s

Preparation of fluorinated olefins via catalytic dehydrohalogenation of halogenated hydrocarbons

A process for making a fluorinated olefin having the step of dehydrochlorinating a hydrochlorofluorocarbon having at least one hydrogen atom and at least one chlorine atom on adjacent carbon atoms, preferably carried out in the presence of a catalyst selected from the group consisting of (i) one or more metal halides, (ii) one or more halogenated metal oxides, (iii) one or more zero-valent metals/metal alloys, (iv) a combination of two or more of the foregoing.




s

Process for producing 2,3,3,3-tetrafluoropropene

This invention provides a process for producing 2,3,3,3-tetrafluoropropene, the process comprising: (1) a first reaction step of reacting hydrogen fluoride with at least one chlorine-containing compound selected from the group consisting of a chloropropane represented by Formula (1): CClX2CHClCH2Cl, wherein each X is the same or different and is CI or F, a chloropropene represented by Formula (2): CClY2CCl═CH2, wherein each Y is the same or different and is CI or F, and a chloropropene represented by Formula (3): CZ2═CClCH2Cl, wherein each Z is the same or different and is CI or F in a gas phase in the absence of a catalyst while heating; and (2) a second reaction step of reacting hydrogen fluoride with a reaction product obtained in the first reaction step in a gas phase in the presence of a fluorination catalyst while heating. According to the process of this invention, 2,3,3,3-tetrafluoropropene (HFO-1234yf) can be obtained with high selectivity, and catalyst deterioration can be suppressed.




s

Switchable hydrophilicity solvents and methods of use thereof

A solvent that reversibly converts from a hydrophobic liquid form to hydrophilic liquid form upon contact with water and a selected trigger, e.g., contact with CO2, is described. The hydrophilic liquid form is readily converted back to the hydrophobic liquid form and water. The hydrophobic liquid is an amidine or amine. The hydrophilic liquid form comprises an amidinium salt or an ammonium salt.




s

Process for producing silica-comprising dispersions comprising polyetherols or polyether amines

Process for producing silica-comprising dispersions comprising a polyetherol or a polyether amine, which comprises the steps of (i) admixing an aqueous silica sol (K) having an average particle diameter of from 1 to 150 nm and a silica content, calculated as SiO2, of from 1 to 60% by weight and a pH of from 1 to 6 with at least one polyetherol (b1) and/or polyether amine (b2) based on ethylene oxide and/or propylene oxide and having an average OH or amine functionality of from 2 to 6 and a number average molecular weight of from 62 to 6000 g/mol,(ii) distilling off at least part of the water,(iii) admixing the dispersion with at least one compound (S) having at least one at least monoalkoxylated silyl group and at least one alkyl, cycloalkyl or aryl substituent, where this substituent may have groups which are reactive toward an alcohol, an amine or an isocyanate in an amount of from 0.1 to 20 μmol of (S) per m2 of surface area of (K), where steps (i) and (iii) can be carried out simultaneously or in succession in any order, (iv) optionally adjusting the pH of the silica-comprising dispersions obtained to a value of from 7 to 12 by adding a basic compound, where step (iv) can also be carried out between steps (ii) and (iii).




s

Modified hybrid silica aerogels

Disclosed and claimed herein are hybrid silica aerogels containing non-polymeric, functional organic materials covalently bonded at one or both ends to the silica network of the aerogels through a C—Si bond between a carbon atom of the organic material and a silicon atom of the aerogel network. Methods of their preparation are also disclosed.




s

Recovery and separation of crude oil and water from emulsions

A composition and method demulsify a produced emulsion from anionic surfactants and polymer (SP) and alkali, surfactants, and polymer (ASP). The produced emulsion is demulsified into oil and water. In one embodiment, the composition includes a surfactant. The surfactant comprises a cationic surfactant, an amphoteric surfactant, or any combinations thereof.




