control Childhood Self-Control Linked to Better Job Prospects Later in Life By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Childhood Self-Control Linked to Better Job Prospects Later in LifeCategory: Health NewsCreated: 4/24/2015 12:00:00 AMLast Editorial Review: 4/27/2015 12:00:00 AM Full Article
control Seizure Control Eases Life for Young Adults With Epilepsy By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Seizure Control Eases Life for Young Adults With EpilepsyCategory: Health NewsCreated: 4/28/2017 12:00:00 AMLast Editorial Review: 5/1/2017 12:00:00 AM Full Article
control AHA News: More Intense Blood Pressure Control May Lower Irregular Heartbeat Risk By www.medicinenet.com Published On :: Tue, 5 May 2020 00:00:00 PDT Title: AHA News: More Intense Blood Pressure Control May Lower Irregular Heartbeat RiskCategory: Health NewsCreated: 5/4/2020 12:00:00 AMLast Editorial Review: 5/5/2020 12:00:00 AM Full Article
control Blood Sugar Control May Aid Stroke Recovery in Diabetes Patients By www.medicinenet.com Published On :: Tue, 31 Mar 2020 00:00:00 PDT Title: Blood Sugar Control May Aid Stroke Recovery in Diabetes PatientsCategory: Health NewsCreated: 3/30/2020 12:00:00 AMLast Editorial Review: 3/31/2020 12:00:00 AM Full Article
control Birth Control Options (Types and Side Effects) By www.medicinenet.com Published On :: Fri, 10 Apr 2020 00:00:00 PDT Title: Birth Control Options (Types and Side Effects)Category: Diseases and ConditionsCreated: 9/13/1999 12:00:00 AMLast Editorial Review: 4/10/2020 12:00:00 AM Full Article
control Birth Control Pill vs. Shot (Depo-Provera): Similarities and Differences By www.medicinenet.com Published On :: Mon, 13 Apr 2020 00:00:00 PDT Title: Birth Control Pill vs. Shot (Depo-Provera): Similarities and DifferencesCategory: Diseases and ConditionsCreated: 6/15/2017 12:00:00 AMLast Editorial Review: 4/13/2020 12:00:00 AM Full Article
control Birth Control Pills (List of Oral Contraceptives and Side Effects) By www.medicinenet.com Published On :: Thu, 30 Jan 2020 00:00:00 PDT Title: Birth Control Pills (List of Oral Contraceptives and Side Effects)Category: MedicationsCreated: 12/31/1997 12:00:00 AMLast Editorial Review: 1/30/2020 12:00:00 AM Full Article
control Erratum for Townsend et al., "A Master Regulator of Bacteroides thetaiotaomicron Gut Colonization Controls Carbohydrate Utilization and an Alternative Protein Synthesis Factor" By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 Full Article
control Feedback Control of a Two-Component Signaling System by an Fe-S-Binding Receiver Domain By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT Two-component signaling systems (TCSs) function to detect environmental cues and transduce this information into a change in transcription. In its simplest form, TCS-dependent regulation of transcription entails phosphoryl-transfer from a sensory histidine kinase to its cognate DNA-binding receiver protein. However, in certain cases, auxiliary proteins may modulate TCSs in response to secondary environmental cues. Caulobacter crescentus FixT is one such auxiliary regulator. FixT is composed of a single receiver domain and functions as a feedback inhibitor of the FixL-FixJ (FixLJ) TCS, which regulates the transcription of genes involved in adaptation to microaerobiosis. We sought to define the impact of fixT on Caulobacter cell physiology and to understand the molecular mechanism by which FixT represses FixLJ signaling. fixT deletion results in excess production of porphyrins and premature entry into stationary phase, demonstrating the importance of feedback inhibition of the FixLJ signaling system. Although FixT is a receiver domain, it does not affect dephosphorylation of the oxygen sensor kinase FixL or phosphoryl-transfer from FixL to its cognate receiver FixJ. Rather, FixT represses FixLJ signaling by inhibiting the FixL autophosphorylation reaction. We have further identified a 4-cysteine motif in Caulobacter FixT that binds an Fe-S cluster and protects the protein from degradation by the Lon protease. Our data support a model in which the oxidation of this Fe-S cluster promotes the degradation of FixT in vivo. This proteolytic mechanism facilitates clearance of the FixT feedback inhibitor from the cell under normoxia and resets the FixLJ system for a future microaerobic signaling event. IMPORTANCE Two-component signal transduction systems (TCSs) are broadly conserved in the bacterial kingdom and generally contain two molecular components, a sensor histidine kinase and a receiver protein. Sensor histidine kinases alter their phosphorylation state in direct response to a physical or chemical cue, whereas receiver proteins "receive" the phosphoryl group from the kinase to regulate a change in cell physiology. We have discovered that a single-domain receiver protein, FixT, binds an Fe-S cluster and controls Caulobacter heme homeostasis though its function as a negative-feedback regulator of the oxygen sensor kinase FixL. We provide evidence that the Fe-S cluster protects FixT from Lon-dependent proteolysis in the cell and endows FixT with the ability to function as a second, autonomous oxygen/redox sensor in the FixL-FixJ signaling pathway. This study introduces a novel mechanism of regulated TCS feedback control by an Fe-S-binding receiver domain. Full Article
control Evolution of Host Specificity by Malaria Parasites through Altered Mechanisms Controlling Genome Maintenance By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT The protozoan parasites that cause malaria infect a wide variety of vertebrate hosts, including birds, reptiles, and mammals, and the evolutionary pressures inherent to the host-parasite relationship have profoundly shaped the genomes of both host and parasite. Here, we report that these selective pressures have resulted in unexpected alterations to one of the most basic aspects of eukaryotic biology, the maintenance of genome integrity through DNA repair. Malaria parasites that infect humans continuously generate genetic diversity within their antigen-encoding gene families through frequent ectopic recombination between gene family members, a process that is a crucial feature of the persistence of malaria globally. The continuous generation of antigen diversity ensures that different parasite isolates are antigenically distinct, thus preventing extensive cross-reactive immunity and enabling parasites to maintain stable transmission within human populations. However, the molecular basis of the recombination between gene family members is not well understood. Through computational analyses of the antigen-encoding, multicopy gene families of different Plasmodium species, we report the unexpected observation that malaria parasites that infect rodents do not display the same degree of antigen diversity as observed in Plasmodium falciparum and appear to undergo significantly less ectopic recombination. Using comparative genomics, we also identify key molecular components of the diversification process, thus shedding new light on how malaria parasites balance the maintenance of genome integrity with the requirement for continuous genetic diversification. IMPORTANCE Malaria remains one of the most prevalent and deadly infectious diseases of the developing world, causing approximately 228 million clinical cases and nearly half a million deaths annually. The disease is caused by protozoan parasites of the genus Plasmodium, and of the five species capable of infecting humans, infections with P. falciparum are the most severe. In addition to the parasites that infect people, there are hundreds of additional species that infect birds, reptiles, and other mammals, each exquisitely evolved to meet the specific challenges inherent to survival within their respective hosts. By comparing the unique strategies that each species has evolved, key insights into host-parasite interactions can be gained, including discoveries regarding the pathogenesis of human disease. Here, we describe the surprising observation that closely related parasites with different hosts have evolved remarkably different methods for repairing their genomes. This observation has important implications for the ability of parasites to maintain chronic infections and for the development of host immunity. Full Article
control Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-{beta}-Lactamase Inhibitors for Controlling Bacterial Carbapenem Resistance By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT Production of metallo-β-lactamases (MBLs), which hydrolyze carbapenems, is a cause of carbapenem resistance in Enterobacteriaceae. Development of effective inhibitors for MBLs is one approach to restore carbapenem efficacy in carbapenem-resistant Enterobacteriaceae (CRE). We report here that sulfamoyl heteroarylcarboxylic acids (SHCs) can competitively inhibit the globally spreading and clinically relevant MBLs (i.e., IMP-, NDM-, and VIM-type MBLs) at nanomolar to micromolar orders of magnitude. Addition of SHCs restored meropenem efficacy against 17/19 IMP-type and 7/14 NDM-type MBL-producing Enterobacteriaceae to satisfactory clinical levels. SHCs were also effective against IMP-type MBL-producing Acinetobacter spp. and engineered Escherichia coli strains overproducing individual minor MBLs (i.e., TMB-2, SPM-1, DIM-1, SIM-1, and KHM-1). However, SHCs were less effective against MBL-producing Pseudomonas aeruginosa. Combination therapy with meropenem and SHCs successfully cured mice infected with IMP-1-producing E. coli and dually NDM-1/VIM-1-producing Klebsiella pneumoniae clinical isolates. X-ray crystallographic analyses revealed the inhibition mode of SHCs against MBLs; the sulfamoyl group of SHCs coordinated to two zinc ions, and the carboxylate group coordinated to one zinc ion and bound to positively charged amino acids Lys224/Arg228 conserved in MBLs. Preclinical testing revealed that the SHCs showed low toxicity in cell lines and mice and high stability in human liver microsomes. Our results indicate that SHCs are promising lead compounds for inhibitors of MBLs to combat MBL-producing CRE. IMPORTANCE Carbapenem antibiotics are the last resort for control of severe infectious diseases, bloodstream infections, and pneumonia caused by Gram-negative bacteria, including Enterobacteriaceae. However, carbapenem-resistant Enterobacteriaceae (CRE) strains have spread globally and are a critical concern in clinical settings because CRE infections are recognized as a leading cause of increased mortality among hospitalized patients. Most CRE produce certain kinds of serine carbapenemases (e.g., KPC- and GES-type β-lactamases) or metallo-β-lactamases (MBLs), which can hydrolyze carbapenems. Although effective MBL inhibitors are expected to restore carbapenem efficacy against MBL-producing CRE, no MBL inhibitor is currently clinically available. Here, we synthesized 2,5-diethyl-1-methyl-4-sulfamoylpyrrole-3-carboxylic acid (SPC), which is a potent inhibitor of MBLs. SPC is a remarkable lead compound for clinically useful MBL inhibitors and can potentially provide a considerable benefit to patients receiving treatment for lethal infectious diseases caused by MBL-producing CRE. Full Article
control A MicroRNA Network Controls Legionella pneumophila Replication in Human Macrophages via LGALS8 and MX1 By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT Legionella pneumophila is an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections. Several pathogens have been shown to exploit the host miRNA machinery to their advantage. We therefore hypothesize that macrophage miRNAs exert positive or negative control over Legionella intracellular replication. We found significant regulation of 85 miRNAs in human macrophages upon L. pneumophila infection. Chromatin immunoprecipitation and sequencing revealed concordant changes of histone acetylation at the putative promoters. Interestingly, a trio of miRNAs (miR-125b, miR-221, and miR-579) was found to significantly affect intracellular L. pneumophila replication in a cooperative manner. Using proteome-analysis, we pinpointed this effect to a concerted downregulation of galectin-8 (LGALS8), DExD/H-box helicase 58 (DDX58), tumor protein P53 (TP53), and then MX dynamin-like GTPase 1 (MX1) by the three miRNAs. In summary, our results demonstrate a new miRNA-controlled immune network restricting Legionella replication in human macrophages. IMPORTANCE Cases of Legionella pneumophila pneumonia occur worldwide, with potentially fatal outcome. When causing human disease, Legionella injects a plethora of virulence factors to reprogram macrophages to circumvent immune defense and create a replication niche. By analyzing Legionella-induced changes in miRNA expression and genomewide chromatin modifications in primary human macrophages, we identified a cell-autonomous immune network restricting Legionella growth. This network comprises three miRNAs governing expression of the cytosolic RNA receptor DDX58/RIG-I, the tumor suppressor TP53, the antibacterial effector LGALS8, and MX1, which has been described as an antiviral factor. Our findings for the first time link TP53, LGALS8, DDX58, and MX1 in one miRNA-regulated network and integrate them into a functional node in the defense against L. pneumophila. Full Article
control Flagellum-Mediated Mechanosensing and RflP Control Motility State of Pathogenic Escherichia coli By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression. In this study, we show that gene regulation by motility-dependent mechanosensing is common among pathogenic Escherichia coli strains. This regulatory mechanism requires flagellar rotation, and it enables pathogenic E. coli to repress flagellar genes at low loads in liquid culture, while activating motility in porous medium (soft agar) or upon surface contact. It also controls several other cellular functions, including metabolism and signaling. The mechanosensing response in pathogenic E. coli depends on the negative regulator of motility, RflP (YdiV), which inhibits basal expression of flagellar genes in liquid. While no conditional inhibition of flagellar gene expression in liquid and therefore no upregulation in porous medium was observed in the wild-type commensal or laboratory strains of E. coli, mechanosensitive regulation could be recovered by overexpression of RflP in the laboratory strain. We hypothesize that this conditional activation of flagellar genes in pathogenic E. coli reflects adaptation to the dual role played by flagella and motility during infection. IMPORTANCE Flagella and motility are widespread virulence factors among pathogenic bacteria. Motility enhances the initial host colonization, but the flagellum is a major antigen targeted by the host immune system. Here, we demonstrate that pathogenic E. coli strains employ a mechanosensory function of the flagellar motor to activate flagellar expression under high loads, while repressing it in liquid culture. We hypothesize that this mechanism allows pathogenic E. coli to regulate its motility dependent on the stage of infection, activating flagellar expression upon initial contact with the host epithelium, when motility is beneficial, but reducing it within the host to delay the immune response. Full Article
control The WblC/WhiB7 Transcription Factor Controls Intrinsic Resistance to Translation-Targeting Antibiotics by Altering Ribosome Composition By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Bacteria that encounter antibiotics can efficiently change their physiology to develop resistance. This intrinsic antibiotic resistance is mediated by multiple pathways, including a regulatory system(s) that activates specific genes. In some Streptomyces and Mycobacterium spp., the WblC/WhiB7 transcription factor is required for intrinsic resistance to translation-targeting antibiotics. Wide conservation of WblC/WhiB7 within Actinobacteria indicates a critical role of WblC/WhiB7 in developing resistance to such antibiotics. Here, we identified 312 WblC target genes in Streptomyces coelicolor, a model antibiotic-producing bacterium, using a combined analysis of RNA sequencing and chromatin immunoprecipitation sequencing. Interestingly, WblC controls many genes involved in translation, in addition to previously identified antibiotic resistance genes. Moreover, WblC promotes translation rate during antibiotic stress by altering the ribosome-associated protein composition. Our genome-wide analyses highlight a previously unappreciated antibiotic resistance mechanism that modifies ribosome composition and maintains the translation rate in the presence of sub-MIC levels of antibiotics. IMPORTANCE The emergence of antibiotic-resistant bacteria is one of the top threats in human health. Therefore, we need to understand how bacteria acquire resistance to antibiotics and continue growth even in the presence of antibiotics. Streptomyces coelicolor, an antibiotic-producing soil bacterium, intrinsically develops resistance to translation-targeting antibiotics. Intrinsic resistance is controlled by the WblC/WhiB7 transcription factor that is highly conserved within Actinobacteria, including Mycobacterium tuberculosis. Here, identification of the WblC/WhiB7 regulon revealed that WblC/WhiB7 controls ribosome maintenance genes and promotes translation in the presence of antibiotics by altering the composition of ribosome-associated proteins. Also, the WblC-mediated ribosomal alteration is indeed required for resistance to translation-targeting antibiotics. This suggests that inactivation of the WblC/WhiB7 regulon could be a potential target to treat antibiotic-resistant mycobacteria. Full Article
control Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT The capacity of Candida albicans to reversibly change its morphology between yeast and filamentous stages is crucial for its virulence. Formation of hyphae correlates with the upregulation of genes ALS3 and ECE1, which are involved in pathogenicity processes such as invasion, iron acquisition, and host cell damage. The global repressor Tup1 and its cofactor Nrg1 are considered to be the main antagonists of hyphal development in C. albicans. However, our experiments revealed that Tup1, but not Nrg1, was required for full expression of ALS3 and ECE1. In contrast to NRG1, overexpression of TUP1 was found to inhibit neither filamentous growth nor transcription of ALS3 and ECE1. In addition, we identified the transcription factor Ahr1 as being required for full expression of both genes. A hyperactive version of Ahr1 bound directly to the promoters of ALS3 and ECE1 and induced their transcription even in the absence of environmental stimuli. This regulation worked even in the absence of the crucial hyphal growth regulators Cph1 and Efg1 but was dependent on the presence of Tup1. Overall, our results show that Ahr1 and Tup1 are key contributors in the complex regulation of virulence-associated genes in the different C. albicans morphologies. IMPORTANCE Candida albicans is a major human fungal pathogen and the leading cause of systemic Candida infections. In recent years, Als3 and Ece1 were identified as important factors for fungal virulence. Transcription of both corresponding genes is closely associated with hyphal growth. Here, we describe how Tup1, normally a global repressor of gene expression as well as of filamentation, and the transcription factor Ahr1 contribute to full expression of ALS3 and ECE1 in C. albicans hyphae. Both regulators are required for high mRNA amounts of the two genes to ensure functional relevant protein synthesis and localization. These observations identified a new aspect of regulation in the complex transcriptional control of virulence-associated genes in C. albicans. Full Article
