s

Remediating gaps between usage allocation of hardware resource and capacity allocation of hardware resource

A usage allocation of a hardware resource to each of a number of workloads over time is determined using a demand model. The usage allocation of the resource includes a current and past actual usage allocation of the resource, a future projected usage allocation of the resource, and current and past actual usage of the resource. A capacity allocation of the resource is determined using a capacity model. The capacity allocation of the resource includes a current and past capacity and a future projected capacity of the resource. Whether a gap exists between the usage allocation and the capacity allocation is determined using a mapping model. Where the gap exists between the usage allocation of the resource and the capacity allocation of the resource, a user is presented with options determined using the mapping model and selectable by the user to implement a remediation strategy to close the gap.




s

Managing access to a shared resource by tracking active requestor job requests

The technology of the present application provides a networked computer system with at least one workstation and at least one shared resource such as a database. Access to the database by the workstation is managed by a database management system. An access engine reviews job requests for access to the database and allows job requests access to the resource based protocols stored by the system.




s

Video player instance prioritization

A video player instance may be prioritized and decoding and rendering resources may be assigned to the video player instance accordingly. A video player instance may request use of a resource combination. Based on a determined priority a resource combination may be assigned to the video player instance. A resource combination may be reassigned to another video player instance upon detection that the previously assigned resource combination is no longer actively in use.




s

Two-tiered dynamic load balancing using sets of distributed thread pools

By employing a two-tier load balancing scheme, embodiments of the present invention may reduce the overhead of shared resource management, while increasing the potential aggregate throughput of a thread pool. As a result, the techniques presented herein may lead to increased performance in many computing environments, such as graphics intensive gaming.




s

Converting dependency relationship information representing task border edges to generate a parallel program

According to an embodiment, based on task border information, and first-type dependency relationship information containing N number of nodes corresponding to data accesses to one set of data, containing edges representing dependency relationship between the nodes, and having at least one node with an access reliability flag indicating reliability/unreliability of corresponding data access; task border edges, of edges extending over task borders, are identified that have an unreliable access node linked to at least one end, and presentation information containing unreliable access nodes is generated. According to dependency existence information input corresponding to the set of data, conversion information indicating absence of data access to the unreliable access nodes is output. According to the conversion information, the first-type dependency relationship information is converted into second-type dependency relationship information containing M number of nodes (0≦M≦N) corresponding to data accesses to the set of data and containing edges representing inter-node dependency relationship.




s

Parallel computer system and program

There is provided a parallel computer system for performing barrier synchronization using a master node and a plurality of worker nodes based on the time to allow for an adaptive setting of the synchronization time. When a task process in a certain worker node has not been completed by a worker determination time, the particular worker node performs a communication to indicate that the process has not been completed, to a master node. When the communication has been received by a master determination time, the master node performs a communication to indicate that the process time is extended by a correction process time, in order to adjust and extend the synchronization time. In this way, it is possible to reduce the synchronization overhead associated with the execution of an application with a relatively large variation in the process time from a synchronization point to the next synchronization point.




s

Reconfigurable processor and method

Disclosed are a reconfigurable processor and processing method, a reconfiguration control apparatus and method, and a thread modeler and modeling method. A memory area of a reconfigurable processor may be divided into a plurality of areas, and a context enabling a thread process may be stored in respective divided areas, in advance. Accordingly, when a context switching is performed from one thread to another thread, the other thread may be executed by using information stored in an area corresponding to the other thread.




s

Information processing device and task switching method

Disclosed is an information processing device and a task switching method that can reduce the time required for switching of tasks in a plurality of coprocessors. The information processing device (30) includes a processor core (301); coprocessors (311 to 31n) including operation units (321 to 32n) that perform operation in response to a request from the processor core (301) and operation storage units (331 to 22n) that store the contents of operation of the operation units (321 to 32n), save storage units (351 to 35n) that store the saved contents of operation, a task switching control unit (302) that outputs a save/restore request signal when switching a task on which operation is performed by the coprocessors (311 to 31n), and save/restore units (341 to 34n) that perform at least one of saving of the contents of operation in the operation storage units (331 to 33n) to the save storage units (351 to 35n) and restoration of the contents of operation in the save storage units (351 to 35 n) to the operation storage units (331 to 33n) in response to the save/restore request signal.




