mp

This week's sponsor: O’REILLY DESIGN CONFERENCE

O’REILLY DESIGN CONFERENCE - get the skills and insights you need to design the products of the future. Save 20% with code ALIST




mp

India’s fuel consumption dips 46 per cent in April; expected to rebound in May

Petrol sales were down 60.43 per cent to 9,73,000 tonnes in April




mp

K7 Computing bags performance awards for security solution

The city-based K7 Computing Pvt Ltd, provider of cyber security solutions, has topped the winners list for the Advanced+ Performance Award from AV-Com




mp

Rashtriya Chemicals & Fertilisers records 35 per cent hike in sale of ‘Suphala’ fertilisers

A PIB press statement said that Rashtriya Chemicals & Fertilisers Ltd (RCF) has registered a hike of 35.47 per cent in the sale of fertilisers und




mp

Covid-19: Pandemic may force automobile companies to adopt more automation on shop-floor

A digital shop-floor with specific interventions on planning and execution will become the new normal, says EY India Partner and Automotive Sector Leader Vinay Raghunath




mp

Coronavirus in US: Obama calls Trump’s response as chaotic disaster

Obama cast the US response to the virus as an outgrowth of tribalism as he sought to emphasise the urgency of the November election




mp

'Thank you for creating mommy': Sara Ali Khan makes mother Amrita Singh & grandmother Rukhsana Sultana feel special

Sara Ali Khan shared a beautiful picture of Amrita Singh and Rukhsana Sultana holding her newborn self




mp

'Absolute chaotic disaster': Leaked call reveals Obama's take on Trump's handling of COVID-19 pandemic

During his call with 3,000 members of the Obama Alumni Association, Obama urged his supporters to show their full support towards Democratic presidential candidate Joe Biden.




mp

Massive dust storm hits Delhi-NCR; accompanying rains bring relief from summer heat

The change in weather and the dust storm was witnessed in areas from Noida to Rajouri Garden in West Delhi.




mp

How reigning F1 champ Hamilton is spending downtime

'I'm excited to get back in, I really do miss it. This has been almost a blessing on one side because it gives you more appreciation for the things that you love and do.'




mp

Tracking US President Donald Trump’s response to Covid-19 through his top 10 quotes




mp

SRK announces competition for budding filmmakers to make scary indoor movie




mp

Golden Globes makes temporary changes to foreign language film eligibility rules




mp

Random sampling finds two positive cases in two days in Panchkula




mp

Ayurveda medicine trial to begin on asymptomatic Covid-19 patients in Chandigarh




mp

Kerala continues to deal competently with the Covid-19 pandemic as well




mp

Indian women’s archery team to get final chance at Olympic quota in June next year




mp

Donald Trump congratulates UFC for restarting sports




mp

Device for source position stabilization and beam parameter monitoring at inverse Compton X-ray sources

Compact X-ray sources based on inverse Compton scattering provide brilliant and partially coherent X-rays in a laboratory environment. The cross section for inverse Compton scattering is very small, requiring high-power laser systems as well as small laser and electron beam sizes at the interaction point to generate sufficient flux. Therefore, these systems are very sensitive to distortions which change the overlap between the two beams. In order to monitor X-ray source position, size and flux in parallel to experiments, the beam-position monitor proposed here comprises a small knife edge whose image is acquired with an X-ray camera specifically designed to intercept only a very small fraction of the X-ray beam. Based on the source position drift recorded with the monitor, a closed-loop feedback stabilizes the X-ray source position by adjusting the laser beam trajectory. A decrease of long-term source position drifts by more than one order of magnitude is demonstrated with this device. Consequently, such a closed-loop feedback system which enables stabilization of source position drifts and flux of inverse Compton sources in parallel to experiments has a significant impact on the performance of these sources.




mp

A versatile nanoreactor for complementary in situ X-ray and electron microscopy studies in catalysis and materials science

Two in situ `nanoreactors' for high-resolution imaging of catalysts have been designed and applied at the hard X-ray nanoprobe endstation at beamline P06 of the PETRA III synchrotron radiation source. The reactors house samples supported on commercial MEMS chips, and were applied for complementary hard X-ray ptychography (23 nm spatial resolution) and transmission electron microscopy, with additional X-ray fluorescence measurements. The reactors allow pressures of 100 kPa and temperatures of up to 1573 K, offering a wide range of conditions relevant for catalysis. Ptychographic tomography was demonstrated at limited tilting angles of at least ±35° within the reactors and ±65° on the naked sample holders. Two case studies were selected to demonstrate the functionality of the reactors: (i) annealing of hierarchical nanoporous gold up to 923 K under inert He environment and (ii) acquisition of a ptychographic projection series at ±35° of a hierarchically structured macroporous zeolite sample under ambient conditions. The reactors are shown to be a flexible and modular platform for in situ studies in catalysis and materials science which may be adapted for a range of sample and experiment types, opening new characterization pathways in correlative multimodal in situ analysis of functional materials at work. The cells will presently be made available for all interested users of beamline P06 at PETRA III.