s

Compositions comprising supercritical carbon dioxide and metallic compounds

Methods of increasing the solubility of a base in supercritical carbon dioxide include forming a complex of a Lewis acid and the base, and dissolving the complex in supercritical carbon dioxide. The Lewis acid is soluble in supercritical carbon dioxide, and the base is substantially insoluble in supercritical carbon dioxide. Methods for increasing the solubility of water in supercritical carbon dioxide include dissolving an acid or a base in supercritical carbon dioxide to form a solution and dissolving water in the solution. The acid or the base is formulated to interact with water to solubilize the water in the supercritical carbon dioxide. Some compositions include supercritical carbon dioxide, a hydrolysable metallic compound, and at least one of an acid and a base. Some compositions include an alkoxide and at least one of an acid and a base.




s

Glitter aerosol coating composition

An aerosol glitter composition for achieving the “sugar” glitter effect comprises a solvent, binder, square polyester glitter, optionally a rheology modifier, and propellant.




s

Additives for inhibiting gas hydrate formation

The invention relates to the use of polymers, containing between 1 and 100 mol % of structural units of the formula (1), wherein R1 means hydrogen or C1-C6 alkyl, A means C2-C4 alkylene groups, and B means C2-C4 alkylene groups, with the stipulation that A is different from B, and x and y mean an integer from 1 to 100 independent of each other, in amounts of 0.01 to 2 wt % relative to the water phase, as gas hydrate inhibitors.




s

Additives for inhibition of gas hydrate formation

The invention provides for the use of copolymers comprising 1 to 99 mol % of structural units of the formula (1) in which R1 is hydrogen or C1-C6-alkyl, A is C2-C4-alkylene groups and B is C2-C4-alkylene groups, with the proviso that A is different than B, and x, y are each independently an integer of 1-100, and 1 to 99 mol % of structural units of the formula (3) in which R6 is hydrogen or C1-C6-alkyl, D is C2-C4-alkylene groups and z is an integer of 1-50, in amounts of 0.01 to 2% by weight, based on the water phase, as gas hydrate inhibitors.




s

Highly dispersed metal catalysts

The present invention relates to a novel method for preparing a new type of catalyst for the oxidation of CO in a reactant gas or air. The method provides the preparation of a catalyst having nano-sized metal particles and a capping agent deposited on a solid support. The size and distribution of the metal particles can be easily controlled by adjusting reaction condition and the capping agent used. The catalyst prepared has high activity at low temperature toward selective oxidation of CO and is stable over an extended period of time. The catalyst can be used in air filter devices, hydrogen purification processes, automotive emission control devices (decomposition of NOx, x is the integer 1 or 2), F-T synthesis, preparation of fuel-cell electrode, photocatalysis and sensors.




s

Stabilized formulations of fatty acids

Disclosed herein are stabilized powder and aqueous formulations comprising a substantially water insoluble lipophilic bioactive compound and a micelle-forming surfactant. In one embodiment, the formulation further comprises a water soluble reducing agent, and/or a water insoluble reducing agent, and/or a metal chelator, and/or a metal bisulfite reducing agent, or combinations thereof, wherein the formulation remains substantially clear and stable when stored at or below room temperature for a period of at least 6 months or at least 12 months; and methods for preparing these formulations.




s

Compressed gas aerosol composition in steel can

An aqueous compressed gas aerosol formulation in combination with a lined steel can, which may also optionally be tin plated, to provide corrosion stability, fragrance stability and color stability. An aerosol formulation of particular advantage for use is an air and/or fabric treatment formulation. The combination provides a compatibility which allows for the ability to use a broader fragrance pallet for the air and/or fabric treatment formulation which is aqueous based in major proportion. The formulation includes, in addition to an aqueous carrier, a fragrance, nonionic surfactant(s) or a blend of nonionic surfactant(s) and cationic surfactant(s), a compressed gas propellant(s), pH adjuster(s), and corrosion inhibitor(s). The formulation has a pH of about 8 to less than 10. The corrosion inhibitor(s) is(are) mild in strength and used in a minor amount.




s

Sizing and rheology agents for gypsum stucco systems for water resistant panel production

Emulsions, and processes for making the emulsions, useful for imparting water resistance to gypsum products are disclosed. Process for making the emulsion and gypsum products made from the emulsion are also disclosed. The emulsions of the invention include at least one paraffin wax and a hydrophilic metallic salt. The emulsions of the invention may further include a saponifiable wax substitute for montan wax. The emulsions of the invention may further include a biocide.




