s

Segmented soap bar with soap bodies forming concave arc surface

An elongated segmented soap bar is segmented longitudinally into a plurality of soap bodies separate and discrete from one another. Adjacent soap bodies are movable with respect to one another between at least two different configurations including at least an arc configuration with the plurality of soap bodies disposed in an arc. At least one coupler couples the plurality of soap bodies together to allow the adjacent soap bodies to move with respect to one another between the at least two different configurations.




s

Ferric hydroxycarboxylate as a builder

The use of ferric hydroxycarboxylate as a chelator and builder for cleaning compositions is disclosed. The cleaning composition may be formulated for warewashing, laundering, and for other means of removing soils and includes a ferric hydroxycarboxylate, an alkalinity source and a surfactant system. The cleaning composition has a pH of between about 9 and about 12.




s

Particle defoamer comprising a silicone emulsion and process for preparing same

A process for preparing a particle defoamer. The particle defoamer of 55%-75% of a carrier, 15%-35% of a silicone emulsion, 3%-10% of a texturing agent and 2%-10% of a solvent, based on the total weight of the particle defoamer; the process for preparing the particle defoamer is: (1)first adding a carrier A1 into a mixer, and then adding thereto a silicone emulsion B1, and stirring uniformly; (2)adding a carrier component A2 to the mixture obtained in (1), and stirring uniformly; (3)adding a silicone emulsion B2 to the mixture obtained in (2), and, after uniformly stirring, adding the solvent thereto and stirring uniformly; and (4)pelleting and drying by baking the mixture obtained in(3), so as to produce the product.




s

Non-corrosive oven degreaser concentrate

The invention relates to a non-corrosive degreasing concentrate and ready to use formulation. In particular, non-corrosive compositions capable of removing polymerized grease as effectively as some alkali metal hydroxide (i.e. caustic) based degreasers without requiring the use of personal protective equipment are disclosed.




s

Encapsulates

The present application relates to encapsulated, solid, water soluble benefit agents and products comprising such encapsulates, as well as processes for making and using such encapsulates and products comprising such encapsulates. In one aspect, the present application relates to a melamine formaldehyde and/or urea formaldehyde encapsulation process that offers as solution to the dissolution of solid, water soluble benefit agents during the process's emulsification step.




s

Method of reducing soil redeposition on a hard surface using phosphinosuccinic acid adducts

Methods employing detergent compositions effective for reducing soil redeposition and accumulation on hard surfaces are disclosed. The detergent compositions employ phosphinosuccinic acid adducts in combination with an alkalinity source and gluconic acid or salts thereof, copolymers of acrylic acid and maleic acids or salts thereof, sodium hypochlorite, sodium dichloroisocyanurate or combinations thereof.




s

Gemini surfactants, process of manufacture and use as multifunctional corrosion inhibitors

Gemini surfactants of bis-N-alkyl polyether, bis-N-alkenyl polyether, bis-N-cycloalkyl polyether, bis-N-aryl polyether bis-beta or alpha-amino acids or their salts, are produced for use as multifunctional corrosion inhibitors, which protect and prevent corrosion of ferrous metals exposed to acidic, basic and neutral liquids when transporting or storing crude oil and liquid fuels. The surfactants are also used to inhibit corrosion of equipment and pipes used in cooling systems in petroleum and petrochemical equipment. The Gemini surfactants have the structural formula:




s

Structured detergent or cleaning agent

The invention describes a stable liquid washing agent or liquid cleaning agent having a yield point and very good dispersing properties. The agents contain anionic and nonionic surfactants as well as inorganic salt and cosurfactant. The invention also relates to the use of the liquid washing agent or liquid cleaning agent, and to a method for manufacturing it.




s

Enzyme composition comprising enzyme containing polymer particles

The present invention relates to an enzyme composition comprising enzyme containing polymer particles, which is useful for detergent compositions, in particular for liquid detergent compositions. In these enzyme containing particles, the particles comprise i) at least one enzyme, and ii) at least one polymer P, which is selected from homo- and copolymers having a C—C-backbone, wherein the C—C-backbone carries carboxylgroups, which may be present in the acidic form or in the neutralized form, and wherein the C—C-backbone comprises hydrophobic repeating units.