s

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Data transfer control apparatus, data transfer control method, and computer product

A data transfer control apparatus includes a transferring unit that transfers data from a transfer source memory to a transfer destination memory, according to an instruction from a first processor; and a first processor configured to detect a process execute by the first processor, determine whether transfer of the data is urgent, based on the type of the detected process, and control the transferring unit or the first processor to transfer the data, based on a determination result.




s

Methods and apparatus for resource capacity evaluation in a system of virtual containers

Methods and apparatus are provided for evaluating potential resource capacity in a system where there is elasticity and competition between a plurality of containers. A dynamic potential capacity is determined for at least one container in a plurality of containers competing for a total capacity of a larger container. A current utilization by each of the plurality of competing containers is obtained, and an equilibrium capacity is determined for each of the competing containers. The equilibrium capacity indicates a capacity that the corresponding container is entitled to. The dynamic potential capacity is determined based on the total capacity, a comparison of one or more of the current utilizations to one or more of the corresponding equilibrium capacities and a relative resource weight of each of the plurality of competing containers. The dynamic potential capacity is optionally recalculated when the set of plurality of containers is changed or after the assignment of each work element.




s

Method and apparatus for continuously producing 1,1,1,2,3-pentafluoropropane with high yield

A method and apparatus for method of continuously producing 1,1,1,2,3-pentafluoropropane with high yield is provided. The method includes (a) bringing a CoF3-containing cobalt fluoride in a reactor into contact with 3,3,3-trifluoropropene to produce a CoF2-containing cobalt fluoride and 1,1,1,2,3-pentafluoropropane, (b) transferring the CoF2-containing cobalt fluoride in the reactor to a regenerator and bringing the transferred CoF2-containing cobalt fluoride into contact with fluorine gas to regenerate a CoF3-containing cobalt fluoride, and (c) transferring the CoF3-containing cobalt fluoride in the regenerator to the reactor and employing the transferred CoF3-containing cobalt fluoride in Operation (a). Accordingly, the 1,1,1,2,3-pentafluoropropane can be continuously produced with high yield from the 3,3,3-trifluoropropene using a cobalt fluoride (CoF2/CoF3) as a fluid catalyst, thereby improving the reaction stability and readily adjusting the optimum conversion rate and selectivity.




s

1,4-fullerene addends in photovoltaic cells

1,4 fullerene deriatives useful for solar cells are provided, where their structures allow for straightforward functionalizations to tune their properties in terms of solubility and LUMO energy levels.




s

Liquid crystal compound having fluorovinyl group, liquid crystal composition and liquid crystal display device

A liquid crystal compound having a high stability to heat, light and so forth, a high clearing point, a low minimum temperature of a liquid crystal phase, a small viscosity, a suitable optical anisotropy, a large dielectric anisotropy, a suitable elastic constant and an excellent solubility in other liquid crystal compounds, a liquid crystal composition containing the compound, and a liquid crystal display device including the composition. The compound is represented by formula (1): wherein, for example, R1 is fluorine or alkyl having 1 to 10 carbons; ring A1 and ring A2 are 1,4-phenylene, or 1,4-phenylene in which at least one of hydrogen is replaced by fluorine; Z1, Z2 and Z3 are a single bond; L1 and L2 are hydrogen or fluorine; X1 is fluorine or —CF3; and m is 1, and n is 0.




s

Cyclohexene-3,6-diyl compound, liquid crystal composition and liquid crystal display device

