sam This is not a drill : an Extinction Rebellion handbook / edited by Clare Farrell, Alison Green, Sam Knights and William Skeaping. By www.catalog.slsa.sa.gov.au Published On :: Extinction Rebellion (Organisation). Full Article
sam Die ältesten Schriftsteller über die Lustseuche in Deutschland von 1495 bis 1510, nebst mehreren Anecdotis späterer Zeit, gesammelt und mit literarhistorischen Notizen und einer kurzen Darstellung der epidemischen Syphilis in Deutschland / By feedproxy.google.com Published On :: Gottingen : Dieterich, 1843. Full Article
sam Die chemische und kalorimetrische Zusammensetzung der Säuglingsnahrung zusammengestellt und berechnet / von Paul Sommerfeld. By feedproxy.google.com Published On :: Stuttgart : F. Enke, 1902. Full Article
sam Die Fremdkorper des Uterus : Zusammenstellung von 550 Beobachtungen aus der Literatur und Praxis / von Franz Ludwig Neugebauer. By feedproxy.google.com Published On :: Breslau : Preuss & Junger, 1897. Full Article
sam Die gesammten nervösen Fieber, in sich begreifend die eigentlichen Nervenfieber, nebst den Fieberseuchen und Wechselfiebern : theoretisch untersucht und praktisch abgehandelt / von Ernst Dan. Aug. Bartels. By feedproxy.google.com Published On :: Berlin : Rucker und Puchler, 1837-1838. Full Article
sam Die Histochemischen und Physiologischen Arbeiten / von Friedrich Miescher ; Gesammelt und herausgegeben von seinen Freunden. By feedproxy.google.com Published On :: Leipzig : F.C.W. Vogel, 1897. Full Article
sam Die Irrenklinik der Universität Leipzig und ihre Wirksamkeit in den Jahren 1882-1886 / von Paul Flechsig. By feedproxy.google.com Published On :: Leipzig : Veit, 1888. Full Article
sam Die krankhaften Veränderungen der Haut und ihrer Anhangsgebilde mit ihren Beziehungen zu den Krankheiten des Gesammtorganismus / dargestellt von H. von Hebra. By feedproxy.google.com Published On :: Braunschweig : F. Wreden, 1884. Full Article
sam Die Krankheiten der Nase und des Halses, ihre Beziehungen zum Gesammtorganismus und ihre Bedeutung für die Singstimme. Zehn allgemein verständliche Vorträge / von Dr Friedrich Ernst. By feedproxy.google.com Published On :: Berlin : Köllner, 1899. Full Article
sam Die Krankheiten der oberen Luftwege : klinische Beobachtungen und Erfahrungen gesammelt in der ambulatorischen Klinik für Kehlkopf-, Rachen-, und Nasenkranke / von A. Jurasz. By feedproxy.google.com Published On :: Heidelberg : C. Winter, 1891. Full Article
sam Die Methoden der Bakterien--Forschung : Handbuch der gesammten Methoden der Mikrobiologie / von Ferdinand Hueppe. By feedproxy.google.com Published On :: Wiesbaden : C.W. Kreidel, 1891. Full Article
sam Die Methoden der Milchuntersuchung : für Aerzte, Chemiker und Hygieniker / zusammengestellt von Paul Sommerfeld ; mit einem Vorwort von Adolf Baginsky. By feedproxy.google.com Published On :: Berlin : A. Hirschwald, 1896. Full Article
sam Die Moderne physiologische Psychologie in Deutschland : eine historisch-kritische Untersuchung mit besonderer Berücksichtigung des Problems der Aufmerksamkeit / von W. Heinrich. By feedproxy.google.com Published On :: Zürich : Speidel, 1895. Full Article
sam Die nervösen Krankheitserscheinungen der Lepra : mit besonderer Berücksichtigung ihrer Differential-Diagnose : nach eignen auf einer Studienreise in Sarajevo und Constantinopel gesammelten Erfahrungen / von Max Laehr. By feedproxy.google.com Published On :: Berlin : G. Reimer, 1899. Full Article
sam Die Selbstverdauung des Magens / von Bernhard Samelson. By feedproxy.google.com Published On :: Jena : Verlag von Gustav Fischer, 1879. Full Article
sam Die Trinksitten, ihre hygienische und sociale Bedeutung : Ihre Beziehungen zur akademischen Jugend : eine Ansprache an die Enthaltsamkeits-Vereine der Studenten zu Christiania und Upsala ... / von August Forel. By feedproxy.google.com Published On :: Stuttgart : F. Enke, 1891. Full Article
sam Die Wirkungen von Arzneimitteln und Giften auf das Auge : Handbuch für die gesammte ärztliche Praxis / von L. Lewin und H. Guillery. By feedproxy.google.com Published On :: Berlin : Hirschwald, 1905. Full Article
sam The different forms of flowers on plants of the same species / by Charles Darwin. By feedproxy.google.com Published On :: London : J. Murray, 1877. Full Article
sam Digitalis purpurea in ihren physiologischen und therapeutischen Wirkungen unter besonderer Berücksichtigung des Digitalin : mit Benutzung der gesammten medicinischen Literatur monographisch dargestellt / von Bernhard Bähr. By feedproxy.google.com Published On :: Leipzig : T.O. Weigel, 1859. Full Article
sam Dissertatio medica inauguralis, amplectens quaedam de utero gravido / Benjaminus Kissam. By feedproxy.google.com Published On :: Edinburgi : Apud Balfour et Smellie, 1783. Full Article
sam The educational and subsidiary provisions of the Birmingham Royal School of Medicine and Surgery set forth in a letter to the Rev. Dr. Samuel Wilson Warneford ... : the whole being intended to shew the importance and practicability of applying the means a By feedproxy.google.com Published On :: Oxford : printed by W. Baxter, 1843. Full Article
sam Elements of water bacteriology : with special reference to sanitary water analysis / by Samuel Cate Prescott, and Charles-Edward Amory Winslow. By feedproxy.google.com Published On :: London : Chapman & Hall, 1908. Full Article