control Pathogen Genetic Control of Transcriptome Variation in the Arabidopsis thaliana - Botrytis cinerea Pathosystem [Genetics of Complex Traits] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 In plant–pathogen relations, disease symptoms arise from the interaction of the host and pathogen genomes. Host–pathogen functional gene interactions are well described, whereas little is known about how the pathogen genetic variation modulates both organisms’ transcriptomes. To model and generate hypotheses on a generalist pathogen control of gene expression regulation, we used the Arabidopsis thaliana–Botrytis cinerea pathosystem and the genetic diversity of a collection of 96 B. cinerea isolates. We performed expression-based genome-wide association (eGWA) for each of 23,947 measurable transcripts in Arabidopsis (host), and 9267 measurable transcripts in B. cinerea (pathogen). Unlike other eGWA studies, we detected a relative absence of locally acting expression quantitative trait loci (cis-eQTL), partly caused by structural variants and allelic heterogeneity hindering their identification. This study identified several distantly acting trans-eQTL linked to eQTL hotspots dispersed across Botrytis genome that altered only Botrytis transcripts, only Arabidopsis transcripts, or transcripts from both species. Gene membership in the trans-eQTL hotspots suggests links between gene expression regulation and both known and novel virulence mechanisms in this pathosystem. Genes annotated to these hotspots provide potential targets for blocking manipulation of the host response by this ubiquitous generalist necrotrophic pathogen. Full Article
control Development of the Proximal-Anterior Skeletal Elements in the Mouse Hindlimb Is Regulated by a Transcriptional and Signaling Network Controlled by Sall4 [Developmental and Behavioral Genetics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 The vertebrate limb serves as an experimental paradigm to study mechanisms that regulate development of the stereotypical skeletal elements. In this study, we simultaneously inactivated Sall4 using Hoxb6Cre and Plzf in mouse embryos, and found that their combined function regulates development of the proximal-anterior skeletal elements in hindlimbs. The Sall4; Plzf double knockout exhibits severe defects in the femur, tibia, and anterior digits, distinct defects compared to other allelic series of Sall4; Plzf. We found that Sall4 regulates Plzf expression prior to hindlimb outgrowth. Further expression analysis indicated that Hox10 genes and GLI3 are severely downregulated in the Sall4; Plzf double knockout hindlimb bud. In contrast, PLZF expression is reduced but detectable in Sall4; Gli3 double knockout limb buds, and SALL4 is expressed in the Plzf; Gli3 double knockout limb buds. These results indicate that Plzf, Gli3, and Hox10 genes downstream of Sall4, regulate femur and tibia development. In the autopod, we show that Sall4 negatively regulates Hedgehog signaling, which allows for development of the most anterior digit. Collectively, our study illustrates genetic systems that regulate development of the proximal-anterior skeletal elements in hindlimbs. Full Article
control Pits and CtBP Control Tissue Growth in Drosophila melanogaster with the Hippo Pathway Transcription Repressor Tgi [Developmental and Behavioral Genetics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 The Hippo pathway is an evolutionarily conserved signaling network that regulates organ size, cell fate, and tumorigenesis. In the context of organ size control, the pathway incorporates a large variety of cellular cues, such as cell polarity and adhesion, into an integrated transcriptional response. The central Hippo signaling effector is the transcriptional coactivator Yorkie, which controls gene expression in partnership with different transcription factors, most notably Scalloped. When it is not activated by Yorkie, Scalloped can act as a repressor of transcription, at least in part due to its interaction with the corepressor protein Tgi. The mechanism by which Tgi represses transcription is incompletely understood, and therefore we sought to identify proteins that potentially operate together with Tgi. Using an affinity purification and mass-spectrometry approach we identified Pits and CtBP as Tgi-interacting proteins, both of which have been linked to transcriptional repression. Both Pits and CtBP were required for Tgi to suppress the growth of the Drosophila melanogaster eye and CtBP loss suppressed the undergrowth of yorkie mutant eye tissue. Furthermore, as reported previously for Tgi, overexpression of Pits repressed transcription of Hippo pathway target genes. These findings suggest that Tgi might operate together with Pits and CtBP to repress transcription of genes that normally promote tissue growth. The human orthologs of Tgi, CtBP, and Pits (VGLL4, CTBP2, and IRF2BP2) have previously been shown to physically and functionally interact to control transcription, implying that the mechanism by which these proteins control transcriptional repression is conserved throughout evolution. Full Article
control Rif1 Functions in a Tissue-Specific Manner To Control Replication Timing Through Its PP1-Binding Motif [Genome Integrity and Transmission] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Replication initiation in eukaryotic cells occurs asynchronously throughout S phase, yielding early- and late-replicating regions of the genome, a process known as replication timing (RT). RT changes during development to ensure accurate genome duplication and maintain genome stability. To understand the relative contributions that cell lineage, cell cycle, and replication initiation regulators have on RT, we utilized the powerful developmental systems available in Drosophila melanogaster. We generated and compared RT profiles from mitotic cells of different tissues and from mitotic and endocycling cells of the same tissue. Our results demonstrate that cell lineage has the largest effect on RT, whereas switching from a mitotic to an endoreplicative cell cycle has little to no effect on RT. Additionally, we demonstrate that the RT differences we observed in all cases are largely independent of transcriptional differences. We also employed a genetic approach in these same cell types to understand the relative contribution the eukaryotic RT control factor, Rif1, has on RT control. Our results demonstrate that Rif1 can function in a tissue-specific manner to control RT. Importantly, the Protein Phosphatase 1 (PP1) binding motif of Rif1 is essential for Rif1 to regulate RT. Together, our data support a model in which the RT program is primarily driven by cell lineage and is further refined by Rif1/PP1 to ultimately generate tissue-specific RT programs. Full Article
control Genome Topology Control of Antigen Receptor Gene Assembly [BRIEF REVIEWS] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 The past decade has increased our understanding of how genome topology controls RAG endonuclease-mediated assembly of lymphocyte AgR genes. New technologies have illuminated how the large IgH, Ig, TCRα/, and TCRβ loci fold into compact structures that place their numerous V gene segments in similar three-dimensional proximity to their distal recombination center composed of RAG-bound (D)J gene segments. Many studies have shown that CTCF and cohesin protein–mediated chromosome looping have fundamental roles in lymphocyte lineage- and developmental stage–specific locus compaction as well as broad usage of V segments. CTCF/cohesin–dependent loops have also been shown to direct and restrict RAG activity within chromosome domains. We summarize recent work in elucidating molecular mechanisms that govern three-dimensional chromosome organization and in investigating how these dynamic mechanisms control V(D)J recombination. We also introduce remaining questions for how CTCF/cohesin–dependent and –independent genome architectural mechanisms might regulate compaction and recombination of AgR loci. Full Article