s

Fluid cocamide monoethanolamide concentrates and methods of preparation

The invention is drawn to fluid concentrate formulations of fatty acid monoethanolamides comprising (a) about 71-76% by weight of one or more C8-C22 fatty acid monoethanolamides, (b) about 15-17% by weight of water, and (c) about 10-12% by weight of one or more hydrotropes, based on the fluid formulation, wherein the fluid formulation is homogeneous, pumpable and color stable at a temperature of less than 55° C. A preferred embodiment is drawn to fluid concentrate formulations of cocamide monoethanolamide (CMEA) consisting of (a) about 71-76% by weight of CMEA, (b) about 15-17% by weight of water, and (c) about 10-12% by weight of glycerol, based on the fluid formulation. Methods of preparing the fluid concentrate formulations mulations are also disclosed. The fluid concentrate formulations of fatty acid monoethanolamides are useful in the preparation of cosmetic and pharmaceutical compositions.




s

Emulsions of heat transfer fluids including nanodroplets to enhance thermal conductivities of the fluids

A heat transfer fluid emulsion includes a heat transfer fluid, and liquid droplets dispersed within the heat transfer fluid, where the liquid droplets are substantially immiscible with respect to the heat transfer fluid and have dimensions that are no greater than about 100 nanometers. In addition, the thermal conductivity of the heat transfer fluid emulsion is greater than the thermal conductivity of the heat transfer fluid.




s

Heterobifunctional poly(ethylene glycol) derivatives and methods for their preparation

This invention provides a method related to the preparation of derivatives of poly(ethylene glycol), wherein the method comprises increasing the pH of an aqueous composition comprising a poly(ethylene glycol) bearing a —O—(CH2)n—CO2R3 functional group to result in an aqueous composition comprising a poly(ethylene glycol) bearing a —O—(CH2)n—CO2H functional group, wherein R3 is alkyl and (n) in each instance is 1-6.




s

Polymers and use thereof as dispersants having a foam-inhibiting effect

The invention relates to polymers that can be obtained by polymerizing the monomers (A), (B), and (D), and optionally (C), where (A) is a monomer of formula (I), wherein A stands for C2 to C4 alkylene, B stands for a C2 to C4 alkylene different from A, R stands for hydrogen or methyl, m stands for a number from 1 to 500, n stands for a number from 1 to 500, (B) is an ethylenically unsaturated monomer that contains at least one carboxylic acid function, (C) is optionally a further ethylenically unsaturated monomer different from (A) and (B), (D) is a monomer of formula (II), wherein D stands for C2 to C4 alkylene, E stands for a C2 to C4 alkylene group different from D, F stands for a C2 to C4 alkylene group different from E, R stands for hydrogen or methyl, o stands for a number from 1 to 500, p stands for a number from 1 to 500, q stands for a number from 1 to 500, and wherein the weight fraction of the monomers is 35 to 99% for the macromonomer (A), 0.5 to 45% for the monomer (B), 0 to 20% for the monomer (C), and 1 to 20% for the monomer (D), and to the use of said polymers as defoamers for inorganic solid suspensions.




s

Method for crosslinking a colloid, and crosslinked colloid therefrom

The disclosure provides a method for crosslinking a colloid, including: (a) providing a colloid solution; (b) adding a crosslinking agent and solid particles to the colloid solution, wherein the amount of solid particles added is enough to convert the colloid solution into a solid mixture, and wherein a crosslinking reaction proceeds in the solid mixture; and (c) removing the solid particles from the solid mixture.




s

Process for the treatment of a hydrophobic surface by an aqueous phase

The invention relates to process for the treatment of a hydrophobic surface by a liquid film comprising an aqueous phase comprising the coating of said surface by the liquid whose aqueous phase comprises an effective amount of an agent of modification of the properties of surface and an active agent.