sam Veränderbarkeit des Genoms : Herausforderungen für die Zukunft : Vorträge anlässlich der Jahresversammlung am 22. und 23. September 2017 in Halle (Saale) / herausgegeben von: Jörg Hacker. By search.wellcomelibrary.org Published On :: Halle (Saale) : Deutsche Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften ; Stuttgart : Wissenschaftliche Verlagsgesellschaft, 2019. Full Article
sam Management information systems in the drug field / edited by George M. Beschner, Neil H. Sampson, National Institute on Drug Abuse ; and Christopher D'Amanda, Coordinating Office for Drug and Alcohol Abuse, City of Philadelphia. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1979. Full Article
sam On the Letac-Massam conjecture and existence of high dimensional Bayes estimators for graphical models By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Emanuel Ben-David, Bala Rajaratnam. Source: Electronic Journal of Statistics, Volume 14, Number 1, 580--604.Abstract: The Wishart distribution defined on the open cone of positive-definite matrices plays a central role in multivariate analysis and multivariate distribution theory. Its domain of parameters is often referred to as the Gindikin set. In recent years, varieties of useful extensions of the Wishart distribution have been proposed in the literature for the purposes of studying Markov random fields and graphical models. In particular, generalizations of the Wishart distribution, referred to as Type I and Type II (graphical) Wishart distributions introduced by Letac and Massam in Annals of Statistics (2007) play important roles in both frequentist and Bayesian inference for Gaussian graphical models. These distributions have been especially useful in high-dimensional settings due to the flexibility offered by their multiple-shape parameters. Concerning Type I and Type II Wishart distributions, a conjecture of Letac and Massam concerns the domain of multiple-shape parameters of these distributions. The conjecture also has implications for the existence of Bayes estimators corresponding to these high dimensional priors. The conjecture, which was first posed in the Annals of Statistics, has now been an open problem for about 10 years. In this paper, we give a necessary condition for the Letac and Massam conjecture to hold. More precisely, we prove that if the Letac and Massam conjecture holds on a decomposable graph, then no two separators of the graph can be nested within each other. For this, we analyze Type I and Type II Wishart distributions on appropriate Markov equivalent perfect DAG models and succeed in deriving the aforementioned necessary condition. This condition in particular identifies a class of counterexamples to the conjecture. Full Article
sam A fast MCMC algorithm for the uniform sampling of binary matrices with fixed margins By projecteuclid.org Published On :: Thu, 09 Apr 2020 04:00 EDT Guanyang Wang. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1690--1706.Abstract: Uniform sampling of binary matrix with fixed margins is an important and difficult problem in statistics, computer science, ecology and so on. The well-known swap algorithm would be inefficient when the size of the matrix becomes large or when the matrix is too sparse/dense. Here we propose the Rectangle Loop algorithm, a Markov chain Monte Carlo algorithm to sample binary matrices with fixed margins uniformly. Theoretically the Rectangle Loop algorithm is better than the swap algorithm in Peskun’s order. Empirically studies also demonstrates the Rectangle Loop algorithm is remarkablely more efficient than the swap algorithm. Full Article
sam Asymptotic seed bias in respondent-driven sampling By projecteuclid.org Published On :: Wed, 08 Apr 2020 22:01 EDT Yuling Yan, Bret Hanlon, Sebastien Roch, Karl Rohe. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1577--1610.Abstract: Respondent-driven sampling (RDS) collects a sample of individuals in a networked population by incentivizing the sampled individuals to refer their contacts into the sample. This iterative process is initialized from some seed node(s). Sometimes, this selection creates a large amount of seed bias. Other times, the seed bias is small. This paper gains a deeper understanding of this bias by characterizing its effect on the limiting distribution of various RDS estimators. Using classical tools and results from multi-type branching processes [12], we show that the seed bias is negligible for the Generalized Least Squares (GLS) estimator and non-negligible for both the inverse probability weighted and Volz-Heckathorn (VH) estimators. In particular, we show that (i) above a critical threshold, VH converge to a non-trivial mixture distribution, where the mixture component depends on the seed node, and the mixture distribution is possibly multi-modal. Moreover, (ii) GLS converges to a Gaussian distribution independent of the seed node, under a certain condition on the Markov process. Numerical experiments with both simulated data and empirical social networks suggest that these results appear to hold beyond the Markov conditions of the theorems. Full Article