control The Microbiota Contributes to the Control of Highly Pathogenic H5N9 Influenza Virus Replication in Ducks [Pathogenesis and Immunity] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Ducks usually show little or no clinical signs following highly pathogenic avian influenza virus infection. In order to analyze whether the microbiota could contribute to the control of influenza virus replication in ducks, we used a broad-spectrum oral antibiotic treatment to deplete the microbiota before infection with a highly pathogenic H5N9 avian influenza virus. Antibiotic-treated ducks and nontreated control ducks did not show any clinical signs following H5N9 virus infection. We did not detect any significant difference in virus titers neither in the respiratory tract nor in the brain nor spleen. However, we found that antibiotic-treated H5N9 virus-infected ducks had significantly increased intestinal virus excretion at days 3 and 5 postinfection. This was associated with a significantly decreased antiviral immune response in the intestine of antibiotic-treated ducks. Our findings highlight the importance of an intact microbiota for an efficient control of avian influenza virus replication in ducks. IMPORTANCE Ducks are frequently infected with avian influenza viruses belonging to multiple subtypes. They represent an important reservoir species of avian influenza viruses, which can occasionally be transmitted to other bird species or mammals, including humans. Ducks thus have a central role in the epidemiology of influenza virus infection. Importantly, ducks usually show little or no clinical signs even following infection with a highly pathogenic avian influenza virus. We provide evidence that the microbiota contributes to the control of influenza virus replication in ducks by modulating the antiviral immune response. Ducks are able to control influenza virus replication more efficiently when they have an intact intestinal microbiota. Therefore, maintaining a healthy microbiota by limiting perturbations to its composition should contribute to the prevention of avian influenza virus spread from the duck reservoir. Full Article
control Ammonia emission abatement does not fully control reduced forms of nitrogen deposition [Environmental Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Human activities and population growth have increased the natural burden of reactive nitrogen (N) in the environment. Excessive N deposition on Earth’s surface leads to adverse feedbacks on ecosystems and humans. Similar to that of air pollution, emission control is recognized as an efficient means to control acid deposition. Control... Full Article
control Muscleblind-like 2 controls the hypoxia response of cancer cells [ARTICLE] By rnajournal.cshlp.org Published On :: 2020-04-16T06:30:22-07:00 Hypoxia is a hallmark of solid cancers, supporting proliferation, angiogenesis, and escape from apoptosis. There is still limited understanding of how cancer cells adapt to hypoxic conditions and survive. We analyzed transcriptome changes of human lung and breast cancer cells under chronic hypoxia. Hypoxia induced highly concordant changes in transcript abundance, but divergent splicing responses, underlining the cell type-specificity of alternative splicing programs. While RNA-binding proteins were predominantly reduced, hypoxia specifically induced muscleblind-like protein 2 (MBNL2). Strikingly, MBNL2 induction was critical for hypoxia adaptation by controlling the transcript abundance of hypoxia response genes, such as vascular endothelial growth factor A (VEGFA). MBNL2 depletion reduced the proliferation and migration of cancer cells, demonstrating an important role of MBNL2 as cancer driver. Hypoxia control is specific for MBNL2 and not shared by its paralog MBNL1. Thus, our study revealed MBNL2 as central mediator of cancer cell responses to hypoxia, regulating the expression and alternative splicing of hypoxia-induced genes. Full Article
control Probiotics for the Prevention of Ventilator-Associated Pneumonia: A Meta-Analysis of Randomized Controlled Trials By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Ventilator-associated pneumonia (VAP) is a common and serious complication of mechanical ventilation. We conducted a meta-analysis of published randomized controlled trials to evaluate the efficacy and safety of probiotics for VAP prevention in patients who received mechanical ventilation.METHODS:We searched a number of medical literature databases to identify randomized controlled trials that compared probiotics with controls for VAP prevention. The results were expressed as odds ratios (OR) or mean differences with accompanying 95% CIs. Study-level data were pooled by using a random-effects model. Data syntheses were accomplished by using statistical software.RESULTS:Fourteen studies that involved 1,975 subjects met our inclusion criteria. Probiotic administration was associated with a reduction in VAP incidence among all 13 studies included in the meta-analysis (OR 0.62, 95% CI 0.45–0.85; P = .003; I2 = 43%) but not among the 6 double-blinded studies (OR 0.72, 95% CI 0.44–1.19; P = .20; I2 = 55%). We found a shorter duration of antibiotic use for VAP (mean difference −1.44, 95% CI −2.88 to −0.01; P = .048, I2 = 30%) in the probiotics group than in the control group, and the finding comes from just 2 studies. No statistically significant differences were found between the groups in terms of ICU mortality (OR 0.95, 95% CI 0.67–1.34; P = .77; I2 = 0%), ICU stay (mean difference –0.77, 95% CI –2.58 to 1.04; P = .40; I2 = 43%), duration of mechanical ventilation (mean difference –0.91, 95% CI –2.20 to 0.38; P = .17; I2 = 25%), or occurrence of diarrhea (OR 0.72, 95% CI 0.45–1.15; P = .17; I2 = 41%).CONCLUSIONS:The meta-analysis results indicated that the administration of probiotics significantly reduced the incidence of VAP. Furthermore, our findings need to be verified in large-scale, well-designed, randomized, multi-center trials. Full Article
control Circadian Clock-Controlled Drug Metabolism: Implications for Chronotherapeutics [Minireview] By dmd.aspetjournals.org Published On :: 2020-04-17T07:49:35-07:00 Dependence of drug metabolism on dosing time has long been recognized. However, only recently are the underlying mechanisms for circadian drug metabolism being clarified. Diurnal rhythmicity in expression of drug-metabolizing enzymes is believed to be a key factor determining circadian metabolism. Supporting the notion that biological rhythms are generated and maintained by the circadian clock, a number of diurnal enzymes are under the control of the circadian clock. In general, circadian clock genes generate and regulate diurnal rhythmicity in drug-metabolizing enzymes via transcriptional actions on one or two of three cis-elements (i.e., E-box, D-box, and Rev-erb response element or RAR-related orphan receptor response element). Additionally, cycling or clock-controlled nuclear receptors such as hepatocyte nuclear factor 4α and peroxisome proliferator–activated receptor are contributors to diurnal enzyme expression. These newly discovered mechanisms for each of the rhythmic enzymes are reviewed in this article. We also discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics. Our discussion is also extended to two diurnal transporters (P-glycoprotein and multidrug resistance-associated protein 2) that have an important role in drug absorption. Although the experimental evidence is lacking in metabolism-based chronoefficacy, circadian genes (e.g., Rev-erbα) as drug targets are shown to account for diurnal variability in drug efficacy. SIGNIFICANCE STATEMENT Significant progress has been made in understanding the molecular mechanisms for generation of diurnal rhythmicity in drug-metabolizing enzymes. In this article, we review the newly discovered mechanisms for each of the rhythmic enzymes and discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics. Full Article
control The tethering function of mitofusin2 controls osteoclast differentiation by modulating the Ca2+-NFATc1 axis [A2;A22] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Dynamic regulation of the mitochondrial network by mitofusins (MFNs) modulates energy production, cell survival, and many intracellular signaling events, including calcium handling. However, the relative importance of specific mitochondrial functions and their dependence on MFNs vary greatly among cell types. Osteoclasts have many mitochondria, and increased mitochondrial biogenesis and oxidative phosphorylation enhance bone resorption, but little is known about the mitochondrial network or MFNs in osteoclasts. Because expression of each MFN isoform increases with osteoclastogenesis, we conditionally deleted MFN1 and MFN2 (double conditional KO (dcKO)) in murine osteoclast precursors, finding that this increased bone mass in young female mice and abolished osteoclast precursor differentiation into mature osteoclasts in vitro. Defective osteoclastogenesis was reversed by overexpression of MFN2 but not MFN1; therefore, we generated mice lacking only MFN2 in osteoclasts. MFN2-deficient female mice had increased bone mass at 1 year and resistance to Receptor Activator of NF-κB Ligand (RANKL)-induced osteolysis at 8 weeks. To explore whether MFN-mediated tethering or mitophagy is important for osteoclastogenesis, we overexpressed MFN2 variants defective in either function in dcKO precursors and found that, although mitophagy was dispensable for differentiation, tethering was required. Because the master osteoclastogenic transcriptional regulator nuclear factor of activated T cells 1 (NFATc1) is calcium-regulated, we assessed calcium release from the endoplasmic reticulum and store-operated calcium entry and found that the latter was blunted in dcKO cells. Restored osteoclast differentiation by expression of intact MFN2 or the mitophagy-defective variant was associated with normalization of store-operated calcium entry and NFATc1 levels, indicating that MFN2 controls mitochondrion–endoplasmic reticulum tethering in osteoclasts. Full Article