To provide a compound, when the compound has both a high clearing point and a low crystallization temperature, having a wide temperature range of a liquid crystal phase and also an excellent solubility in other liquid crystal compounds, and further having general physical properties necessary for the compound, namely, stability to heat, light and so forth, a suitable optical anisotropy and a suitable dielectric anisotropy. A compound is represented by formula (1): wherein, for example, Ra and Rb are alkyl having 1 to 10 carbons; A1, A2, A3 and A4 are 1,4-phenylene; Z1, Z2, Z3 and Z4 are a single bond or alkylene having 1 to 4 carbons; and m, n, q and r are independently 0, 1, or 2, and a sum of m, n, q and r is 1, 2, 3 or 4.




s

Fluoroalkyl iodide and its production process

A process for producing a fluoroalkyl iodide as a telomer Rf(CF2CF2)nI (wherein Rf is a C1-10 fluoroalkyl group, and n is an integer of from 1 to 6) by telomerization from a fluoroalkyl iodide represented by the formula RfI (wherein Rf is as defined above) as a telogen and tetrafluoroethylene (CF2CF2) as a taxogen, which comprises a liquid phase telomerization step of supplying a homogeneous liquid mixture of the telogen and the taxogen from the lower portion of a tubular reactor, moving the mixture from the lower portion towards the upper portion of the reactor in the presence of a radical initiator over a retention time of at least 5 minutes while the reaction system is kept in a liquid phase state under conditions where no gas-liquid separation will take place, so that the taxogen supplied to the reactor is substantially consumed by the reaction in the reactor, and drawing the reaction product from the upper portion of the reactor.




s

Optically active ammonium salt compound, production intermediate thereof, and production method thereof

An optically active bisbenzyl compound or a racemic bisbenzyl compound represented by formula (2) that has axial chirality: where: R1 represents a halogen, or an optionally substituted: linear, branched, or cyclic C1-8 alkyl, C2-8 alkenyl, C2-8 alkynyl, C6-14 aryl, C3-8 heteroaryl, linear, branched, or cyclic C1-8 alkoxy, or C7-16 aralkyl;R21 each independently represents hydrogen, halogen, nitro, or an optionally substituted: linear, branched, or cyclic C1-8 alkyl, C2-8 alkenyl, C2-8 alkynyl, C6-14 aryl, linear, branched, or cyclic C1-8 alkoxy, or a C7-16 aralkyl;R3 represents hydrogen, or an optionally substituted: C6-14 aryl, a C3-8 heteroaryl, or a C7-16 aralkyl; andY2 represents a halogen, or an optionally substituted: C1-8 alkylsulfonyloxy, C6-14 arylsulfonyloxy, or C7-16 aralkylsulfonyloxy.




s

Methods of preparing para-xylene from biomass

Methods or preparing para-xylene from biomass by carrying out a Diels-Alder cycloaddition at controlled temperatures and activity ratios. Methods of preparing bio-terephthalic acid and bio-poly(ethylene terephthalate (bio-PET) are also disclosed, as well as products formed from bio-PET.




s

Combination reactor system

The present invention is directed to a combination reactor system for exothermic reactions comprising a trickle-bed reactor and a shell-and-tube reactor. This combination allows the system to efficiently remove heat while also providing the ability to control both the temperature and/or reaction progression. The trickle-bed reactor removes heat efficiently from the system by utilizing latent heat and does not require the use of a cooling or heating medium. The shell-and-tube reactor is used to further progress the reaction and provides a heat exchanger in order to introduce fluid at the desired temperature in the shell-and-tube reactor. Also, additional reactant or reactants and/or other fluids may be introduced to the shell-and-tube section of the reactor under controlled temperature conditions.




s

Diaryliodonium salt mixture and process for production thereof, and process for production of diaryliodonium compound