s

Targeted performance of hypohalite methods thereof

This invention relates to extend the benefits of using hypochlorite compounds such as sodium hypochlorite to clean and disinfect articles while reducing or eliminating the side effects of treating an article with a strong oxidant material. The invention relates to a single step process involving mixing of precursor compositions of a suitable hypohalite or hypohalous acid with a solution of a reducing agent. Optionally a buffer may be present in either or both precursor compositions, such that at time of use such active hypohalous acid concentration in the resulting aqueous mixture remains at a sufficient activity level to effect one or more desired benefits against a target substrate for a desired period of time. The oxidant is substantially consumed by reaction with the reducing agent after the time needed for achieving the desired benefit has passed.




s

Compositions for cleaning applicators for hair removal compositions

A non-aqueous liquid cleaning composition for applicators used for applying non-aqueous hair removal compositions to the skin. The composition includes a solubilizing oil effective for solubilizing the non-aqueous hair removal composition, e.g., mineral oil, and an effective antibacterial amount of an antibacterial agent, e.g., triclosan. The composition may also include fragrances and additional bacteriocides, e.g., phenoxyethanol. When the applicator is contacted with the heated cleaning composition any hair removal composition and bacteria on the applicator are removed therefrom and the applicator is ready for reuse. It is preferred to use surgical stainless steel applicators. Also provided are methods of using these compositions and kits containing, among other items, such compositions and applicators.




s

Acidic viscoelastic surfactant based cleaning compositions comprising glutamic acid diacetate

Acidic viscoelastic cleaning compositions are disclosed which use non polymer thickening agents. According to the invention, cleaning compositions have been developed using viscoelastic surfactants in acidic cleaning formulations. These provide the dual benefit of thickening as well as an additional cleaning, thereby improving performance. Applicants have also identified several pseudo linking agents which when, used with viscoelastic surfactants provide enhanced viscoelasticity and cleaning.




s

Processing agent composition for semiconductor surface and method for processing semiconductor surface using same

The present invention is directed to provide a semiconductor surface treating agent; composition which is capable of stripping an anti-reflection coating layer, a resist layer, and a cured resist layer in the production process of a semiconductor device and the like easily and in a short time, as well as a method for treating a semiconductor surface, comprising that the composition is used. The present invention relates to a semiconductor surface treating agent; composition, comprising [I] a compound generating a fluorine ion in water, [II] a carbon radical generating agent; , [III] water, [IV] an organic solvent, and [V] at least one kind of compound selected from a group consisting of hydroxylamine and a hydroxylamine derivative represented by the general formula [1], as well as a method for treating the semiconductor surface, comprising that the composition is used: (wherein R1 represents a linear, branched or cyclic C1-6 alkyl group, or a linear or branched C1-4 substituted alkyl group having 1 to 3 hydroxyl groups; R2 represents a hydrogen atom, a linear, branched or cyclic C1-6 alkyl group, or a linear or branched C1-4 substituted alkyl group having 1 to 3 hydroxyl groups).




s

Compositions and methods for treating biofilms

Compositions and methods for treating biofilm formation and growth on a substrate are provided. The composition comprises 1 ppb to 1,000 ppm of at least one D-amino acid and 1 ppm to 60,000 ppm of at least one biocide. The method comprises contacting the substrate with 1 ppb to 1,000 ppm of at least one D-amino acid and 1 ppm to 60,000 ppm of at least one biocide. The compositions and methods are effective for preventing, reducing or eliminating biofilm formation or biofilm growth or both, as well as eradicating established, recalcitrant biofilms, particularly biofilms comprising sulfate reducing bacteria that are known to cause microbiologically influenced corrosion, biofouling, or both.




s

Compressed gas aerosol composition comprising a non-ionic surfactant in a steel can

An aqueous compressed gas aerosol formulation in combination with a lined steel can, which may also optionally be tin plated, to provide corrosion stability, fragrance stability and color stability. An aerosol formulation of particular advantage for use is an air and/or fabric treatment formulation. The combination provides a compatibility which allows for the ability to use a broader fragrance pallet for the air and/or fabric treatment formulation which is aqueous based in major proportion. The formulation includes, in addition to an aqueous carrier, a fragrance, nonionic surfactant(s) or a blend of nonionic surfactant(s) and cationic surfactant(s), a compressed gas propellant(s), pH adjuster(s), and corrosion inhibitor(s). The formulation has a pH of about 8 to less than 10. The corrosion inhibitor(s) is (are) mild in strength and used in a minor amount.