s

Method for producing polymer particles

A method for producing polymer particles includes a preparation step for preparing a first oily liquid containing an oily olefin monomer, a radical polymerization initiator, and an iodine molecule, a synthesis step for obtaining a second oily liquid containing at least an iodine compound produced by a reaction between a radical generated by cleavage of the radical polymerization initiator and the iodine molecule in the first oily liquid, a suspension step for obtaining an oil droplet of the second oily liquid by suspending the second oily liquid in water, and a polymerization step for polymerizing the oily olefin monomer in the oil droplet.




s

Polymers as additives for the separation of oil and water phases in emulsions and dispersions

Oil-water dispersions and emulsions derived from petroleum industry operations are demulsified and clarified using anionic polymers. Formation of such oil-water dispersion and emulsions is inhibited and mitigated using the anionic polymers. The anionic polymers comprise: A) 2-80% by weight of at least one C3-C8 α,β-ethylenically unsaturated carboxylic acid monomer; B) 15-80% by weight of at least one nonionic, copolymerizable α,β-ethylenically unsaturated monomer; C) 1-50% by weight of one or more of the following monomers: C1) at least one nonionic vinyl surfactant ester; or C2) at least one nonionic, copolymerizable α,β-ethylenically unsaturated monomer having longer polymer chains than monomer B), or C3) at least one nonionic urethane monomer; and, optionally, D) 0-5% by weight of at least one crosslinker.




s

Production of small particles

The present invention relates to a method for producing particles of a compound of interest. In a method according to the invention a solution is provided of the compound of interest in a solvent. This solution is thickened or gelled and particles are formed. The invention further relates to a particle that is obtainable by the invention.




s

Compositions comprising E-1,2-difluoroethylene and uses thereof

The present invention relates to compositions for use in refrigeration, air-conditioning, and heat pump systems wherein the composition comprises E-1,2-difluoroethylene. The compositions of the present invention are useful in processes for producing cooling or heat, as heat transfer fluids, foam blowing agents, aerosol propellants, and power cycle working fluids.




s

Compositions comprising Z-1,2-difluoroethylene and uses thereof

The present invention relates to compositions for use in refrigeration, air-conditioning, and heat pump systems wherein the composition comprises Z-1,2-difluoroethylene (Z-HFO-1132a). The compositions of the present invention are useful in processes for producing cooling or heat, as heat transfer fluids, foam blowing agents, aerosol propellants, and power cycle working fluids.




s

Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures

Particular aspects provide compositions comprising an electrokinetically altered oxygenated aqueous fluid, wherein the oxygen in the fluid is present in an amount of at least 25 ppm. In certain aspects, the electrokinetically altered oxygenated aqueous fluid comprises electrokinetically modified or charged oxygen species present in an amount of at least 0.5 ppm. In certain aspects the electrokinetically altered oxygenated aqueous fluid comprises solvated electrons stabilized by molecular oxygen, and wherein the solvated electrons present in an amount of at least 0.01 ppm. In certain aspects, the fluid facilitates oxidation of pyrogallol to purpurogallin in the presence of horseradish peroxidase enzyme (HRP) in an amount above that afforded by a control pressure pot generated or fine-bubble generated aqueous fluid having an equivalent dissolved oxygen level, and wherein there is no hydrogen peroxide, or less than 0.1 ppm of hydrogen peroxide present in the electrokinetic oxygen-enriched aqueous fluid.




s

Sizing and rheology agents for gypsum stucco systems for water resistant panel production

Emulsions, and processes for making the emulsions, useful for imparting water resistance to gypsum products are disclosed. Process for making the emulsion and gypsum products made from the emulsion are also disclosed. The emulsions of the invention include at least one paraffin wax and a hydrophilic metallic salt. The emulsions of the invention may further include a saponifiable wax substitute for montan wax. The emulsions of the invention may further include a biocide.




s

Solid defoaming agent

A method for producing a solid antifoaming agent comprising the following steps: providing an alkaline solution; adding an oil to the above alkaline solution to produce a saponification reaction; adding a liquid antifoaming agent; and putting aside the mixture containing the above alkaline solution, the oil and the liquid antifoaming agent to form the solid antifoaming agent. The ingredients of the solid antifoaming agent according to the present invention include 5˜40 weight percent vegetable oil, a 20˜40 weight percent sodium hydroxide solution and a 30˜60 weight percent liquid antifoaming agent.