Disclosed are: a diaryliodonium salt mixture which is a precursor of a BF4 salt or the like of a diaryliodonium compound, can be produced in the form of crystals at ambient temperature, can be purified in a simple manner, can be produced with high efficiency, and can be induced into a BF4 salt or the like salt that has excellent solubility in a monomer or the like; and a process for producing the diaryliodonium salt mixture. Also disclosed is a production process which can achieve good yield and can produce reduced amounts of byproducts, and is therefore applicable to the industrial mass production of a diaryliodonium compound. The diaryliodonium salt mixture is characterized by containing at least two specific diaryliodonium salts.




s

Synthesis of alkyl cyclopentadiene compounds

A method of synthesizing an alkyl cyclopentadiene compound is disclosed. The method includes contacting at least one cyclopentadienyl anion source and at least one alkyl group source to form at least one alkyl cyclopentadiene compound. The method further includes extracting the alkyl cyclopentadiene compound with a hydrocarbon solvent. The alkyl cyclopentadiene compound may be converted to a metallocene catalyst compound.




s

Process for producing 2,3,3,3-tetrafluoropropene

The instant invention relates to a process and method for manufacturing 2,3,3,3-tetrafluoropropene by dehydrohalogenating a reactant stream of 2-chloro-1,1,1,2-tetrafluoropropane that is substantially free from impurities, particularly halogenated propanes, propenes, and propynes.




s

Fluoroalkyl and chlorofluoroalkyl benzenes

This invention relates to fluoroalkyl and chlorofluoroalkyl benzenes with relatively high boiling points, having zero ozone depletion potential and low global warming potential. This invention also relates to the preparation of such fluoroalkyl and chlorofluoroalkyl benzenes. These materials can be used as reaction and heat transfer media, cleaning agents and as intermediates for biologically active materials.




s

Process for producing 1,2-dichloro-3,3,3-trifluoropropene

Disclosed is a process for producing 1,2-dichloro-3,3,3-trifluoropropene, which is characterized by that 1-halogeno-3,3,3-trifluoropropene represented by the general formula [1]: (In the formula, X represents a fluorine atom, chlorine atom or bromine atom.) is reacted with chlorine in a gas phase in the presence of a catalyst. It is possible by this process to produce 1,2-dichloro-3,3,3-trifluoropropene in an industrial scale with good yield by using 1-halogeno-3,3,3-trifluoropropene, which is available with a low price, as the raw material.




s

Process for the manufacture of hydrochlorofluoroolefins

The invention also relates a process for the manufacture of trans 1-chloro3,3,3-trifluoropropene. The process comprises an isomerization step from cis 1233zd to trans 1233zd.




s

Process for the manufacture of hydrochlorofluoroolefins

The invention also relates a process for the manufacture of trans 1-chloro3,3,3-trifluoropropene. The process comprises an isomerization step from cis 1233zd to trans 1233zd.




s

Process for the reduction of RfCCX impurities in fluoroolefins

The present disclosure relates to processes for reducing the concentration of RfC≡CX impurities in fluoroolefins. The process involves: contacting a mixture comprising at least one fluoroolefin and at least one RfC≡CX impurity with at least one amine to reduce the concentration of the at least one RfC≡CX impurity in the mixture; wherein Rf is a perfluorinated alkyl group, and X is H, F, Cl, Br or I. The present disclosure also relates to processes for making at least one hydrotetrafluoropropene product selected from the group consisting of CF3CF═CH2, CF3CH═CHF, and mixtures thereof and reducing the concentration of CF3C═CH impurity generated during the process. The present disclosure also relates to processes for making at least one hydrochlorotrifluoropropene product selected from the group consisting of CF3CCl═CH2, CF3CH═CHCl, and mixtures thereof and reducing the concentration of CF3C≡CH impurity generated during the process.