s

Skin cleansing system and method

A cleansing composition for cleansing skin, especially for removing grease from skin. A cleaning composition of the present invention may also be used in ready-to-use (or in-use) kits, such as two component kits, suitable for cleansing skin.




s

Granulated foam control composition comprising a polyol ester and cationic polymer

A granulated foam control composition comprises a foam control agent based on a polydiorganosiloxane fluid, an organic additive of melting point 45″17C to 100° C. comprising a polyol ester, a water-soluble particulate inorganic carrier and a polymer having a net cationic charge. The mean number of carbon atoms in the organo groups of the polydiorganosiloxane fluid is at least 1.3. The foam control agent includes a hydrophobic filler dispersed in the polydiorganosiloxane fluid, and optionally an organosilicone resin. The polyol ester is miscible with the polydiorganosiloxane fluid.




s

Intercalated bleach compositions, related methods of manufacture and use

The invention relates to compositions, methods of use, and methods of manufacture for an intercalated bleach compound and compositions thereof. The intercalated bleach compound has the formula Mx(OCl)y(O)m(OH)n where M is an alkaline earth metal such as magnesium, calcium or mixture thereof. The values of x and y independently equal any number greater than or equal to 1 (e.g., 1, 2, 3, 4, etc.), and m and n independently equal any number greater than or equal to 0 (e.g., 0, 1, 2, 3, 4, etc.), but m and n are not both 0. In addition, the molar ratio of the alkaline earth metal (e.g., magnesium or calcium) to hypochlorite is at least 3:1. In other words, x is ≧3y. The compounds exhibit excellent stability, little or no chlorine bleach odor, exhibit excellent pH buffering characteristics, and less reactivity with organic materials as compared to alternative chlorine bleach products.




s

Skin cleanser composition

The present invention relates to a skin cleanser composition capable of providing an excellent frictional resistance feeling during rinsing and capable of giving an excellent silky feeling with moisturization to the skin after drying, and to a method for producing the composition. The skin cleanser composition contains a cat ionized hydroxypropyl cellulose (A) and a surfactant (B), and the cationized hydroxypropyl cellulose (A) has an anhydroglucose-derived main chain, and has a degree of substitution with cationized ethyleneoxy group of from 0.01 to 3.0 and a degree of substitution with propyleneoxy group of from 0.01 to 2.9.




s

Method for minimizing the diameter of a urea solution, urea solution and use of a surfactant in urea solution

A mixture of surfactants from alkylene oxide adducts with different degrees of alkoxylation is used in a urea solution to be added to an exhaust stream for reduction of nitrous gases.




s

Structured soap compositions

A structured soap composition contains, based on 100 parts by weight of said composition, (i) from greater than 0 to about 27 parts by weight of a neutralized fatty acid,(ii) from greater than 0 to about 18 parts by weight of one or more structurant selected from alkanolamide surfactants, fatty alcohols, alkoxylated fatty alcohols, fatty acids, and fatty acid esters,(iii) from 0 to about 15 parts by weight of one or more compounds selected from amphoteric surfactants and zwitterionic surfactants, provided that the total amount of components (i), (ii), and (iii) is greater than or equal to 5 parts by weight, (iv) an amount of electrolyte effective to, in combination with components (i), (ii), and (iii) provide a structured soap composition having an opaque visual appearance and exhibiting a yield strength of greater than 0 Pascals, and(v) water.




s

Fast-cycling, conduction-cooled, quasi-isothermal, superconducting fault current limiter

Fault Current Limiters (FCL) provide protection for upstream and/or downstream devices in electric power grids. Conventional FCL require the use of expensive conductors and liquid or gas cryogen handling. Disclosed embodiments describe FCL systems and devices that use lower cost superconductors, require no liquid cryogen, and are fast cycling. These improved FCL can sustain many sequential faults and require less time to clear faults while avoiding the use of liquid cryogen. Disclosed embodiments describe a FCL with a superconductor and cladding cooled to cryogenic temperatures; these are connected in parallel with a second resistor across two nodes in a circuit. According to disclosed embodiments, the resistance of the superconducting components and its sheath in the fault mode are sufficiently high to minimize energy deposition within the cryogenic system, minimizing recovery time. A scheme for intermediate heat storage also is described which allows a useful compromise between conductor length enabled energy minimization and allowable number of sequential faults to enable an overall system design which is affordable, and yet allows conduction cooled (cryogen free) systems which have fast recovery and allows for multiple sequential faults.