mp

X-ray reflecto-interferometer based on compound refractive lenses

An X-ray amplitude-splitting interferometer based on compound refractive lenses, which operates in the reflection mode, is proposed and realized. The idea of a reflecto-interferometer is to use a very simplified experimental setup where a focused X-ray beam reflected from parallel flat surfaces creates an interference pattern in a wide angular range. The functional capabilities of the interferometer were experimentally tested at the European Synchrotron Radiation Facility (ESRF) ID06 beamline in the X-ray energy range from 10 keV to 15 keV. The main features of the proposed approach, high spatial and temporal resolution, were demonstrated experimentally. The reflections from free-standing Si3N4 membranes, gold and resist layers were studied. Experimentally recorded interferograms are in good agreement with our simulations. The main advantages and future possible applications of the reflecto-interferometer are discussed.




mp

BioStruct-Africa: empowering Africa-based scientists through structural biology knowledge transfer and mentoring – recent advances and future perspectives

Being able to visualize biology at the molecular level is essential for our understanding of the world. A structural biology approach reveals the molecular basis of disease processes and can guide the design of new drugs as well as aid in the optimization of existing medicines. However, due to the lack of a synchrotron light source, adequate infrastructure, skilled persons and incentives for scientists in addition to limited financial support, the majority of countries across the African continent do not conduct structural biology research. Nevertheless, with technological advances such as robotic protein crystallization and remote data collection capabilities offered by many synchrotron light sources, X-ray crystallography is now potentially accessible to Africa-based scientists. This leap in technology led to the establishment in 2017 of BioStruct-Africa, a non-profit organization (Swedish corporate ID: 802509-6689) whose core aim is capacity building for African students and researchers in the field of structural biology with a focus on prevalent diseases in the African continent. The team is mainly composed of, but not limited to, a group of structural biologists from the African diaspora. The members of BioStruct-Africa have taken up the mantle to serve as a catalyst in order to facilitate the information and technology transfer to those with the greatest desire and need within Africa. BioStruct-Africa achieves this by organizing workshops onsite at our partner universities and institutions based in Africa, followed by post-hoc online mentoring of participants to ensure sustainable capacity building. The workshops provide a theoretical background on protein crystallography, hands-on practical experience in protein crystallization, crystal harvesting and cryo-cooling, live remote data collection on a synchrotron beamline, but most importantly the links to drive further collaboration through research. Capacity building for Africa-based researchers in structural biology is crucial to win the fight against the neglected tropical diseases, e.g. ascariasis, hookworm, trichuriasis, lymphatic filariasis, active trachoma, loiasis, yellow fever, leprosy, rabies, sleeping sickness, onchocerciasis, schistosomiasis, etc., that constitute significant health, social and economic burdens to the continent. BioStruct-Africa aims to build local and national expertise that will have direct benefits for healthcare within the continent.




mp

Reducing sample consumption for serial crystallography using acoustic drop ejection

Efficient sample delivery is an essential aspect of serial crystallography at both synchrotrons and X-ray free-electron lasers. Rastering fixed target chips through the X-ray beam is an efficient method for serial delivery from the perspectives of both sample consumption and beam time usage. Here, an approach for loading fixed targets using acoustic drop ejection is presented that does not compromise crystal quality, can reduce sample consumption by more than an order of magnitude and allows serial diffraction to be collected from a larger proportion of the crystals in the slurry.




mp

X-ray radiation damage to biological samples: recent progress

With the continuing development of beamlines for macromolecular crystallography (MX) over the last few years providing ever higher X-ray flux densities, it has become even more important to be aware of the effects of radiation damage on the resulting structures. Nine papers in this issue cover a range of aspects related to the physics and chemistry of the manifestations of this damage, as observed in both MX and small-angle X-ray scattering (SAXS) on crystals, solutions and tissue samples. The reports include measurements of the heating caused by X-ray irradiation in ruby microcrystals, low-dose experiments examining damage rates as a function of incident X-ray energy up to 30 keV on a metallo-enzyme using a CdTe detector of high quantum efficiency as well as a theoretical analysis of the gains predicted in diffraction efficiency using these detectors, a SAXS examination of low-dose radiation exposure effects on the dissociation of a protein complex related to human health, theoretical calculations describing radiation chemistry pathways which aim to explain the specific structural damage widely observed in proteins, investigation of radiation-induced damage effects in a DNA crystal, a case study on a metallo-enzyme where structural movements thought to be mechanism related might actually be radiation-damage-induced changes, and finally a review describing what X-ray radiation-induced cysteine modifications can teach us about protein dynamics and catalysis. These papers, along with some other relevant literature published since the last Journal of Synchrotron Radiation Radiation Damage special issue in 2017, are briefly summarized below.