sam On a Metropolis–Hastings importance sampling estimator By projecteuclid.org Published On :: Mon, 10 Feb 2020 04:01 EST Daniel Rudolf, Björn Sprungk. Source: Electronic Journal of Statistics, Volume 14, Number 1, 857--889.Abstract: A classical approach for approximating expectations of functions w.r.t. partially known distributions is to compute the average of function values along a trajectory of a Metropolis–Hastings (MH) Markov chain. A key part in the MH algorithm is a suitable acceptance/rejection of a proposed state, which ensures the correct stationary distribution of the resulting Markov chain. However, the rejection of proposals causes highly correlated samples. In particular, when a state is rejected it is not taken any further into account. In contrast to that we consider a MH importance sampling estimator which explicitly incorporates all proposed states generated by the MH algorithm. The estimator satisfies a strong law of large numbers as well as a central limit theorem, and, in addition to that, we provide an explicit mean squared error bound. Remarkably, the asymptotic variance of the MH importance sampling estimator does not involve any correlation term in contrast to its classical counterpart. Moreover, although the analyzed estimator uses the same amount of information as the classical MH estimator, it can outperform the latter in scenarios of moderate dimensions as indicated by numerical experiments. Full Article
sam Neyman-Pearson classification: parametrics and sample size requirement By Published On :: 2020 The Neyman-Pearson (NP) paradigm in binary classification seeks classifiers that achieve a minimal type II error while enforcing the prioritized type I error controlled under some user-specified level $alpha$. This paradigm serves naturally in applications such as severe disease diagnosis and spam detection, where people have clear priorities among the two error types. Recently, Tong, Feng, and Li (2018) proposed a nonparametric umbrella algorithm that adapts all scoring-type classification methods (e.g., logistic regression, support vector machines, random forest) to respect the given type I error (i.e., conditional probability of classifying a class $0$ observation as class $1$ under the 0-1 coding) upper bound $alpha$ with high probability, without specific distributional assumptions on the features and the responses. Universal the umbrella algorithm is, it demands an explicit minimum sample size requirement on class $0$, which is often the more scarce class, such as in rare disease diagnosis applications. In this work, we employ the parametric linear discriminant analysis (LDA) model and propose a new parametric thresholding algorithm, which does not need the minimum sample size requirements on class $0$ observations and thus is suitable for small sample applications such as rare disease diagnosis. Leveraging both the existing nonparametric and the newly proposed parametric thresholding rules, we propose four LDA-based NP classifiers, for both low- and high-dimensional settings. On the theoretical front, we prove NP oracle inequalities for one proposed classifier, where the rate for excess type II error benefits from the explicit parametric model assumption. Furthermore, as NP classifiers involve a sample splitting step of class $0$ observations, we construct a new adaptive sample splitting scheme that can be applied universally to NP classifiers, and this adaptive strategy reduces the type II error of these classifiers. The proposed NP classifiers are implemented in the R package nproc. Full Article
sam On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms By Published On :: 2020 This paper considers a Bayesian approach to graph-based semi-supervised learning. We show that if the graph parameters are suitably scaled, the graph-posteriors converge to a continuum limit as the size of the unlabeled data set grows. This consistency result has profound algorithmic implications: we prove that when consistency holds, carefully designed Markov chain Monte Carlo algorithms have a uniform spectral gap, independent of the number of unlabeled inputs. Numerical experiments illustrate and complement the theory. Full Article
sam Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping By Published On :: 2020 Consider an unknown smooth function $f: [0,1]^d ightarrow mathbb{R}$, and assume we are given $n$ noisy mod 1 samples of $f$, i.e., $y_i = (f(x_i) + eta_i) mod 1$, for $x_i in [0,1]^d$, where $eta_i$ denotes the noise. Given the samples $(x_i,y_i)_{i=1}^{n}$, our goal is to recover smooth, robust estimates of the clean samples $f(x_i) mod 1$. We formulate a natural approach for solving this problem, which works with angular embeddings of the noisy mod 1 samples over the unit circle, inspired by the angular synchronization framework. This amounts to solving a smoothness regularized least-squares problem -- a quadratically constrained quadratic program (QCQP) -- where the variables are constrained to lie on the unit circle. Our proposed approach is based on solving its relaxation, which is a trust-region sub-problem and hence solvable efficiently. We provide theoretical guarantees demonstrating its robustness to noise for adversarial, as well as random Gaussian and Bernoulli noise models. To the best of our knowledge, these are the first such theoretical results for this problem. We demonstrate the robustness and efficiency of our proposed approach via extensive numerical simulations on synthetic data, along with a simple least-squares based solution for the unwrapping stage, that recovers the original samples of $f$ (up to a global shift). It is shown to perform well at high levels of noise, when taking as input the denoised modulo $1$ samples. Finally, we also consider two other approaches for denoising the modulo 1 samples that leverage tools from Riemannian optimization on manifolds, including a Burer-Monteiro approach for a semidefinite programming relaxation of our formulation. For the two-dimensional version of the problem, which has applications in synthetic aperture radar interferometry (InSAR), we are able to solve instances of real-world data with a million sample points in under 10 seconds, on a personal laptop. Full Article