s

Transmission system with a superconducting cable

A transmission system is provided with a superconductive cable having three phase conductors and a cryostat, surrounding the phase conductors, and encasing a hollow space, for conducting a cooling agent. For the three phase conductors, a common neutral conductor is provided, being made of electrically normally conducting material, carried out as insulating round conductor and placed outside the cryostat and next to it. The cryostat is made of a circumferentially enclosed, thermally insulated sheath.




s

Method of manufacturing superconducting accelerator cavity

Provided is a method of manufacturing a superconducting accelerator cavity in which a plurality of half cells having opening portions (equator portions and iris portions) at both ends thereof in an axial direction are placed one after another in the axial direction, contact portions where the corresponding opening portions come into contact with each other are joined by welding, and thus, a superconducting accelerator cavity is manufactured, the half cells to be joined are arranged so that the axial direction thereof extends in a vertical direction; and concave portions that are concave towards an outer side are also formed at inner circumferential surfaces located below the contact portions of the half cells positioned at a bottom; and the contact portions are joined from outside by penetration welding.




s

Superconductive magnet

A superconductive magnet includes a superconductive coil that is an air-core coil; a pair of bobbin bodies that support the superconductive coil while interposing the superconductive coil therebetween on both sides of a center axial line direction of the superconductive coil; an outer circumference-side binding portion that extends in the center axial line direction on an outer circumferential side of the superconductive coil to bind the pair of bobbin bodies; and a belt-shaped or a wire-shaped inner circumference-side tension imparted portion which extends in the center axial line direction on an inner circumferential side of the superconductive coil to connect the pair of bobbin bodies, and on which tension is imparted in the center axial line direction.




s

Low-loss superconducting devices

Low-loss superconducting devices and methods for fabricating low loss superconducting devices. For example, superconducting devices, such as superconducting resonator devices, are formed with a (200)-oriented texture titanium nitride (TiN) layer to provide high Q, low loss resonator structures particularly suitable for application to radio-frequency (RF) and/or microwave superconducting resonators, such as coplanar waveguide superconducting resonators. In one aspect, a method of forming a superconducting device includes forming a silicon nitride (SiN) seed layer on a substrate, and forming a (200)-oriented texture titanium nitride (TiN) layer on the SiN seed layer.




s

Superconducting direct-current electrical cable

A superconductive electrical direct current cable with at least two conductors insulated relative to each other is indicated, where the cable is placed with at least two conductors insulated relative to each other, where the conductors are arranged in a cryostat suitable for guidance of the cooling agent, wherein the cryostat is composed of at least one metal pipe which is surrounded by a circumferentially closed layer with thermally insulating properties. In the cryostat is arranged a strand-shaped carrier composed of insulating material, where the carrier has at least two diametrically oppositely located outwardly open grooves in each of which is arranged one of the conductors. Each conductor is composed of a plurality of superconductive elements.




s

Method and apparatus for applying uniaxial compression stresses to a moving wire

An apparatus and method for moving a wire along its own axis against a high resistance to its motion causing a substantial uniaxial compression stress in the wire without allowing it to buckle. The apparatus consists of a wire gripping and moving drive wheel and guide rollers for transporting the moving wire away from the drive wheel. Wire is pressed into a peripheral groove in a relatively large diameter, rotating drive wheel by a set of small diameter rollers arranged along part of the periphery causing the wire to be gripped by the groove.




s

Superconducting rotating electrical machine and manufacturing method for high temperature superconducting film thereof

The present disclosure relates to a superconducting rotating electrical machine and a manufacturing method for a high temperature superconducting film thereof. The superconducting rotating electrical machine includes a stator, and a rotor rotatable with respect to the stator, the rotor having a rotary shaft and a rotor winding. Here, the rotor winding includes tubes disposed on a circumference of the rotary shaft and each forming a passage for a cooling fluid therein, superconducting wires accommodated within the tubes, and a cooling fluid flowing through the inside of the tubes. This configuration may allow for direct heat exchange between the superconducting wires and a refrigerant, resulting in improvement of heat exchange efficiencies of the superconducting wires.