s

Process to make 1,1,2,3-tetrachloropropene

Disclosed is a process for the synthesis of 1,1,2,3-tetrachloropropene (HCC-1230xa) using 1,1,3-trichloropropene (HCC-1240za) and/or 3,3,3-trichloropropene (HCC-1240zf) and Cl2 gas as the reactants, wherein the process takes place in a single reactor system. Before this invention, HCC-1230xa was made in a two-step process using HCC-1240za/HCC-1240zf and Cl2 gas, and the processing was conducted using two separate reactors.




s

Liquid crystal compound having perfluoroalkyl chain, and liquid crystal composition and liquid crystal display device

The invention is to provide a new liquid crystal compound having a high clearing point, a good compatibility with other compounds, a small viscosity, and a high stability to heat, light and so forth; compound (1) is provided: R1CF2nR2 (1) wherein, for example, R1 is alkyl having 4 to 10 carbons or —(CH2)2—CH═CH2, R2 is alkyl having 2 to 10 carbons, n is 8, and R1 and R2 are not allowed to be straight-chain alkyl having an identical number of carbons.




s

Compounds for a liquid-crystalline medium, and the use thereof for high-frequency components

The present invention relates to 1,4-diethynylbenzene derivatives having substituents in the 2,3-position (cf. formula I, Claims), to the use thereof for high-frequency components, to liquid-crystalline media comprising the compounds, and to high-frequency components, in particular antennae, especially for the gigahertz range, comprising these media. The liquid-crystalline media serve, for example, for the phase shifting of microwaves for tuneable ‘phased-array’ antennae.




s

Processes for separation of fluoroolefins from hydrogen fluoride by azeotropic distillation

The present disclosure relates to a process for separating a fluoroolefin from a mixture comprising hydrogen fluoride and fluoroolefin, comprising azeotropic distillation both with and without an entrainer. In particular are disclosed processes for separating any of HFC-1225ye, HFC-1234ze, HFC-1234yf or HFC-1243zf from HF.




s

Methods for producing 1-chloro-3,3,3-trifluoropropene from 2-chloro-3,3,3-trifluoropropene

The present invention provides processes for the production of HCFO-1233zd, 1-chloro-3,3,3-trifluoropropene, from the starting material, 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf). In a first process, HCFO-1233zd is produced by the isomerization of HCFO-1233xf. In a second process, HCFO-1233zd is produced in a two-step procedure which includes (i) dehydrochlorination of HCFO-1233xf into trifluoropropyne; and (ii) hydrochlorination of the trifluoropropyne into HCFO-1233zd.




s

Integrated process for the production of 1-chloro-3,3,3-trifluoropropene

The present invention is directed to processes for the production of 1233zd from 240fa and HF, with or without a catalyst, at a commercial scale. The 240fa and HF are fed to a reactor operating at high pressure. The resulting product stream comprising 1233zd, HCl, HF, and other byproducts is treated to one or more purification techniques including phase separation and one or more distillations to provide purified 1233zd, which meets commercial product specifications, i.e., having a GC purity of 99.5% or greater.




s

Use of copper-nickel catalysts for dehlogenation of chlorofluorocompounds

The disclosure describes a process for dehalogenation of chlorofluorocompounds. The process comprises contacting a saturated chlorofluorocompound with hydrogen in the presence of a catalyst at a temperature sufficient to remove chlorine and/or fluorine substituents to produce a fluorine containing terminal olefin.




s

Catalytic gas phase fluorination of 1,1,2-trichloroethane and/or 1,2-dichloroethene to produce 1-chloro-2,2-difluoroethane

The invention is directed to a catalyst for the gas phase fluorination of 1,1,2-trichloroethane and/or 1,2-dichloroethene with HF to give 1-chloro-2,2-difluoroethane which catalyst is prepared by co-depositing FeCl3 and MgCl2 on chromia-alumina, or co-depositing Cr(NO3)3 and Ni(NO3)2 on active carbon, or by doping alumina with ZnCl2, and to a process for the preparation of 1-chloro-2,2-difluoroethane comprising a catalytic gas phase fluorination of 1,1,2-trichloroethane and/or 1,2-dichloroethene wherein one of the catalysts according to claim 2 or 3 is used.