control Sedimentary and tectonic controls on Lower Carboniferous (Visean) mixed carbonate-siliciclastic deposition in NE England and the Southern North Sea: implications for reservoir architecture By pg.lyellcollection.org Published On :: 2020-05-01T00:30:41-07:00 Discovery of the Breagh gas field in the Southern North Sea (SNS) has demonstrated the potential that the Lower Carboniferous (Visean, 346.7–330.9 Ma) Farne Group reservoirs have to contribute to the UK's future energy mix. New biostratigraphic correlations provide a basis to compare Asbian and Brigantian sedimentary cores from the Breagh Field and age-equivalent sediments exposed on the Northumberland Coast, which has proved critical in gaining an understanding of exploration and development opportunities. Thirteen facies associations characterize the mixed carbonate–siliciclastic system, grouped into: marine, delta front, delta shoreface, lower delta plain and upper delta plain gross depositional environments. The facies associations are interpreted as depositing in a mixed carbonate and siliciclastic fluvio-deltaic environment, and are arranged into coarsening- and cleaning-upward cycles (parasequences) bounded by flooding surfaces. Most cycles are characterized by mouth bars, distributary channels, interdistributary bays and common braided rivers, interpreted as river-dominated deltaic deposits. Some cycles include rare shoreface and tidally-influenced deposits, interpreted as river-dominated and wave- or tide-influenced deltaic deposits. The depositional processes that formed each cycle have important implications for the reservoir net/gross ratio (where this ratio indicates the proportion of sandstone beds in a cycle), thickness and lateral extent. The deltaic deposits were controlled by a combination of tectonic and eustatic (allocyclic) events and delta avulsion (autocyclic) processes, and are likely to reflect a changing tectonic regime, from extension within elongate fault-bounded basins (synrift) to passive regional thermal subsidence (post-rift). Deep incision by the Base Permian Unconformity across the Breagh Field has removed the Westphalian, Namurian and upper Visean, to leave the more prospective thicker clastic reservoirs within closure. Thematic collection: This article is part of the Under-explored plays and frontier basins of the UK continental shelf collection available at: https://www.lyellcollection.org/cc/under-explored-plays-and-frontier-basins-of-the-uk-continental-shelf Full Article
control Layering and structural inheritance controls on fault zone structure in three dimensions: a case study from the northern Molasse Basin, Switzerland By jgs.lyellcollection.org Published On :: 2020-05-04T02:10:48-07:00 Mechanical heterogeneity of a sedimentary sequence exerts a primary control on the geometry of fault zones and the proportion of offset accommodated by folding. The Wildensbuch Fault Zone in the Swiss Molasse Basin, with a maximum throw of 40 m, intersects a Mesozoic section containing a thick (120 m) clay-dominated unit (Opalinus Clay) over- and underlain by more competent limestone units. Interpretation of a 3D seismic reflection survey indicates that the fault zone formed by upward propagation of an east–west-trending basement structure, through the Mesozoic section, in response to NE–SW Miocene extension. This configuration formed an array of left-stepping normal fault segments above and below the Opalinus Clay. In cross-section a broad monoclinal fold is observed in the Opalinus Clay. Folding, however, is not ubiquitous and occurs in the Opalinus Clay where fault segments above and below are oblique to one another; where they are parallel the fault passes through the Opalinus Clay with little folding. These observations demonstrate that, even in strongly heterogeneous sequences, here a four-fold difference in both Young's modulus and cohesion between layers, the occurrence of folding may depend on the local relationship between fault geometry and applied stress field rather than rheological properties alone. Full Article
control Randomized, Placebo-Controlled, Double-Blind Phase 2 Trial Comparing the Reactogenicity and Immunogenicity of a Single Standard Dose to Those of a High Dose of CVD 103-HgR Live Attenuated Oral Cholera Vaccine, with Shanchol Inactivated Oral Vaccine as an By cvi.asm.org Published On :: 2017-12-05T08:00:30-08:00 Reactive immunization with a single-dose cholera vaccine that could rapidly (within days) protect immunologically naive individuals during virgin soil epidemics, when cholera reaches immunologically naive populations that have not experienced cholera for decades, would facilitate cholera control. One dose of attenuated Vibrio cholerae O1 classical Inaba vaccine CVD 103-HgR (Vaxchora) containing ≥2 x 108 CFU induces vibriocidal antibody seroconversion (a correlate of protection) in >90% of U.S. adults. A previous CVD 103-HgR commercial formulation required ≥2 x 109 CFU to elicit high levels of seroconversion in populations in developing countries. We compared the vibriocidal responses of Malians (individuals 18 to 45 years old) randomized to ingest a single ≥2 x 108-CFU standard dose (n = 50) or a ≥2 x 109-CFU high dose (n = 50) of PaxVax CVD 103-HgR with buffer or two doses (n = 50) of Shanchol inactivated cholera vaccine (the immunologic comparator). To maintain blinding, participants were dosed twice 2 weeks apart; CVD 103-HgR recipients ingested placebo 2 weeks before or after ingesting vaccine. Seroconversion (a ≥4-fold vibriocidal titer rise) between the baseline and 14 days after CVD 103-HgR ingestion and following the first and second doses of Shanchol were the main outcomes measured. By day 14 postvaccination, the rates of seroconversion after ingestion of a single standard dose and a high dose of CVD 103-HgR were 71.7% (33/46 participants) and 83.3% (40/48 participants), respectively. The rate of seroconversion following the first dose of Shanchol, 56.0% (28/50 participants), was significantly lower than that following the high dose of CVD 103-HgR (P = 0.003). The vibriocidal geometric mean titer (GMT) of the high dose of CVD 103-HgR exceeded the GMT of the standard dose at day 14 (214 versus 95, P = 0.045) and was ~2-fold higher than the GMT on day 7 and day 14 following the first Shanchol dose (P > 0.05). High-dose CVD 103-HgR is recommended for accelerated evaluation in developing countries to assess its efficacy and practicality in field situations. (This study has been registered at ClinicalTrials.gov under registration no. NCT02145377.) Full Article
control Risk of MS relapse after yellow fever vaccination: A self-controlled case series By nn.neurology.org Published On :: 2020-05-01T12:45:10-07:00 Objective To determine whether live-attenuated yellow fever vaccine (YFV) was associated with MS relapse, we evaluated the clinical courses of 23 patients in the year before and the year after immunization at the university hospital of Geneva, Switzerland. Methods This self-controlled retrospective cohort included adult patients with MS receiving YFV between 2014 and 2018 and defined the year before vaccination, the 3 months thereafter, and the 9 months following as the pre-exposure (PEP), exposure-risk (ERP), and postrisk (PRP) periods, respectively. The primary outcome was the relative incidence of relapse in the ERP vs the PEP. Secondary end points included the presence of new T2-weighted (T2) or T1-weighted gadolinium-positive (T1Gd+) MRI lesions. Results Of 23 patients with MS receiving YFV (20 relapsing MS and 3 primary progressive MS), 17 (74%) were women; mean age was 34 years (SD ±10); and 10 of 23 (40%) were treated with disease-modifying therapies (DMTs). Although 9 patients experienced 12 relapses in the PEP, only one experienced a relapse in the ERP; 3 other patients experienced one relapse each in the PRP. None of the 8 patients receiving natalizumab at the time of vaccination experienced relapse thereafter. In the PEP, ERP, and PRP, 18, 2, and 9 patients had new brain and/or spinal cord lesions on T2 or T1Gd + MRI, respectively. Conclusions In this cohort, YF vaccination was associated with neither an increase in MS relapse nor emergence of brain and/or spinal lesions. Further studies are warranted to confirm these findings. Classification of evidence This study provides Class IV evidence that for persons with MS, YFV may not increase relapse risk. Full Article
control Recombinase Polymerase Amplification and Lateral Flow Assay for Ultrasensitive Detection of Low-Density Plasmodium falciparum Infection from Controlled Human Malaria Infection Studies and Naturally Acquired Infections [Parasitology] By jcm.asm.org Published On :: 2020-04-23T08:00:29-07:00 Microscopy and rapid diagnostic tests (RDTs) are the main diagnostic tools for malaria but fail to detect low-density parasitemias that are important for maintaining malaria transmission. To complement existing diagnostic methods, an isothermal reverse transcription-recombinase polymerase amplification and lateral flow assay (RT-RPA) was developed. We compared the performance with that of ultrasensitive reverse transcription-quantitative PCR (uRT-qPCR) using nucleic acid extracts from blood samples (n = 114) obtained after standardized controlled human malaria infection (CHMI) with Plasmodium falciparum sporozoites. As a preliminary investigation, we also sampled asymptomatic individuals (n = 28) in an area of malaria endemicity (Lambaréné, Gabon) to validate RT-RPA and assess its performance with unprocessed blood samples (dbRT-RPA). In 114 samples analyzed from CHMI trials, the positive percent agreement to uRT-qPCR was 90% (95% confidence interval [CI], 80 to 96). The negative percent agreement was 100% (95% CI, 92 to 100). The lower limit of detection was 64 parasites/ml. In Gabon, RT-RPA was 100% accurate with asymptomatic volunteers (n = 28), while simplified dbRT-RPA showed 89% accuracy. In a subgroup analysis, RT-RPA detected 9/10 RT-qPCR-positive samples, while loop-mediated isothermal amplification (LAMP) detected 2/10. RT-RPA is a reliable diagnostic test for asymptomatic low-density infections. It is particularly useful in settings where uRT-qPCR is difficult to implement. Full Article
control Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control [RESEARCH] By genome.cshlp.org Published On :: 2020-04-27T12:09:23-07:00 Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG subunits, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy individual binding sites and have distinct ways by which they affect looping and gene expression. These findings are further supported by single-molecule localizations via direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging. Since somatic and congenital mutations of the STAG subunits are associated with cancer (STAG2) and intellectual disability syndromes with congenital abnormalities (STAG1 and STAG2), we verified STAG1-/STAG2-dependencies using human neural stem cells, hence highlighting their importance in particular disease contexts. Full Article
control Risk Assessment Approach to Microbiological Controls of Cell Therapies By journal.pda.org Published On :: 2020-04-09T09:40:03-07:00 This technology review, written by a small group of pharmaceutical microbiologists experienced in cell therapies, discussed a risk-based approach to microbiological contamination detection and control during gene and cell therapy production. Topics discussed include a brief overview of cell therapies, a risk analysis related to donor selection, cell collection and infectious agent testing, cell transformation and expansion, packaging, storage, and administration, and cell therapy microbial contamination testing and release. Full Article
control Control Strategy Approach for a Well-Characterized Vaccine Drug Product By journal.pda.org Published On :: 2020-04-09T09:40:03-07:00 Trumenba (MenB-FHbp; bivalent rLP2086), the first meningococcal serogroup B vaccine approved in the United States and subsequently approved in Europe, Canada, and Australia, is well-characterized. Pfizer devised a control strategy approach by using a simplified control strategy wheel for Trumenba based on International Council for Harmonisation (ICH) Q8 (R2), Q9, Q10, and Q11 guidelines, which provide complementary guidance on pharmaceutical development, quality risk management, quality systems, and development and manufacture of drug substances, respectively. These guidelines ensure product quality using a scientific and risk-based approach. Trumenba contains two factor H binding proteins (FHbps), one from each of the two FHbp subfamilies (A and B), adsorbed onto aluminum phosphate. Trumenba manufacturing processes are complicated by the recombinant protein expression of Subfamily A and B proteins and the nature of the drug product (suspension in syringes); the latter also introduces challenges in controlling product critical quality attributes during the development process. In such complex systems, the control strategy is critical to ensuring consistent desired product quality; it also supports the regulatory requirement of continued improvement through continuous process verification and aids regulatory filing. This article describes Pfizer's approach toward robust control strategy development, built on product and process understanding, and links control strategy to regulatory document sections and flow of controls. Specifically, an approach is presented on product quality attribute criticality determination based on safety and efficacy and on an understanding of process parameter criticality. This was achieved by studying the impact of the approach on product quality attributes to define process parameter and in-process controls. This approach is further explained through Trumenba case studies, highlighting specific quality attributes and the associated controls implemented, and provides a holistic view of controls employed for both drug substance and drug product. Full Article
control CRISPR Tools To Control Gene Expression in Bacteria [Review] By mmbr.asm.org Published On :: 2020-04-01T05:29:40-07:00 CRISPR-Cas systems have been engineered as powerful tools to control gene expression in bacteria. The most common strategy relies on the use of Cas effectors modified to bind target DNA without introducing DNA breaks. These effectors can either block the RNA polymerase or recruit it through activation domains. Here, we discuss the mechanistic details of how Cas effectors can modulate gene expression by blocking transcription initiation or acting as transcription roadblocks. CRISPR-Cas tools can be further engineered to obtain fine-tuned control of gene expression or target multiple genes simultaneously. Several caveats in using these tools have also been revealed, including off-target effects and toxicity, making it important to understand the design rules of engineered CRISPR-Cas effectors in bacteria. Alternatively, some types of CRISPR-Cas systems target RNA and could be used to block gene expression at the posttranscriptional level. Finally, we review applications of these tools in high-throughput screens and the progress and challenges in introducing CRISPR knockdown to other species, including nonmodel bacteria with industrial or clinical relevance. A deep understanding of how CRISPR-Cas systems can be harnessed to control gene expression in bacteria and build powerful tools will certainly open novel research directions. Full Article
control Effects of Continuous Glucose Monitoring on Metrics of Glycemic Control in Diabetes: A Systematic Review With Meta-analysis of Randomized Controlled Trials By care.diabetesjournals.org Published On :: 2020-04-20T12:00:33-07:00 BACKGROUND Continuous glucose monitoring (CGM) provides important information to aid in achieving glycemic targets in people with diabetes. PURPOSE We performed a meta-analysis of randomized controlled trials (RCTs) comparing CGM with usual care for parameters of glycemic control in both type 1 and type 2 diabetes. DATA SOURCES Many electronic databases were searched for articles published from inception until 30 June 2019. STUDY SELECTION We selected RCTs that assessed both changes in HbA1c and time in target range (TIR), together with time below range (TBR), time above range (TAR), and glucose variability expressed as coefficient of variation (CV). DATA EXTRACTION Data were extracted from each trial by two investigators. DATA SYNTHESIS All results were analyzed by a random effects model to calculate the weighted mean difference (WMD) with the 95% CI. We identified 15 RCTs, lasting 12–36 weeks and involving 2,461 patients. Compared with the usual care (overall data), CGM was associated with modest reduction in HbA1c (WMD –0.17%, 95% CI –0.29 to –0.06, I2 = 96.2%), increase in TIR (WMD 70.74 min, 95% CI 46.73–94.76, I2 = 66.3%), and lower TAR, TBR, and CV, with heterogeneity between studies. The increase in TIR was significant and robust independently of diabetes type, method of insulin delivery, and reason for CGM use. In preplanned subgroup analyses, real-time CGM led to the higher improvement in mean HbA1c (WMD –0.23%, 95% CI –0.36 to –0.10, P < 0.001), TIR (WMD 83.49 min, 95% CI 52.68–114.30, P < 0.001), and TAR, whereas both intermittently scanned CGM and sensor-augmented pump were associated with the greater decline in TBR. LIMITATIONS Heterogeneity was high for most of the study outcomes; all studies were sponsored by industry, had short duration, and used an open-label design. CONCLUSIONS CGM improves glycemic control by expanding TIR and decreasing TBR, TAR, and glucose variability in both type 1 and type 2 diabetes. Full Article
control Efficacy and Safety of Liraglutide 3.0 mg in Individuals With Overweight or Obesity and Type 2 Diabetes Treated With Basal Insulin: The SCALE Insulin Randomized Controlled Trial By care.diabetesjournals.org Published On :: 2020-04-20T12:00:33-07:00 OBJECTIVE Most individuals with type 2 diabetes also have obesity, and treatment with some diabetes medications, including insulin, can cause further weight gain. No approved chronic weight management medications have been prospectively investigated in individuals with overweight or obesity and insulin-treated type 2 diabetes. The primary objective of this study was to assess the effect of liraglutide 3.0 mg versus placebo on weight loss in this population. RESEARCH DESIGN AND METHODS Satiety and Clinical Adiposity—Liraglutide Evidence (SCALE) Insulin was a 56-week, randomized, double-blind, placebo-controlled, multinational, multicenter trial in individuals with overweight or obesity and type 2 diabetes treated with basal insulin and ≤2 oral antidiabetic drugs. RESULTS Individuals were randomized to liraglutide 3.0 mg (n = 198) or placebo (n = 198), combined with intensive behavioral therapy (IBT). At 56 weeks, mean weight change was –5.8% for liraglutide 3.0 mg versus –1.5% with placebo (estimated treatment difference –4.3% [95% CI –5.5; –3.2]; P < 0.0001). With liraglutide 3.0 mg, 51.8% of individuals achieved ≥5% weight loss versus 24.0% with placebo (odds ratio 3.41 [95% CI 2.19; 5.31]; P < 0.0001). Liraglutide 3.0 mg was associated with significantly greater reductions in mean HbA1c and mean daytime glucose values and less need for insulin versus placebo, despite a treat-to-glycemic-target protocol. More hypoglycemic events were observed with placebo than liraglutide 3.0 mg. No new safety or tolerability issues were observed. CONCLUSIONS In individuals with overweight or obesity and insulin-treated type 2 diabetes, liraglutide 3.0 mg as an adjunct to IBT was superior to placebo regarding weight loss and improved glycemic control despite lower doses of basal insulin and without increases in hypoglycemic events. Full Article