sam Ancestral Gumbel-Top-k Sampling for Sampling Without Replacement By Published On :: 2020 We develop ancestral Gumbel-Top-$k$ sampling: a generic and efficient method for sampling without replacement from discrete-valued Bayesian networks, which includes multivariate discrete distributions, Markov chains and sequence models. The method uses an extension of the Gumbel-Max trick to sample without replacement by finding the top $k$ of perturbed log-probabilities among all possible configurations of a Bayesian network. Despite the exponentially large domain, the algorithm has a complexity linear in the number of variables and sample size $k$. Our algorithm allows to set the number of parallel processors $m$, to trade off the number of iterations versus the total cost (iterations times $m$) of running the algorithm. For $m = 1$ the algorithm has minimum total cost, whereas for $m = k$ the number of iterations is minimized, and the resulting algorithm is known as Stochastic Beam Search. We provide extensions of the algorithm and discuss a number of related algorithms. We analyze the properties of ancestral Gumbel-Top-$k$ sampling and compare against alternatives on randomly generated Bayesian networks with different levels of connectivity. In the context of (deep) sequence models, we show its use as a method to generate diverse but high-quality translations and statistical estimates of translation quality and entropy. Full Article
sam The limiting distribution of the Gibbs sampler for the intrinsic conditional autoregressive model By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Marco A. R. Ferreira. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 734--744.Abstract: We study the limiting behavior of the one-at-a-time Gibbs sampler for the intrinsic conditional autoregressive model with centering on the fly. The intrinsic conditional autoregressive model is widely used as a prior for random effects in hierarchical models for spatial modeling. This model is defined by full conditional distributions that imply an improper joint “density” with a multivariate Gaussian kernel and a singular precision matrix. To guarantee propriety of the posterior distribution, usually at the end of each iteration of the Gibbs sampler the random effects are centered to sum to zero in what is widely known as centering on the fly. While this works well in practice, this informal computational way to recenter the random effects obscures their implied prior distribution and prevents the development of formal Bayesian procedures. Here we show that the implied prior distribution, that is, the limiting distribution of the one-at-a-time Gibbs sampler for the intrinsic conditional autoregressive model with centering on the fly is a singular Gaussian distribution with a covariance matrix that is the Moore–Penrose inverse of the precision matrix. This result has important implications for the development of formal Bayesian procedures such as reference priors and Bayes-factor-based model selection for spatial models. Full Article
sam Keeping the balance—Bridge sampling for marginal likelihood estimation in finite mixture, mixture of experts and Markov mixture models By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Sylvia Frühwirth-Schnatter. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 706--733.Abstract: Finite mixture models and their extensions to Markov mixture and mixture of experts models are very popular in analysing data of various kind. A challenge for these models is choosing the number of components based on marginal likelihoods. The present paper suggests two innovative, generic bridge sampling estimators of the marginal likelihood that are based on constructing balanced importance densities from the conditional densities arising during Gibbs sampling. The full permutation bridge sampling estimator is derived from considering all possible permutations of the mixture labels for a subset of these densities. For the double random permutation bridge sampling estimator, two levels of random permutations are applied, first to permute the labels of the MCMC draws and second to randomly permute the labels of the conditional densities arising during Gibbs sampling. Various applications show very good performance of these estimators in comparison to importance and to reciprocal importance sampling estimators derived from the same importance densities. Full Article