s

Process for separating chlorinated methanes

The present invention relates to a process for separating chlorinated methanes utilizing a dividing wall column. Processes and manufacturing assemblies for generating chlorinated methanes are also provided, as are processes for producing products utilizing the chlorinated methanes produced and/or separated utilizing the present process(es) and/or assemblies.




s

Catalytic dehydrochlorination of hydrochlorofluorocarbons

A dehydrochlorination process is disclosed. The process involves contacting RfCFClCH2X with a catalyst in a reaction zone to produce a product mixture comprising RfCF═CHX, wherein said catalyst comprises MY supported on carbon, and wherein Rf is a perfluorinated alkyl group, X ═H, F, Cl, Br or I, M=K, Na or Cs, and Y═F, Cl or Br.




s

Process for purifying (hydro) fluoroalkenes

The invention relates to a process for removing one or more undesired (hydro)halocarbon compounds from a (hydro)fluoroalkene, the process comprising contacting a composition comprising the (hydro)fluoroalkene and one or more undesired (hydro)halocarbon compounds with an aluminum-containing absorbent, activated carbon, or a mixture thereof.




s

Methods for the synthesis of 13C labeled iodotridecane and use as a reference standard

A method for preparing 13C labeled iodotridecane represented by Formula A: The method comprises the conversion of 13C labeled propargyl alcohol to 13C labeled iodotridecane via alkylation of propargyl alcohol with iododecane.




s

Process for the preparation of dichlorofulvene

The invention relates to a process for the preparation of formula (I) which process comprises pyrolyzing a compound of formula (II) wherein X is chloro or bromo, and to compounds which may be used as intermediates for the manufacture of the compound of formula I and to the preparation of said intermediates.




s

Reactor and agitator useful in a process for making 1-chloro-3,3,3-trifluoropropene

Disclosed is a reactor and agitator useful in a high pressure process for making 1-chloro-3,3,3-trifluoropropene (1233zd) from the reaction of 1,1,1,3,3-pentachloropropane (240fa) and HF, wherein the agitator includes one or more of the following design improvements: (a) double mechanical seals with an inert barrier fluid or a single seal;(b) ceramics on the rotating faces of the seal;(c) ceramics on the static faces of seal;(d) wetted o-rings constructed of spring-energized Teflon and PTFE wedge or dynamic o-ring designs; and(e) wetted metal surfaces of the agitator constructed of a corrosion resistant alloy.




s

Process for the preparation of fluoroolefin compounds

The subject of the invention is a process for the preparation of fluoroolefin compounds. It relates more particularly to a process for manufacturing a (hydro)fluoroolefin compound comprising (i) bringing at least one compound comprising from three to six carbon atoms, at least two fluorine atoms and at least one hydrogen atom, provided that at least one hydrogen atom and one fluorine atom are located on adjacent carbon atoms, into contact with potassium hydroxide in a stirred reactor, containing an aqueous reaction medium, equipped with at least one inlet for the reactants and with at least one outlet, in order to give the (hydro)fluoroolefin compound, which is separated from the reaction medium in gaseous form, and potassium fluoride, (ii) bringing the potassium fluoride formed in (i) into contact, in an aqueous medium, with calcium hydroxide in order to give potassium hydroxide and to precipitate calcium fluoride, (iii) separation of the calcium fluoride precipitated in step (ii) from the reaction medium and (iv) optionally, the reaction medium is recycled after optional adjustment of the potassium hydroxide concentration to step (i).




s

Methods to separate halogentated olefins from 2-chloro-1,1,1,2-tetrafluoropropane using a solid adsorbent