s

Manufacturing method of glass substrate for magnetic disk, magnetic disk, and magnetic recording / reproducing device

A manufacturing method of a glass substrate for a magnetic disk is provided whereby nano pits and/or nano scratches cannot be easily produced in polishing a principal face of a glass substrate using a slurry containing zirconium oxide as an abrasive. The manufacturing method of a glass substrate for a magnetic disk includes, for instance, a polishing step of polishing a principal face of a glass substrate using a slurry containing, as an abrasive, zirconium oxide abrasive grains having monoclinic crystalline structures (M) and tetragonal crystalline structures (T).




s

Ultrastable particle-stabilized foams and emulsions

Described is a method to prepare wet foams exhibiting long-term stability wherein colloidal particles are used to stabilize the gas-liquid interface, said particles being initially inherently partially lyophobic particles or partially lyophobized particles having mean particle sizes from 1 nm to 20 μm. In one aspect, the partially lyophobized particles are prepared in-situ by treating initially hydrophilic particles with amphiphilic molecules of specific solubility in the liquid phase of the suspension.




s

Polymer particles, nucleic acid polymer particles and methods of making and using the same

The disclosure relates to methods of making polymer particles, said methods including the steps of: making an aqueous gel reaction mixture; forming an emulsion having dispersed aqueous phase micelles of gel reaction mixture in a continuous phase; adding an initiator oil comprising at least one polymerization initiator to the continuous phase; and performing a polymerization reaction in the micelles. Further, the initiator oil is present in a volume % relative to a volume of the aqueous gel reaction mixture of between about 1 vol % to about 20 vol %. The disclosure also relates to methods of making nucleic acid polymer particles having the same method steps and wherein the aqueous gel reaction mixture includes a nucleic acid fragment, such as a primer.




s

Method of reducing downward flow of air currents on the lee side of exterior structures

A method of reducing the downward flow of air currents on the leeward side of an emissions emitting structure including the step of using a system that includes components chosen from the group consisting of one or more mechanical air moving devices; physical structures; and combinations thereof to create an increase in the air pressure within a volume of air on the leeward side of an emissions emitting structure having emissions that become airborne. The increased air pressure prevents or lessens downward flow of emissions that would occur without the use of the system and increases the safety by which one can travel a road or other transportation route that might otherwise be visually obscured by the emissions and the safety of the property and those within the area where emissions occur.




s

Cerium containing nanoparticles prepared in non-polar solvent

A method of making cerium-containing metal oxide nanoparticles in non-polar solvent eliminates the need for solvent shifting steps. The direct synthesis method involves: (a) forming a reaction mixture of a source of cerous ion and a carboxylic acid, and optionally, a hydrocarbon solvent; and optionally further comprises a non-cerous metal ion; (b) heating the reaction mixture to oxidize cerous ion to ceric ion; and (c) recovering a nanoparticle of either cerium oxide or a mixed metal oxide comprising cerium. The cerium-containing oxide nanoparticles thus obtained have cubic fluorite crystal structure and a geometric diameter in the range of about 1 nanometer to about 20 nanometers. Dispersions of cerium-containing oxide nanoparticles prepared by this method can be used as a component of a fuel or lubricant additive.




s

Method for producing emulsion and thereby obtained emulsion

A method for producing an emulsion is provided. At least a fluid to be processed that forms continuous phase and a fluid to be processed that forms dispersed phase are mixed in a thin film fluid formed between processing surfaces arranged to be opposite to each other so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, whereby the emulsion having variation coefficient of 0.3 to 30% in a particle size distribution is obtained.




s

Bi-modal emulsions

A process for preparing bi-modal water emulsions is disclosed comprising: I) forming a mixture comprising; A) 100 parts by weight of a hydrophobic oil, B) 1 to 1000 part by weight of a water continuous emulsion having at least one surfactant, II) admixing additional quantities of the water continuous emulsion and/or water to the mixture from step I) to form a bi-modal emulsion.