mp

Improved calibration of area detectors using multiple placements

Calibration of area detectors from powder diffraction standards is widely used at synchrotron beamlines. From a single diffraction image, it is not possible to determine both the sample-to-detector distance and the wavelength, but, with images taken from multiple positions along the beam direction and where the relative displacement is known, the sample-to-detector distance and wavelength can both be determined with good precision. An example calibration using the GSAS-II software package is presented.




mp

X-ray fluorescence analysis of metal distributions in cryogenic biological samples using large-acceptance-angle SDD detection and continuous scanning at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III

A new Rococo 2 X-ray fluorescence detector was implemented into the cryogenic sample environment at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III, DESY, Hamburg, Germany. A four sensor-field cloverleaf design is optimized for the investigation of planar samples and operates in a backscattering geometry resulting in a large solid angle of up to 1.1 steradian. The detector, coupled with the Xspress 3 pulse processor, enables measurements at high count rates of up to 106 counts per second per sensor. The measured energy resolution of ∼129 eV (Mn Kα at 10000 counts s−1) is only minimally impaired at the highest count rates. The resulting high detection sensitivity allows for an accurate determination of trace element distributions such as in thin frozen hydrated biological specimens. First proof-of-principle measurements using continuous-movement 2D scans of frozen hydrated HeLa cells as a model system are reported to demonstrate the potential of the new detection system.




mp

XUV-driven plasma switch for THz: new spatio-temporal overlap tool for XUV–THz pump–probe experiments at FELs

A simple and robust tool for spatio-temporal overlap of THz and XUV pulses in in-vacuum pump–probe experiments is presented. The technique exploits ultrafast changes of the optical properties in semiconductors (i.e. silicon) driven by ultrashort XUV pulses that are probed by THz pulses. This work demonstrates that this tool can be used for a large range of XUV fluences that are significantly lower than when probing by visible and near-infrared pulses. This tool is mainly targeted at emerging X-ray free-electron laser facilities, but can be utilized also at table-top high-harmonics sources.




mp

Picosecond pump–probe X-ray scattering at the Elettra SAXS beamline

A new setup for picosecond pump–probe X-ray scattering at the Austrian SAXS beamline at Elettra-Sincrotrone Trieste is presented. A high-power/high-repetion-rate laser has been installed on-site, delivering UV/VIS/IR femto­second-pulses in-sync with the storage ring. Data acquisition is achieved by gating a multi-panel detector, capable of discriminating the single X-ray pulse in the dark-gap of the Elettra hybrid filling mode. Specific aspects of laser- and detection-synchronization, on-line beam steering as well protocols for spatial and temporal overlap of laser and X-ray beam are also described. The capabilities of the setup are demonstrated by studying transient heat-transfer in an In/Al/GaAs superlattice structure and results are confirmed by theoretical calculations.




mp

A lathe system for micrometre-sized cylindrical sample preparation at room and cryogenic temperatures

A simple two-spindle based lathe system for the preparation of cylindrical samples intended for X-ray tomography is presented. The setup can operate at room temperature as well as under cryogenic conditions, allowing the preparation of samples down to 20 and 50 µm in diameter, respectively, within minutes. Case studies are presented involving the preparation of a brittle biomineral brachiopod shell and cryogenically fixed soft brain tissue, and their examination by means of ptychographic X-ray computed tomography reveals the preparation method to be mainly free from causing artefacts. Since this lathe system easily yields near-cylindrical samples ideal for tomography, a usage for a wide variety of otherwise challenging specimens is anticipated, in addition to potential use as a time- and cost-saving tool prior to focused ion-beam milling. Fast sample preparation becomes especially important in relation to shorter measurement times expected in next-generation synchrotron sources.




mp

Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments

Possibilities in auxiliary technique combinations with small- and wide-angle X ray scattering are described, as well as more complicated sample environments used in X-ray and neutron scattering.




mp

Reconciling the regulatory role of Munc18 proteins in SNARE-complex assembly

Mammalian Munc18 proteins are essential for membrane fusion and human health. Here, we review the literature describing structural and in vitro data, and identify a possible explanation for the conflicting functional roles that have been reported.




mp

Diffuse scattering and partial disorder in complex structures

This review discusses the state of the field of single-crystal diffuse scattering (SCDS), including detectors, data collection and the modelling techniques. High quality, three-dimensional volumes of SCDS data can now be collected at synchrotron light sources, allowing increasingly detailed and quantitative analyses to be undertaken.




mp

Investigating increasingly complex macromolecular systems with small-angle X-ray scattering

A review of recent and ongoing development and results within the field of biological solution small-angle X-ray scattering (BioSAXS), with a focus on the increasing complexity of biological samples, data collection and data evaluation strategies.




mp

Rochelle salt – a structural reinvestigation with improved tools. I. The high-T paraelectric phase at 308 K

A novel sample cell with control of temperature and relative humidity permitted collection of data of excellent quality, enabling unrestrained refinement of all atomic parameters. One of the K atoms in the structure is disordered; very strong anisotropy in three of the four water O atoms indicates partial static disorder, which does not involve the bonded H atoms.