sam A rank-based Cramér–von-Mises-type test for two samples By projecteuclid.org Published On :: Mon, 10 Jun 2019 04:04 EDT Jamye Curry, Xin Dang, Hailin Sang. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 425--454.Abstract: We study a rank based univariate two-sample distribution-free test. The test statistic is the difference between the average of between-group rank distances and the average of within-group rank distances. This test statistic is closely related to the two-sample Cramér–von Mises criterion. They are different empirical versions of a same quantity for testing the equality of two population distributions. Although they may be different for finite samples, they share the same expected value, variance and asymptotic properties. The advantage of the new rank based test over the classical one is its ease to generalize to the multivariate case. Rather than using the empirical process approach, we provide a different easier proof, bringing in a different perspective and insight. In particular, we apply the Hájek projection and orthogonal decomposition technique in deriving the asymptotics of the proposed rank based statistic. A numerical study compares power performance of the rank formulation test with other commonly-used nonparametric tests and recommendations on those tests are provided. Lastly, we propose a multivariate extension of the test based on the spatial rank. Full Article
sam Can $p$-values be meaningfully interpreted without random sampling? By projecteuclid.org Published On :: Thu, 26 Mar 2020 22:02 EDT Norbert Hirschauer, Sven Grüner, Oliver Mußhoff, Claudia Becker, Antje Jantsch. Source: Statistics Surveys, Volume 14, 71--91.Abstract: Besides the inferential errors that abound in the interpretation of $p$-values, the probabilistic pre-conditions (i.e. random sampling or equivalent) for using them at all are not often met by observational studies in the social sciences. This paper systematizes different sampling designs and discusses the restrictive requirements of data collection that are the indispensable prerequisite for using $p$-values. Full Article
sam Estimating the size of a hidden finite set: Large-sample behavior of estimators By projecteuclid.org Published On :: Fri, 03 Jan 2020 22:02 EST Si Cheng, Daniel J. Eck, Forrest W. Crawford. Source: Statistics Surveys, Volume 14, 1--31.Abstract: A finite set is “hidden” if its elements are not directly enumerable or if its size cannot be ascertained via a deterministic query. In public health, epidemiology, demography, ecology and intelligence analysis, researchers have developed a wide variety of indirect statistical approaches, under different models for sampling and observation, for estimating the size of a hidden set. Some methods make use of random sampling with known or estimable sampling probabilities, and others make structural assumptions about relationships (e.g. ordering or network information) between the elements that comprise the hidden set. In this review, we describe models and methods for learning about the size of a hidden finite set, with special attention to asymptotic properties of estimators. We study the properties of these methods under two asymptotic regimes, “infill” in which the number of fixed-size samples increases, but the population size remains constant, and “outfill” in which the sample size and population size grow together. Statistical properties under these two regimes can be dramatically different. Full Article
sam A survey of bootstrap methods in finite population sampling By projecteuclid.org Published On :: Tue, 15 Mar 2016 09:17 EDT Zeinab Mashreghi, David Haziza, Christian Léger. Source: Statistics Surveys, Volume 10, 1--52.Abstract: We review bootstrap methods in the context of survey data where the effect of the sampling design on the variability of estimators has to be taken into account. We present the methods in a unified way by classifying them in three classes: pseudo-population, direct, and survey weights methods. We cover variance estimation and the construction of confidence intervals for stratified simple random sampling as well as some unequal probability sampling designs. We also address the problem of variance estimation in presence of imputation to compensate for item non-response. Full Article
sam Generating Thermal Image Data Samples using 3D Facial Modelling Techniques and Deep Learning Methodologies. (arXiv:2005.01923v2 [cs.CV] UPDATED) By arxiv.org Published On :: Methods for generating synthetic data have become of increasing importance to build large datasets required for Convolution Neural Networks (CNN) based deep learning techniques for a wide range of computer vision applications. In this work, we extend existing methodologies to show how 2D thermal facial data can be mapped to provide 3D facial models. For the proposed research work we have used tufts datasets for generating 3D varying face poses by using a single frontal face pose. The system works by refining the existing image quality by performing fusion based image preprocessing operations. The refined outputs have better contrast adjustments, decreased noise level and higher exposedness of the dark regions. It makes the facial landmarks and temperature patterns on the human face more discernible and visible when compared to original raw data. Different image quality metrics are used to compare the refined version of images with original images. In the next phase of the proposed study, the refined version of images is used to create 3D facial geometry structures by using Convolution Neural Networks (CNN). The generated outputs are then imported in blender software to finally extract the 3D thermal facial outputs of both males and females. The same technique is also used on our thermal face data acquired using prototype thermal camera (developed under Heliaus EU project) in an indoor lab environment which is then used for generating synthetic 3D face data along with varying yaw face angles and lastly facial depth map is generated. Full Article
