendly coffee gives a paw-up to small mammals as well By insider.si.edu Published On :: Wed, 01 Mar 2017 14:47:09 +0000 Finding a mouse in your morning coffee might give you an unwelcome jolt, but there’s a strong connection between small mammals, birds and the plantations […] The post Of mice and macchiato: Bird Friendly coffee gives a paw-up to small mammals as well appeared first on Smithsonian Insider. Full Article Animals Plants Research News Science & Nature birds endangered species mammals Migratory Bird Center Smithsonian Conservation Biology Institute Smithsonian's National Zoo
sma Obtaining the best results: aspects of data collection, model finalization and interpretation of results in small-molecule crystal-structure determination By journals.iucr.org Published On :: This article aims to encourage practitioners, young and seasoned, by enhancing their structure-determination toolboxes with a selection of tips and tricks on recognizing and handling aspects of data collection, structure modelling and refinement, and the interpretation of results. Full Article text
sma Anomalous small viral shells and simplest polyhedra with icosahedral symmetry: the rhombic triacontahedron case By scripts.iucr.org Published On :: 2019-01-01 The development of antiviral strategies requires a clear understanding of the principles that control the protein arrangements in viral shells. Considered here are those capsids that violate the paradigmatic Caspar and Klug (CK) model, and it is shown that the important structural features of such anomalous shells from the Picobirnaviridae, Flaviviridae and Leviviridae families can be revealed by models in the form of spherical icosahedral packings of equivalent rhombic structural units (SUs). These SUs are composed of protein dimers forming the investigated capsids which, as shown here, are based on the rhombic triacontahedron (RT) geometry. How to modify the original CK approach in order to make it compatible with the considered rhombic tessellations of a sphere is also discussed. Analogies between capsids self-assembled from dimers and trimers are demonstrated. This analysis reveals the principles controlling the localization of receptor proteins (which recognize the host cell) on the capsid surface. Full Article text
sma Obtaining the best results: aspects of data collection, model finalization and interpretation of results in small-molecule crystal-structure determination By scripts.iucr.org Published On :: 2020-05-01 In small-molecule single-crystal structure determination, we now have at our disposal an inspiring range of fantastic diffractometers with better, brighter sources, and faster, more sensitive detectors. Faster and more powerful computers provide integrated tools and software with impressive graphical user interfaces. Yet these tools can lead to the temptation not to check the work thoroughly and one can too easily overlook tell-tale signs that something might be amiss in a structure determination; validation with checkCIF is not always revealing. This article aims to encourage practitioners, young and seasoned, by enhancing their structure-determination toolboxes with a selection tips and tricks on recognizing and handling aspects that one should constantly be aware of. Topics include a pitfall when setting up data collections, the usefulness of reciprocal lattice layer images, processing twinned data, tips for disorder modelling and the use of restraints, ensuring hydrogen atoms are added to a model correctly, validation beyond checkCIF, and the derivation and interpretation of the final results. Full Article text
sma SmartPesa accepted into Mastercard's Start Path By feedproxy.google.com Published On :: Fri, 08 May 2020 15:37:00 +0200 Singapore-based PSP SmartPesa has announced its acceptance... Full Article
sma The small GTPase Rab32 resides on lysosomes to regulate mTORC1 signaling By jcs.biologists.org Published On :: 2020-04-15 Kristina Drizyte-MillerApr 15, 2020; 0:jcs.236661v1-jcs.236661Articles Full Article
sma Squaring the EMC - how promoting membrane protein biogenesis impacts cellular functions and organismal homeostasis By jcs.biologists.org Published On :: 2020-04-24 Norbert VolkmarApr 24, 2020; 133:jcs243519-jcs243519REVIEW Full Article