control Initial Glycemic Control and Care Among Younger Adults Diagnosed With Type 2 Diabetes By care.diabetesjournals.org Published On :: 2020-04-20T12:00:32-07:00 OBJECTIVE The prevalence of type 2 diabetes is increasing among adults under age 45. Onset of type 2 diabetes at a younger age increases an individual’s risk for diabetes-related complications. Given the lasting benefits conferred by early glycemic control, we compared glycemic control and initial care between adults with younger onset (21–44 years) and mid-age onset (45–64 years) of type 2 diabetes. RESEARCH DESIGN AND METHODS Using data from a large, integrated health care system, we identified 32,137 adults (aged 21–64 years) with incident diabetes (first HbA1c ≥6.5% [≥48 mmol/mol]). We excluded anyone with evidence of prior type 2 diabetes, gestational diabetes mellitus, or type 1 diabetes. We used generalized linear mixed models, adjusting for demographic and clinical variables, to examine differences in glycemic control and care at 1 year. RESULTS Of identified individuals, 26.4% had younger-onset and 73.6% had mid-age–onset type 2 diabetes. Adults with younger onset had higher initial mean HbA1c values (8.9% [74 mmol/mol]) than adults with onset in mid-age (8.4% [68 mmol/mol]) (P < 0.0001) and lower odds of achieving an HbA1c <7% (<53 mmol/mol) 1 year after the diagnosis (adjusted odds ratio [aOR] 0.70 [95% CI 0.66–0.74]), even after accounting for HbA1c at diagnosis. Adults with younger onset had lower odds of in-person primary care contact (aOR 0.82 [95% CI 0.76–0.89]) than those with onset during mid-age, but they did not differ in telephone contact (1.05 [0.99–1.10]). Adults with younger onset had higher odds of starting metformin (aOR 1.20 [95% CI 1.12–1.29]) but lower odds of adhering to that medication (0.74 [0.69–0.80]). CONCLUSIONS Adults with onset of type 2 diabetes at a younger age were less likely to achieve glycemic control at 1 year following diagnosis, suggesting the need for tailored care approaches to improve outcomes for this high-risk patient population. Full Article
control Long-term outcome of a randomized controlled study in patients with newly diagnosed severe aplastic anemia treated with antithymocyte globulin and cyclosporine, with or without granulocyte colony-stimulating factor: a Severe Aplastic Anemia Working Party By www.haematologica.org Published On :: 2020-05-01T00:05:41-07:00 This follow-up study of a randomized, prospective trial included 192 patients with newly diagnosed severe aplastic anemia receiving antithymoglobulin and cyclosporine, with or without granulocyte colony-stimulating factor (G-CSF). We aimed to evaluate the long-term effect of G-CSF on overall survival, event-free survival, probability of secondary myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML), clinical paroxysmal nocturnal hemoglobinuria, relapse, avascular osteonecrosis and chronic kidney disease. The median follow-up was 11.7 years (95% CI, 10.9-12.5). The overall survival rate at 15 years was 57±12% in the group given G-CSF and 63±12% in the group not given G-CSF (P=0.92); the corresponding event-free survival rates were 24±10% and 23±10%, respectively (P=0.36). In total, 9 patients developed MDS or AML, 10 only a clonal cytogenetic abnormality, 7 a solid cancer, 18 clinical paroxysmal nocturnal hemoglobinuria, 8 osteonecrosis, and 12 chronic kidney disease, without any difference between patients treated with or without G-CSF. The cumulative incidence of MDS, AML or isolated cytogenetic abnormality at 15 years was 8.5±3% for the G-CSF group and 8.2±3% for the non-G-CSF group (P=0.90). The cumulative incidence of any late event including myelodysplastic syndrome or acute myeloid leukemia, isolated cytogenetic abnormalities, solid cancer, clinical paroxysmal nocturnal hemoglobinuria, aseptic osteonecrosis, chronic kidney disease and relapse was 50±12% for the G-CSF group and 49±12% for the non-G-CSF group (P=0.65). Our results demonstrate that it is unlikely that G-CSF has an impact on the outcome of severe aplastic anemia; nevertheless, very late events are common and eventually affect the prognosis of these patients, irrespectively of their age at the time of immunosuppressive therapy (NCT01163942). Full Article
control Risk Factors for Diabetic Peripheral Neuropathy and Cardiovascular Autonomic Neuropathy in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study demonstrated that intensive glucose control reduced the risk of developing diabetic peripheral neuropathy (DPN) and cardiovascular autonomic neuropathy (CAN). We evaluated multiple risk factors and phenotypes associated with DPN and CAN in this large, well-characterized cohort of participants with type 1 diabetes, followed for >23 years. DPN was defined by symptoms, signs, and nerve conduction study abnormalities in ≥2 nerves; CAN was assessed using standardized cardiovascular reflex tests. Generalized estimating equation models assessed the association of DPN and CAN with individual risk factors measured repeatedly. During DCCT/EDIC, 33% of participants developed DPN and 44% CAN. Higher mean HbA1c was the most significant risk factor for DPN, followed by older age, longer duration, greater height, macroalbuminuria, higher mean pulse rate, β-blocker use, and sustained albuminuria. The most significant risk factor for CAN was older age, followed by higher mean HbA1c, sustained albuminuria, longer duration of type 1 diabetes, higher mean pulse rate, higher mean systolic blood pressure, β-blocker use, estimated glomerular filtration rate <60 mL/min/1.73 m2, higher most recent pulse rate, and cigarette smoking. These findings identify risk factors and phenotypes of participants with diabetic neuropathy that can be used in the design of new interventional trials and for personalized approaches to neuropathy prevention. Full Article
control Efficacy and Safety of Use of the Fasting Algorithm for Singaporeans With Type 2 Diabetes (FAST) During Ramadan: A Prospective, Multicenter, Randomized Controlled Trial [Original Research] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 PURPOSE We aimed to evaluate the efficacy and safety of use of the Fasting Algorithm for Singaporeans with Type 2 Diabetes (FAST) during Ramadan. METHODS We performed a prospective, multicenter, randomized controlled trial. The inclusion criteria were age ≥21 years, baseline glycated hemoglobin (HbA1c) level ≤9.5%, and intention to fast for ≥10 days during Ramadan. Exclusion criteria included baseline estimated glomerular filtration rate <30 mL/min, diabetes-related hospitalization, and short-term corticosteroid therapy. Participants were randomized to intervention (use of FAST) or control (usual care without FAST) groups. Efficacy outcomes were HbA1c level and fasting blood glucose and postprandial glucose changes, and the safety outcome was incidence of major or minor hypoglycemia during the Ramadan period. Glycemic variability and diabetes distress were also investigated. Linear mixed models were constructed to assess changes. RESULTS A total of 97 participants were randomized (intervention: n = 46, control: n = 51). The HbA1c improvement during Ramadan was 4 times greater in the intervention group (–0.4%) than in the control group (–0.1%) (P = .049). The mean fasting blood glucose level decreased in the intervention group (–3.6 mg/dL) and increased in the control group (+20.9 mg/dL) (P = .034). The mean postprandial glucose level showed greater improvement in the intervention group (–16.4 mg/dL) compared to the control group (–2.3 mg/dL). There were more minor hypoglycemic events based on self-monitered blood glucose readings in the control group (intervention: 4, control: 6; P = .744). Glycemic variability was not significantly different between the 2 groups (P = .284). No between-group differences in diabetes distress were observed (P = .479). CONCLUSIONS Our findings emphasize the importance of efficacious, safe, and culturally tailored epistemic tools for diabetes management. Full Article
control Bioimpedance Guided Fluid Management in Peritoneal Dialysis: A Randomized Controlled Trial By cjasn.asnjournals.org Published On :: 2020-05-07T10:00:25-07:00 Background and objectives Bioelectrical impedance analysis (BIA) devices can help assess volume overload in patients receiving maintenance peritoneal dialysis. However, the effects of BIA on the short-term hard end points of peritoneal dialysis lack consistency. This study aimed to test whether BIA-guided fluid management could improve short-term outcomes in patients on peritoneal dialysis. Design, setting, participants, & measurements A single-center, open-labeled, randomized, controlled trial was conducted. Patients on prevalent peritoneal dialysis with volume overload were recruited from July 1, 2013 to March 30, 2014 and followed for 1 year in the initial protocol. All participants with volume overload were 1:1 randomized to the BIA-guided arm (BIA and traditional clinical methods) and control arm (only traditional clinical methods). The primary end point was all-cause mortality and secondary end points were cardiovascular disease mortality and technique survival. Results A total of 240 patients (mean age, 49 years; men, 51%; diabetic, 21%, 120 per group) were enrolled. After 1-year follow-up, 11(5%) patients died (three in BIA versus eight in control) and 21 patients were permanently transferred to hemodialysis (eight in BIA versus 13 in control). The rate of extracellular water/total body water decline in the BIA group was significantly higher than that in the control group. The 1-year patient survival rates were 96% and 92% in BIA and control groups, respectively. No significant statistical differences were found between patients randomized to the BIA-guided or control arm in terms of patient survival, cardiovascular disease mortality, and technique survival (P>0.05). Conclusions Although BIA-guided fluid management improved the fluid overload status better than the traditional clinical method, no significant effect was found on 1-year patient survival and technique survival in patients on peritoneal dialysis. Full Article