sam Sampling random graph homomorphisms and applications to network data analysis. (arXiv:1910.09483v2 [math.PR] UPDATED) By arxiv.org Published On :: A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph $F$ into a large network $mathcal{G}$. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also apply our framework for network clustering and classification problems using the Facebook100 dataset and Word Adjacency Networks of a set of classic novels. Full Article
sam Convergence rates for optimised adaptive importance samplers. (arXiv:1903.12044v4 [stat.CO] UPDATED) By arxiv.org Published On :: Adaptive importance samplers are adaptive Monte Carlo algorithms to estimate expectations with respect to some target distribution which extit{adapt} themselves to obtain better estimators over a sequence of iterations. Although it is straightforward to show that they have the same $mathcal{O}(1/sqrt{N})$ convergence rate as standard importance samplers, where $N$ is the number of Monte Carlo samples, the behaviour of adaptive importance samplers over the number of iterations has been left relatively unexplored. In this work, we investigate an adaptation strategy based on convex optimisation which leads to a class of adaptive importance samplers termed extit{optimised adaptive importance samplers} (OAIS). These samplers rely on the iterative minimisation of the $chi^2$-divergence between an exponential-family proposal and the target. The analysed algorithms are closely related to the class of adaptive importance samplers which minimise the variance of the weight function. We first prove non-asymptotic error bounds for the mean squared errors (MSEs) of these algorithms, which explicitly depend on the number of iterations and the number of samples together. The non-asymptotic bounds derived in this paper imply that when the target belongs to the exponential family, the $L_2$ errors of the optimised samplers converge to the optimal rate of $mathcal{O}(1/sqrt{N})$ and the rate of convergence in the number of iterations are explicitly provided. When the target does not belong to the exponential family, the rate of convergence is the same but the asymptotic $L_2$ error increases by a factor $sqrt{ ho^star} > 1$, where $ ho^star - 1$ is the minimum $chi^2$-divergence between the target and an exponential-family proposal. Full Article
sam Predictive Modeling of ICU Healthcare-Associated Infections from Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling Approach. (arXiv:2005.03582v1 [cs.LG]) By arxiv.org Published On :: Early detection of patients vulnerable to infections acquired in the hospital environment is a challenge in current health systems given the impact that such infections have on patient mortality and healthcare costs. This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units by means of machine-learning methods. The aim is to support decision making addressed at reducing the incidence rate of infections. In this field, it is necessary to deal with the problem of building reliable classifiers from imbalanced datasets. We propose a clustering-based undersampling strategy to be used in combination with ensemble classifiers. A comparative study with data from 4616 patients was conducted in order to validate our proposal. We applied several single and ensemble classifiers both to the original dataset and to data preprocessed by means of different resampling methods. The results were analyzed by means of classic and recent metrics specifically designed for imbalanced data classification. They revealed that the proposal is more efficient in comparison with other approaches. Full Article
sam Multi-Label Sampling based on Local Label Imbalance. (arXiv:2005.03240v1 [cs.LG]) By arxiv.org Published On :: Class imbalance is an inherent characteristic of multi-label data that hinders most multi-label learning methods. One efficient and flexible strategy to deal with this problem is to employ sampling techniques before training a multi-label learning model. Although existing multi-label sampling approaches alleviate the global imbalance of multi-label datasets, it is actually the imbalance level within the local neighbourhood of minority class examples that plays a key role in performance degradation. To address this issue, we propose a novel measure to assess the local label imbalance of multi-label datasets, as well as two multi-label sampling approaches based on the local label imbalance, namely MLSOL and MLUL. By considering all informative labels, MLSOL creates more diverse and better labeled synthetic instances for difficult examples, while MLUL eliminates instances that are harmful to their local region. Experimental results on 13 multi-label datasets demonstrate the effectiveness of the proposed measure and sampling approaches for a variety of evaluation metrics, particularly in the case of an ensemble of classifiers trained on repeated samples of the original data. Full Article