s

Methods for producing a dispersion containing silicon dioxide particles and cationization agent

Process for preparing a dispersion comprising silicon dioxide particles and cationizing agents, by dispersing 50 to 75 parts by weight of water, 25 to 50 parts by weight of silicon dioxide particles having a BET surface area of 30 to 500 m2/g and 100 to 300 μg of cationizing agent per square meter of the BET surface area of the silicon dioxide particles, wherein the cationizing agent is obtainable by reacting at least one haloalkyl-functional alkoxysilane, hydrolysis products, condensation products and/or mixtures thereof with at least one aminoalcohol and water; and optionally removing the resulting hydrolysis alcohol from the reaction mixture. Also the process for preparing the dispersion, wherein the cationizing agent comprises one or more quaternary, aminoalcohol-functional, organosilicon compounds of formula III and/or condensation products thereof, wherein Ru and Rv are independently C2-4 alkyl group, m is 2-5 and n is 2-5.




s

Method and apparatus for fluid dispersion

A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.




s

Aqueous epoxy and organo-substituted branched organopolysiloxane emulsions

Aqueous emulsions of epoxy- and organo-substituted, branched organopolysiloxanes are prepared by emulsifying the latter in water with the aid of a dispersing agent. The emulsions are storage stable and are useful in multi-component coating, adhesive, and binder systems.




s

Method of testing integrity of microporous membrane

The present invention provides a method of testing the integrity of a microporous membrane using a colloid solution containing metal particles or metal compound particles that can accurately determine the integrity of a virus removal membrane formed of hydrophilized synthetic polymer that has been subjected to protein solution filtration, and to provide a method of producing the colloid solution. The colloid solution comprises a solvent and metal particles dispersed in the solvent, and the solvent comprises components (A) and (B), (A) and (C), or (A), (B), and (C), wherein the component (A) is an anionic polymer having a sulfonic acid group, the component (B) is at least one nonionic surfactant selected from the group consisting of a nonionic surfactant having a polycyclic structure in a hydrophobic moiety and a polyoxyethylene sorbitan fatty acid ester, and the component (C) is a water-soluble polymer having a pyrrolidone group.




s

Metal nanoparticle dispersion usable for ejection in the form of fine droplets to be applied in the layered shape

According to the present invention, a metal nanoparticle dispersion suitable to multiple layered coating by jetting in the form of fine droplets is prepared by dispersing metal nanoparticles having an average particle size of 1 to 100 nm in a dispersion solvent having a boiling point of 80° C. or higher in such a manner that the volume percentage of the dispersion solvent is selected in the range of 55 to 80% by volume and the fluid viscosity (20° C.) of the dispersion is chosen in the range of 2 mPa·s to 30 mPa·s, and then when the dispersion is discharged in the form of fine droplets by inkjet method or the like, the dispersion is concentrated by evaporation of the dispersion solvent in the droplets in the course of flight, coming to be a viscous dispersion which can be applicable to multi-layered coating.




s

Antibacterial sol-gel coating solution

Antibacterial sol-gel coating solutions are used to form articles. The antibacterial sol-gel coating solution includes at least one Ti or Si-containing compound that is capable of hydrolyzing to form a base film; a regulating agent capable of regulating the hydrolysis rate of the Ti or Si-containing compounds, an organic solvent, water, and at least one soluble compound of an antibacterial metal, such as Ag, Cu, Mg, Zn, Sn, Fe, Co, Ni, or Ce.




s

Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.




s

Foams of graphene, method of making and materials made thereof

Method for making a liquid foam from graphene. The method includes preparing an aqueous dispersion of graphene oxide and adding a water miscible compound to the aqueous dispersion to produce a mixture including a modified form of graphene oxide. A second immiscible fluid (a gas or a liquid) with or without a surfactant are added to the mixture and agitated to form a fluid/water composite wherein the modified form of graphene oxide aggregates at the interfaces between the fluid and water to form either a closed or open cell foam. The modified form of graphene oxide is the foaming agent.