control Darbepoetin Alfa in Patients with Advanced CKD without Diabetes: Randomized, Controlled Trial By cjasn.asnjournals.org Published On :: 2020-05-07T10:00:25-07:00 Background and objectives Large, randomized, controlled trials targeting higher hemoglobin level with erythropoiesis-stimulating agents for Western patients with CKD showed harm. However, the effect of anemia correction using erythropoiesis-stimulating agents may differ between CKD subpopulations. The Prevention of ESKD by Darbepoetin Alfa in CKD Patients with Non-diabetic Kidney Disease study, a multicenter, randomized, open-label, parallel-group study, aimed to examine the effect of targeting hemoglobin levels of 11–13 g/dl using darbepoetin alfa with reference to a low-hemoglobin target of 9–11 g/dl on kidney outcome in patients with advanced CKD without diabetes in Japan. Design, setting, participants, & measurements We enrolled 491 patients with CKD without diabetes, and an eGFR of 8–20 ml/min per 1.73 m2. Of these 491 patients, 239 and 240 were ultimately assigned to the high- and low-hemoglobin groups, respectively (12 patients were excluded). The primary outcome was a kidney composite end point (starting maintenance dialysis, kidney transplantation, eGFR≤6 ml/min per 1.73 m2, and 50% reduction in eGFR). Results Mean hemoglobin levels were 11.2±1.1 and 10.0±0.9 g/dl in the high- and low-hemoglobin groups, respectively, during the mean study period of 73.5±29.7 weeks. The kidney composite end point occurred in 105 (44%) and 116 (48%) patients in the high- and low-hemoglobin groups, respectively (log-rank test; P=0.32). The adjusted Cox proportional hazards model showed that the hazard ratio for the high- versus low-hemoglobin group was 0.78 (95% confidence interval, 0.60 to 1.03; P=0.08). Cardiovascular events occurred in 19 (8%) and 16 (7%) patients in each group, respectively, with no significant between-group difference (log-rank test; P=0.66). Conclusions Targeting a higher hemoglobin level (11–13 g/dl) with darbepoetin alfa did not improve kidney outcome compared with targeting a lower hemoglobin level (9–11 g/dl) in patients with advanced CKD without diabetes. Clinical Trial registry name and registration number Prevention of ESKD by Darbepoetin Alfa in CKD Patients with Non-diabetic Kidney Disease (PREDICT), NCT01581073. Full Article
control The Role of Fnr Paralogs in Controlling Anaerobic Metabolism in the Diazotroph Paenibacillus polymyxa WLY78 [Environmental Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Fnr is a transcriptional regulator that controls the expression of a variety of genes in response to oxygen limitation in bacteria. Genome sequencing revealed four genes (fnr1, fnr3, fnr5, and fnr7) coding for Fnr proteins in Paenibacillus polymyxa WLY78. Fnr1 and Fnr3 showed more similarity to each other than to Fnr5 and Fnr7. Also, Fnr1 and Fnr3 exhibited high similarity with Bacillus cereus Fnr and Bacillus subtilis Fnr in sequence and structures. Both the aerobically purified His-tagged Fnr1 and His-tagged Fnr3 in Escherichia coli could bind to the specific DNA promoter. Deletion analysis showed that the four fnr genes, especially fnr1 and fnr3, have significant impacts on growth and nitrogenase activity. Single deletion of fnr1 or fnr3 led to a 50% reduction in nitrogenase activity, and double deletion of fnr1 and fnr3 resulted to a 90% reduction in activity. Genome-wide transcription analysis showed that Fnr1 and Fnr3 indirectly activated expression of nif (nitrogen fixation) genes and Fe transport genes under anaerobic conditions. Fnr1 and Fnr3 inhibited expression of the genes involved in the aerobic respiratory chain and activated expression of genes responsible for anaerobic electron acceptor genes. IMPORTANCE The members of the nitrogen-fixing Paenibacillus spp. have great potential to be used as a bacterial fertilizer in agriculture. However, the functions of the fnr gene(s) in nitrogen fixation and other metabolisms in Paenibacillus spp. are not known. Here, we found that in P. polymyxa WLY78, Fnr1 and Fnr3 were responsible for regulation of numerous genes in response to changes in oxygen levels, but Fnr5 and Fnr7 exhibited little effect. Fnr1 and Fnr3 indirectly or directly regulated many types of important metabolism, such as nitrogen fixation, Fe uptake, respiration, and electron transport. This study not only reveals the function of the fnr genes of P. polymyxa WLY78 in nitrogen fixation and other metabolisms but also will provide insight into the evolution and regulatory mechanisms of fnr in Paenibacillus. Full Article
control Emergence of a Novel Coronavirus Disease (COVID-19) and the Importance of Diagnostic Testing: Why Partnership between Clinical Laboratories, Public Health Agencies, and Industry Is Essential to Control the Outbreak By academic.oup.com Published On :: Thu, 12 Mar 2020 00:00:00 GMT Full Article
control Assessing Cancer Treatment Information Using Medicare and Hospital Discharge Data among Women with Non-Hodgkin Lymphoma in a Los Angeles County Case-Control Study By cebp.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Background: We assessed the ability to supplement existing epidemiologic/etiologic studies with data on treatment and clinical outcomes by linking to publicly available cancer registry and administrative databases. Methods: Medical records were retrieved and abstracted for cases enrolled in a Los Angeles County case–control study of non-Hodgkin lymphoma (NHL). Cases were linked to the Los Angeles County cancer registry (CSP), the California state hospitalization discharge database (OSHPD), and the SEER-Medicare database. We assessed sensitivity, specificity, and positive predictive value (PPV) of cancer treatment in linked databases, compared with medical record abstraction. Results: We successfully retrieved medical records for 918 of 1,004 participating NHL cases and abstracted treatment for 698. We linked 59% of cases (96% of cases >65 years old) to SEER-Medicare and 96% to OSHPD. Chemotherapy was the most common treatment and best captured, with the highest sensitivity in SEER-Medicare (80%) and CSP (74%); combining all three data sources together increased sensitivity (92%), at reduced specificity (56%). Sensitivity for radiotherapy was moderate: 77% with aggregated data. Sensitivity of BMT was low in the CSP (42%), but high for the administrative databases, especially OSHPD (98%). Sensitivity for surgery reached 83% when considering all three datasets in aggregate, but PPV was 60%. In general, sensitivity and PPV for chronic lymphocytic leukemia/small lymphocytic lymphoma were low. Conclusions: Chemotherapy was accurately captured by all data sources. Hospitalization data yielded the highest performance values for BMTs. Performance measures for radiotherapy and surgery were moderate. Impact: Various administrative databases can supplement epidemiologic studies, depending on treatment type and NHL subtype of interest. Full Article
control US Navy robot submarine would be able to kill without human control By www.newscientist.com Published On :: Sun, 08 Mar 2020 10:00:26 +0000 A secret US Navy project known only as CLAWS will equip armed robot submarines with sensors and algorithms enabling them to destroy targets without explicit human control Full Article
control SpaceX mission control to do social distancing for first crewed flight By www.newscientist.com Published On :: Fri, 01 May 2020 23:09:02 +0000 SpaceX’s first crewed launch is planned for 27 May and will be run from a mission control with desks set six feet apart to comply with social distancing protocols Full Article
control The Best Phone Controllers for Serious Mobile Gaming By www.ign.com Published On :: Sat, 9 May 2020 02:00:49 +0000 If you're always gaming on the go with your smartphone, you'll definitely want the best phone controller. Full Article
control EU countries take up interim rules on official controls during pandemic By feedproxy.google.com Published On :: Sat, 09 May 2020 04:03:29 +0000 More than a dozen countries have taken advantage of temporary rules to tackle disruption in official control systems in Europe because of the coronavirus pandemic. As of May 6, 15 nations had informed the European Commission that they are applying the measures in Implementing Regulation (EU) 2020/466. Countries wishing to use them have to tell... Continue Reading Full Article Food Policy & Law World aflatoxin animal origin citrus fruit coronavirus COVID-19 European Commission food of non-animal origin official controls Pakistan pesticide residues Salmonella sesame seeds spices Sudan turkey Uganda