sam Consistent selection of the number of change-points via sample-splitting By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Changliang Zou, Guanghui Wang, Runze Li. Source: The Annals of Statistics, Volume 48, Number 1, 413--439.Abstract: In multiple change-point analysis, one of the major challenges is to estimate the number of change-points. Most existing approaches attempt to minimize a Schwarz information criterion which balances a term quantifying model fit with a penalization term accounting for model complexity that increases with the number of change-points and limits overfitting. However, different penalization terms are required to adapt to different contexts of multiple change-point problems and the optimal penalization magnitude usually varies from the model and error distribution. We propose a data-driven selection criterion that is applicable to most kinds of popular change-point detection methods, including binary segmentation and optimal partitioning algorithms. The key idea is to select the number of change-points that minimizes the squared prediction error, which measures the fit of a specified model for a new sample. We develop a cross-validation estimation scheme based on an order-preserved sample-splitting strategy, and establish its asymptotic selection consistency under some mild conditions. Effectiveness of the proposed selection criterion is demonstrated on a variety of numerical experiments and real-data examples. Full Article
sam Joint convergence of sample autocovariance matrices when $p/n o 0$ with application By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Monika Bhattacharjee, Arup Bose. Source: The Annals of Statistics, Volume 47, Number 6, 3470--3503.Abstract: Consider a high-dimensional linear time series model where the dimension $p$ and the sample size $n$ grow in such a way that $p/n o 0$. Let $hat{Gamma }_{u}$ be the $u$th order sample autocovariance matrix. We first show that the LSD of any symmetric polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$ exists under independence and moment assumptions on the driving sequence together with weak assumptions on the coefficient matrices. This LSD result, with some additional effort, implies the asymptotic normality of the trace of any polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$. We also study similar results for several independent MA processes. We show applications of the above results to statistical inference problems such as in estimation of the unknown order of a high-dimensional MA process and in graphical and significance tests for hypotheses on coefficient matrices of one or several such independent processes. Full Article
sam Bootstrapping and sample splitting for high-dimensional, assumption-lean inference By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Alessandro Rinaldo, Larry Wasserman, Max G’Sell. Source: The Annals of Statistics, Volume 47, Number 6, 3438--3469.Abstract: Several new methods have been recently proposed for performing valid inference after model selection. An older method is sample splitting: use part of the data for model selection and the rest for inference. In this paper, we revisit sample splitting combined with the bootstrap (or the Normal approximation). We show that this leads to a simple, assumption-lean approach to inference and we establish results on the accuracy of the method. In fact, we find new bounds on the accuracy of the bootstrap and the Normal approximation for general nonlinear parameters with increasing dimension which we then use to assess the accuracy of regression inference. We define new parameters that measure variable importance and that can be inferred with greater accuracy than the usual regression coefficients. Finally, we elucidate an inference-prediction trade-off: splitting increases the accuracy and robustness of inference but can decrease the accuracy of the predictions. Full Article
sam Sampling and estimation for (sparse) exchangeable graphs By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Victor Veitch, Daniel M. Roy. Source: The Annals of Statistics, Volume 47, Number 6, 3274--3299.Abstract: Sparse exchangeable graphs on $mathbb{R}_{+}$, and the associated graphex framework for sparse graphs, generalize exchangeable graphs on $mathbb{N}$, and the associated graphon framework for dense graphs. We develop the graphex framework as a tool for statistical network analysis by identifying the sampling scheme that is naturally associated with the models of the framework, formalizing two natural notions of consistent estimation of the parameter (the graphex) underlying these models, and identifying general consistent estimators in each case. The sampling scheme is a modification of independent vertex sampling that throws away vertices that are isolated in the sampled subgraph. The estimators are variants of the empirical graphon estimator, which is known to be a consistent estimator for the distribution of dense exchangeable graphs; both can be understood as graph analogues to the empirical distribution in the i.i.d. sequence setting. Our results may be viewed as a generalization of consistent estimation via the empirical graphon from the dense graph regime to also include sparse graphs. Full Article