s

Aqueous delivery system for low surface energy structures

An aqueous delivery system is described including at least one surfactant and at least one water insoluble wetting agent. Further described are low surface energy substrates, such as microporous polytetrafluoroethylene, coated with such an aqueous solution so as to impart a change in at least one surface characteristic compared to the surface characteristics of the uncoated low surface energy substrate.




s

Oil-in-water silicone emulsion composition

Provided is an oil-in-water silicone emulsion composition that has a low silicone oligomer content, and that can form, even without the use of an organotin compound as a curing catalyst, a cured film that exhibits satisfactory strength and satisfactory adherence to a substrate, through the removal of water fraction. An oil-in-water silicone emulsion composition comprising (A) 100 mass parts of a polyorganosiloxane that contains in each molecule at least two groups selected from the group consisting of a silicon-bonded hydroxyl group, alkoxy group, and alkoxyalkoxy group, (B) 0.1 to 200 mass parts of a colloidal silica, (C) 0.1 to 100 mass parts of an aminoxy group-containing organosilicon compound that has in each molecule an average of two silicon-bonded aminoxy groups, (D) 1 to 100 mass parts of an ionic emulsifying agent, (E) 0.1 to 50 mass parts of a non-ionic emulsifying agent, and (F) 10 to 500 mass parts of water.




s

Data processing apparatus and method for controlling data processing apparatus

A data processing apparatus includes multiple processing means that are connected in a ring shape via corresponding communication means respectively. Each communication means includes a reception means for receiving data from a previous communication means, and a transmission means for transmitting data to a next communication means. Connection information is assigned to each of the reception means and the transmission means. The communication means, when receiving a packet that has same connection information as one assigned to its reception means, causes the corresponding processing means to perform data processing on the packet, sets the connection information assigned to its transmission means to the packet, and transmits the packet to the next communication means, and when receiving a packet that has connection information that is not same as one assigned to its reception means, transmits the packet to the next communication means without changing the connection information of the packet.




s

Interleaving data accesses issued in response to vector access instructions

A vector data access unit includes data access ordering circuitry, for issuing data access requests indicated by elements of earlier and a later vector instructions, one being a write instruction. An element indicating the next data access for each of the instructions is determined. The next data accesses for the earlier and the later instructions may be reordered. The next data access of the earlier instruction is selected if the position of the earlier instruction's next data element is less than or equal to the position of the later instruction's next data element minus a predetermined value. The next data access of the later instruction may be selected if the position of the earlier instruction's next data element is higher than the position of the later instruction's next data element minus a predetermined value. Thus data accesses from earlier and later instructions are partially interleaved.




s

Indirect designation of physical configuration number as logical configuration number based on correlation information, within parallel computing

A computing section is provided with a plurality of computing units and correlatively stores entries of configuration information that describes configurations of the plurality of computing units with physical configuration numbers that represent the entries of configuration information and executes a computation in a configuration corresponding to a designated physical configuration number. A status management section designates a physical configuration number corresponding to a status to which the computing section needs to advance the next time for the computing section and outputs the status to which the computing section needs to advance the next time as a logical status number that uniquely identifies the status to which the computing section needs to advance the next time in an object code. A determination section determines whether or not the computing section has stored an entry of configuration information corresponding to the status to which the computing section needs to advance the next time based on the logical status number that is output from the status management section. A rewriting section correlatively stores the entry of the configuration information and a physical configuration number corresponding to the entry of the configuration information in the computing section when the determination section determines that the computing section has not stored the entry of configuration information corresponding to the status to which the computing section needs to advance the next time.




s

Data processing device

A statue management section of a control section is provided with a corresponding real number storage section that stores a real number converted from a logical number by a configuration number converting section. When the corresponding real number storage section has stored configuration information with a real number of the next transition state, the state management section directly supplies the real number to the configuration information storage section in the next or later processing cycle.




s

Methods and apparatus for storing expanded width instructions in a VLIW memory for deferred execution

Techniques are described for decoupling fetching of an instruction stored in a main program memory from earliest execution of the instruction. An indirect execution method and program instructions to support such execution are addressed. In addition, an improved indirect deferred execution processor (DXP) VLIW architecture is described which supports a scalable array of memory centric processor elements that do not require local load and store units.