s

Persistent-mode high-temperature superconducting shim coils to enhance spatial magnetic field homogeneity for superconducting magnets

A persistent-mode High Temperature Superconductor (HTS) shim coil is provided having at least one rectangular shaped thin sheet of HTS, wherein the thin sheet of HTS contains a first long portion, a second long portion parallel to first long portion, a first end, and a second end parallel to the first end. The rectangular shaped thin sheet of high-temperature superconductor has a hollow center and forms a continuous loop. In addition, the first end and the second end are folded toward each other forming two rings, and the thin sheet of high-temperature superconductor has a radial build that is less than 5 millimeters (mm) and able to withstand very strong magnetic field ranges of greater than approximately 12 Tesla (T) within a center-portion of a superconducting magnet of a superconducting magnet assembly.




s

Oxide superconductor cabling and method of manufacturing oxide superconductor cabling

Disclosed are an oxide superconductor tape and a method of manufacturing the oxide superconductor tape capable of improving the length and characteristics of superconductor tape and obtaining stabilized characteristics across the entire length thereof. A Y-class superconductor tape (10), as an oxide superconductor tape, comprises a tape (13) further comprising a tape-shaped non-oriented metallic substrate (11), and a first buffer layer (sheet layer) (12) that is formed by IBAD upon the tape-shaped non-oriented metallic substrate (11); and a second buffer layer (gap layer) (14), further comprising a lateral face portion (14a) that is extended to the lateral faces of the first buffer layer (sheet layer) (12) upon the tape (13) by RTR RF-magnetron sputtering.




s

Superconductive electromagnet apparatus

A superconductive electromagnet apparatus and a magnetic resonance imaging apparatus including the superconductive electromagnet apparatus are provided. The superconductive electromagnet apparatus includes a thermal anchor, a cryogenic cooling device which cools the thermal anchor, and at least one connecting ring into which the thermal anchor is inserted and a plurality of wires which are connected to the connecting ring.




s

Superconducting devices with ferromagnetic barrier junctions

A superconducting memory cell includes a magnetic Josephson junction (MJJ) with a ferromagnetic material, having at least two switchable states of magnetization. The binary state of the MJJ manifests itself as a pulse appearing, or not appearing, on the output. A superconducting memory includes an array of memory cells. Each memory cell includes a comparator with at least one MJJ. Selected X and Y-directional write lines in their combination are capable of switching the magnetization of the MJJ. A superconducting device includes a first and a second junction in a stacked configuration. The first junction has an insulating layer barrier, and the second junction has an insulating layer sandwiched in-between two ferromagnetic layers as barrier. An electrical signal inputted across the first junction is amplified across the second junction.




s

Method of manufacturing base material for superconducting conductor, method of manufacturing superconducting conductor, base material for superconducting conductor, and superconducting conductor

A method for manufacturing a base material 2 for a superconductive conductor which includes: a conductive bed layer forming process of forming a non-oriented bed layer 24 having conductivity on a substrate 10; and a biaxially oriented layer forming process of forming a biaxially oriented layer 26 on the bed layer 24.




s

Inductive fault current limiter with divided secondary coil configuration

An inductive fault current limiter (1), has a normally conducting primary coil assembly (2) with a multiplicity of turns (3), and a superconducting, short-circuited secondary coil assembly (4). The primary coil assembly (2) and the secondary coil assembly (4) are disposed at least substantially coaxially with respect to each other and at least partially interleaved in each other. The secondary coil assembly (4) has a first coil section (4a) disposed radially inside the turns (3) of the primary coil assembly (2) and a second coil section (4b) disposed radially outside the turns (3) of the primary coil assembly (2). The fault current limiter has an increased inductance ratio.