sam Negative association, ordering and convergence of resampling methods By projecteuclid.org Published On :: Tue, 21 May 2019 04:00 EDT Mathieu Gerber, Nicolas Chopin, Nick Whiteley. Source: The Annals of Statistics, Volume 47, Number 4, 2236--2260.Abstract: We study convergence and convergence rates for resampling schemes. Our first main result is a general consistency theorem based on the notion of negative association, which is applied to establish the almost sure weak convergence of measures output from Kitagawa’s [ J. Comput. Graph. Statist. 5 (1996) 1–25] stratified resampling method. Carpenter, Ckiffird and Fearnhead’s [ IEE Proc. Radar Sonar Navig. 146 (1999) 2–7] systematic resampling method is similar in structure but can fail to converge depending on the order of the input samples. We introduce a new resampling algorithm based on a stochastic rounding technique of [In 42nd IEEE Symposium on Foundations of Computer Science ( Las Vegas , NV , 2001) (2001) 588–597 IEEE Computer Soc.], which shares some attractive properties of systematic resampling, but which exhibits negative association and, therefore, converges irrespective of the order of the input samples. We confirm a conjecture made by [ J. Comput. Graph. Statist. 5 (1996) 1–25] that ordering input samples by their states in $mathbb{R}$ yields a faster rate of convergence; we establish that when particles are ordered using the Hilbert curve in $mathbb{R}^{d}$, the variance of the resampling error is ${scriptstylemathcal{O}}(N^{-(1+1/d)})$ under mild conditions, where $N$ is the number of particles. We use these results to establish asymptotic properties of particle algorithms based on resampling schemes that differ from multinomial resampling. Full Article
sam A general theory for preferential sampling in environmental networks By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Joe Watson, James V. Zidek, Gavin Shaddick. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2662--2700.Abstract: This paper presents a general model framework for detecting the preferential sampling of environmental monitors recording an environmental process across space and/or time. This is achieved by considering the joint distribution of an environmental process with a site-selection process that considers where and when sites are placed to measure the process. The environmental process may be spatial, temporal or spatio-temporal in nature. By sharing random effects between the two processes, the joint model is able to establish whether site placement was stochastically dependent of the environmental process under study. Furthermore, if stochastic dependence is identified between the two processes, then inferences about the probability distribution of the spatio-temporal process will change, as will predictions made of the process across space and time. The embedding into a spatio-temporal framework also allows for the modelling of the dynamic site-selection process itself. Real-world factors affecting both the size and location of the network can be easily modelled and quantified. Depending upon the choice of the population of locations considered for selection across space and time under the site-selection process, different insights about the precise nature of preferential sampling can be obtained. The general framework developed in the paper is designed to be easily and quickly fit using the R-INLA package. We apply this framework to a case study involving particulate air pollution over the UK where a major reduction in the size of a monitoring network through time occurred. It is demonstrated that a significant response-biased reduction in the air quality monitoring network occurred, namely the relocation of monitoring sites to locations with the highest pollution levels, and the routine removal of sites at locations with the lowest. We also show that the network was consistently unrepresenting levels of particulate matter seen across much of GB throughout the operating life of the network. Finally we show that this may have led to a severe overreporting of the population-average exposure levels experienced across GB. This could have great impacts on estimates of the health effects of black smoke levels. Full Article
sam Estimating abundance from multiple sampling capture-recapture data via a multi-state multi-period stopover model By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Hannah Worthington, Rachel McCrea, Ruth King, Richard Griffiths. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2043--2064.Abstract: Capture-recapture studies often involve collecting data on numerous capture occasions over a relatively short period of time. For many study species this process is repeated, for example, annually, resulting in capture information spanning multiple sampling periods. To account for the different temporal scales, the robust design class of models have traditionally been applied providing a framework in which to analyse all of the available capture data in a single likelihood expression. However, these models typically require strong constraints, either the assumption of closure within a sampling period (the closed robust design) or conditioning on the number of individuals captured within a sampling period (the open robust design). For real datasets these assumptions may not be appropriate. We develop a general modelling structure that requires neither assumption by explicitly modelling the movement of individuals into the population both within and between the sampling periods, which in turn permits the estimation of abundance within a single consistent framework. The flexibility of the novel model structure is further demonstrated by including the computationally challenging case of multi-state data where there is individual time-varying discrete covariate information. We derive an efficient likelihood expression for the new multi-state multi-period stopover model using the hidden Markov model framework. We demonstrate the significant improvement in parameter estimation using our new modelling approach in terms of both the multi-period and multi-state components through both a simulation study and a real dataset relating to the protected species of great crested newts, Triturus cristatus . Full Article