The present invention provides a method for separating halocarbons. In particular, the invention provides a method for separating halogenated olefin impurities from 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) using a solid adsorbent, particularly activated carbon. More particularly the invention pertains to a method for separating 2-chloro-3,3,3-trifluoro-propene (HCFO-1233xf) from HCFC-244bb, which are useful as intermediates in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf).




s

Azeotropic or azeotrope-like composition, and method for producing 2,3,3,3-tetrafluoropropene or chloromethane

To provide a method for efficiently separating 2,3,3,3-tetrafluoropropene (HFO-1234yf) and chloromethane (R40) from a composition comprising HFO-1234yf and R40. An azeotrope-like composition comprising from 58 to 78 mol % of HFO-1234yf and from 22 to 42 mol % of R40, and a method for producing HFO-1234yf, which comprises steps of distilling an initial mixture containing HFO-1234yf in a content exceeding 63 mol % in the total amount of HFO-1234yf and R40, thereby to separate the initial mixture into a first fraction in which the content of HFO-1234yf in the total amount of HFO-1234yf and R40 is lower than the content of HFO-1234yf in the total amount of HFO-1234yf and R40 in the initial mixture, and a second fraction in which the content of HFO-1234yf in the total amount of HFO-1234yf and R40 is higher than the content of HFO-1234yf in the total amount of HFO-1234yf and R40 in the initial mixture, and then obtaining HFO-1234yf having a reduced R40 concentration, from the second fraction.




s

Method for producing fluorinated organic compounds

Provided is a process for making 2-chloro-1,1,1,2-tetrafluoropropane. The process has the step of hydrofluorinating 2-chloro-3,3,3-trifluoropropene in the presence of a catalyst selected from the group consisting of SbCl3, SbCl5, SbF5, TiCl4, SnCl4, Cr2O3, and fluorinated Cr2O3.




s

Fluorination of organic compounds

Methods for fluorinating organic compounds are described herein.




s

Fluorinated aromatic materials and their use in optoelectronics

Fluorinated aromatic materials, their synthesis and their use in optoelectronics. In some cases, the fluorinated aromatic materials are perfluoroalkylated aromatic materials that may include perfluoropolyether substituents.




s

Process for 1-chloro-3,3,3-trifluoropropene from trifluoromethane

The present invention provides routes for making 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) from commercially available raw materials. More specifically, this invention provides routes for HCFO-1233zd from inexpensive and commercially available trifluoromethane (HFC-23).




s

Process for 1-chloro-3,3,3-trifluoropropene from trifluoropropene

The present invention provides routes for making 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) from commercially available raw materials. More specifically, this invention provides several routes for forming HCFO-1233zd from 3,3,3-trifluoropropene (FC-1234zf).




s

Method for producing fluorinated organic compounds

A method for producing fluorinated organic compounds, including hydrofluoropropenes, which preferably comprises converting at least one compound of formula (I): CF3(—CX2X2)nCX1═H2 (I) to at least one compound of formula (II): CF3(CX2X2)nCX1═H2 (II), where X1 is Cl, Br or I, each X2 is independently selected from the group consisting of H, Cl, F, Br or J, and n is 0, 1, or 2.




s

Process for producing 2-chloro-1,3,3,3-tetrafluoropropene

Disclosed is a process for producing 2-chloro-1,3,3,3-tetrafluoropropene (1224), including a first step of separating 2,3-dichloro-1,1,1,3-tetrafluoropropane (234da) into erythro form and threo form, and a second step of bringing the separated erythro form or threo form in contact with a base to obtain 2-chloro-1,3,3,3-tetrafluoropropene (1224). The first step is a step of separating 234da by distillation to achieve a separation into a fraction containing mainly erythro form and a fraction containing mainly threo form. In the second step, 1224 cis form is obtained from the erythro form, and 1224 trans form is obtained from the threo form. By this process, it is possible to selectively and efficiently produce cis form or trans form of 2-chloro-1,3,3,3-tetrafluoropropene (1224).