s

High temperature superconducting tape conductor having high critical ampacity

The invention relates to a high temperature superconducting tape conductor having a flexible metal substrate that comprises at least one intermediate layer disposed on the flexible metal substrate and comprising terraces on the side opposite the flexible metal substrate, wherein a mean width of the terraces is less than 1 μm and a mean height of the terraces is more than 20 nm, and that comprises at least one high temperature superconducting layer disposed on the intermediate layer, which is disposed on the at least one intermediate layer and comprises a layer thickness of more than 3 μm. The ampacity of the high temperature superconducting tape conductor relative to the conductor width is more than 600 A/cm at 77 K.




s

Superconducting electromagnet device, cooling method therefor, and magnetic resonance imaging device

A superconducting magnet device is configured to include: a refrigerant circulation flowpath in which a refrigerant (R) circulates; a refrigerator for cooling vapor of the refrigerant (R) in the refrigerant circulation flowpath; a superconducting coil cooled by the circulating refrigerant (R); a protective resistor thermally contacting the superconducting coil and having an internal space (S); a high-boiling-point refrigerant supply section for supplying a high-boiling-point refrigerant having a higher boiling point than the refrigerant (R) and frozen by the refrigerant (R) to the internal space (S) in the protective resistor; and a vacuum insulating container for at least accommodating the refrigerant circulation flowpath, the superconducting coil, and the protective resistor.




s

Superconducting magnet

A superconducting magnet includes a superconducting coil, a heat shield surrounding the superconducting coil, a vacuum chamber accommodating the heat shield, a magnetic shield covering at least a part of the vacuum chamber, and a refrigerating machine fixed to the vacuum chamber to cool the superconducting coil through a heat conducting body. The magnetic shield abuts against said vacuum chamber with an elastic body therebetween to support the vacuum chamber.




s

Superconducting magnet apparatus

A superconducting magnet apparatus includes: a bobbin around which a superconducting coil is wound, the bobbin serving as a protective resistor; a persistent current switch for supplying a persistent current to the superconducting coil; a first closed circuit with the superconducting coil and the persistent current switch connected in series to the coil; and a second closed circuit with the superconducting coil and the bobbin connected in series to the coil.




s

Layered superconductor device

A layered superconductor device includes multiple layers of a single crystal superconducting material having intermittent layers of superconducting material dispersed in a pattern with a second material such that each layer of the multiple layers a single crystal superconducting material are interconnected via superconducting material, allowing for a continuous current path, and a thickness of the superconducting material never exceeds a first predetermined thickness.




s

Substrate for superconducting compound and method for manufacturing the substrate

Provided are a substrate for a superconducting compound and a method for manufacturing the substrate which can realize the excellent adhesive strength simultaneously with high orientation of copper. An absorbed material on a surface of a copper foil to which rolling is applied at a draft of 90% or more is removed by applying sputter etching to the surface of the copper foil, sputter etching is applied to a nonmagnetic metal sheet, the copper foil and the metal sheet are bonded to each other by applying a pressure to the copper foil and the metal sheet using reduction rolls, crystals of the copper in the copper foil are oriented by heating a laminated body formed by such bonding, copper is diffused into the metal sheet by heating with a copper diffusion distance of 10 nm or more, and a protective layer is laminated to a surface of the copper foil of the laminated body.




s

Methods of splicing 2G rebco high temperature superconductors using partial micro-melting diffusion pressurized splicing by direct face-to-face contact of high temperature superconducting layers and recovering superconductivity by oxygenation annealing

Disclosed is a splicing method of two second-generation ReBCO high temperature superconductor coated conductors (2G ReBCO HTS CCs), in which, with stabilizing layers removed from the two strands of 2G ReBCO HTS CCs through chemical wet etching or plasma dry etching, surfaces of the two high temperature superconducting layers are brought into direct contact with each other and heated in a splicing furnace in a vacuum for micro-melting portions of the surfaces of the high temperature superconducting layers to permit inter-diffusion of ReBCO atoms such that the surfaces of the two superconducting layers can be spliced to each other and oxygenation annealing for recovery of superconductivity which was lost during splicing.




s

Self-shield open magnetic resonance imaging superconducting magnet

A self-shield open magnetic resonance imaging superconducting magnet comprises five pairs of coils: shim coils, first main magnetic coils, second main magnetic coils, third main magnetic coils, and shielding coils. The five pairs of coils are symmetric about the center. The shim coils are arranged closest to the center point; the first main magnetic coils, the second main magnetic coils, the third main magnetic coils, and the shielding coils are arranged in sequence outside. The first main magnetic coils are connected with reverse current. The second and third main magnetic coils are connected with positive current for providing the main magnetic field strength. The shim coils are connected with positive current for compensating the magnetic field in the central region. The shielding coils are connected with reverse current for creating a magnetic field opposite to the main magnetic field for compensating the stray magnetic field in the space.




s

Superconducting magnet device and magnetic resonance imaging system

A superconducting magnet device and a magnetic resonance imaging system not only avoid the need for costly aluminum alloy formers but also lower quench pressure effectively, have a baffle covering the former and the coil, with a gap between the baffle and the coil.




s

Superconducting cable

A superconducting cable is provided. The superconducting cable includes a core part including a former disposed at the center of the core part, one or more superconducting conductive layers with each electric phase disposed at the outside of the former in a radial directions, a insulating layer disposed at the outside of each the conductive layer in a radial direction and a shielding layer disposed at the outermost of the insulating layer; and a cryostat disposed at the outside of the core part in a radial direction with first space being interposed therebetween, having a vacuum part disposed therein and electrically wired to neutral pole (N pole).




s

Superconducting film-forming substrate, superconducting wire, and superconducting wire manufacturing method

A tape-shaped superconducting film-forming substrate is disclosed, which includes a film-forming face for forming a laminate including a superconducting layer thereon, a rear face that is a face at a side opposite to the film-forming face, a pair of end faces connected to the film-forming face and the rear face, and a pair of side faces connected to the film-forming face, the rear face, and the pair of end faces, in which each of the pair of side faces includes a spreading face that spreads toward an outer side in an in-plane direction of the film-forming face from an edge part of the film-forming face toward the rear face side. A superconducting wire and a superconducting wire manufacturing method are also disclosed.




s

Superconducting cable

An AC superconducting cable with an insulating layer on the external circumference of a conductor, and wherein: the insulating layer includes a first insulating layer, a second insulating layer and a third insulating layer, from the inside layer to the outside layer; the insulating layer is impregnated with liquid nitrogen; the product of the dielectric constant ∈1 of the first insulating layer and the dielectric loss tangent tan δ1 and the product of the dielectric constant ∈2 of the second insulating layer and the dielectric loss tangent tan δ2 fulfilling the relationship ∈1×tan δ1>∈2×tan δ2; and the product of the dielectric constant ∈2 of the second insulating layer and the dielectric loss tangent tan δ2 and the product of the dielectric constant ∈3 of the third insulating layer and the dielectric loss tangent tan δ3 fulfilling the relationship ∈2×tan δ2




s

Electrochemical system and method for electropolishing superconductive radio frequency cavities

An electrochemical finishing system for super conducting radio frequency (SCRF) cavities including a low viscosity electrolyte solution that is free of hydrofluoric acid, an electrode in contact with the electrolyte solution, the SCRF cavity being spaced apart from the electrode and in contact with the electrolyte solution and a power source including a first electrical lead electrically coupled to the electrode and a second electrical lead electrically coupled to the cavity, the power source being configured to pass an electric current between the electrode and the workpiece, wherein the electric current includes anodic pulses and cathodic pulses, and wherein the cathodic pulses are interposed between at least some of the anodic pulses. The SCRF cavity may be vertically oriented during the finishing process.




s

System with a superconductive cable and a surrounding cryostat

A superconductive cable which has a cryostat with two concentric metal pipes where the cryostat has at least a first axial section with a first axial spring constant, and at least a second axial section which has a second axial spring constant which at most is 20%, more preferred at most 10%, of the axial spring constant of the first section.




s

Ceramic substrate and process for producing same

A ceramic substrate includes a substrate body formed of ceramic and having a pair of surfaces each assuming a rectangular shape as viewed in plane, and a metallization layer formed on the surface of the substrate body and adapted to braze a metal frame thereon. A composite material layer is disposed between the surface of the substrate body and the metallization layer and is formed such that a ceramic portion, a metal portion 10m formed of a metal similar to a metal component of the metallization layer or a metal which, together with a metal component of the metallization layer, forms an all proportional solid solution, and a glass portion exist together. The thickness of the composite material layer is thinner than that of the metallization layer. A plating layer is deposited on the surface of the metallization layer.