s

Phase powders and process for manufacturing said powders

The invention relates to powder comprising at least one element M, at least one element A and at least one element X, in the respective proportions (n+1±ε1), 1±ε2 and n±ε3, in which: A is chosen from Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As and S;M is a transition metal;X is chosen from B, C and N;n is an integer equal to 1, 2 or 3; andε1, ε2 and ε3 independently represent a number ranging from 0 to 0.2, said powder having a mean particle size of less than 500 nm.




s

Thick film silver paste and its use in the manufacture of semiconductor devices

The present invention is directed to an electroconductive silver thick film paste composition comprising Ag, a glass frit and rhodium resinate, Cr2O3 or a mixture thereof all dispersed in an organic medium. The present invention is further directed to an electrode formed from the paste composition and a semiconductor device and, in particular, a solar cell comprising such an electrode. The paste is particularly useful for forming a tabbing electrode.




s

Method for producing magnetic disk, and glass substrate for information recording medium

To provide a method for producing a magnetic disk, whereby a magnetic recording layer is formed at a high temperature. A method for producing a magnetic disk, which comprises a step of forming a magnetic recording layer on a glass substrate having a temperature of at least 550° C., wherein the glass substrate comprises, as represented by mol percentage, from 62 to 74% of SiO2, from 6 to 18% of Al2O3, from 2 to 15% of B2O3 and from 8 to 21%, in total, of at least one component selected from MgO, CaO, SrO and BaO, provided that the total content of the above seven components is at least 95%, and further contains less than 1%, in total, of at least one component selected from Li2O, Na2O and K2O, or contains none of these three components.




s

Glass batch materials having a core-shell structure

A plurality of soda-lime glass batch materials are formed into granules that include a core and a shell surrounding the core. The core comprises a first portion of the plurality of glass batch materials, and the shell comprises a remaining portion of the plurality of glass batch materials. These core-shell granules can be melted in a glass furnace to produce molten soda-lime glass in less time and at a lower temperature than conventional soda-lime glass batch preparations.




s

Alkali-free glass

Provided is an alkali-free glass, which is substantially free of alkali metal oxides, and has a strain point of more than 680° C., an average coefficient of thermal expansion in the temperature range of 30 to 380° C. of 40 to 55×10−7/° C., and a liquidus temperature of less than 1,200° C. Further, the alkali-free glass comprises, as a glass composition in terms of mass %, 55 to 70% of SiO2, 10 to 20% of Al2O3, 0.1 to 4.5% of B2O3, 0 to 1% of MgO, 5 to 15% of CaO, 0.5 to 5% of SrO, and 5 to 15% of BaO.




s

Photovoltaic cell having a substrate glass made of aluminosilicate glass

A photovoltaic cell, for example a thin-film photovoltaic cell, having a substrate glass made of aluminosilicate glass, has a glass composition which has SiO2 and Al2O3 as well as the alkali metal oxide Na2O and the alkaline earth oxides CaO, MgO, and BaO, and optionally further components. The glass composition includes 10 to 16 wt.-% Na2O, >0 to 1 to 10 wt.-% BaO, and the ratio of CaO:MgO is in the range of 0.5 to 1.7. The aluminosilicate glass used is crystallization stable because of the selected quotient of CaO/MgO and has a transformation temperature >580° C. and a processing temperature




s

Oxide sintered body and sputtering target

Provided is an oxide sintered body suitably used for the production of an oxide semiconductor film for a display device, wherein the oxide sintered body has both high conductivity and relative density, and is capable of depositing an oxide semiconductor film having high carrier mobility. This oxide sintered body is obtained by mixing and sintering powders of zinc oxide, tin oxide and indium oxide, and when an EPMA in-plane compositional mapping is performed on the oxide sintered body the percentage of the area in which Sn concentration is 10 to 50 mass % in the measurement area is 70 area percent or more.




s

Dielectric composition and preparation method thereof

There are provided a dielectric composition and a preparation method thereof, the dielectric composition including: a first perovskite powder for a core represented by ABO3: and a second perovskite powder for a shell represented by ABO3, having an average particle diameter corresponding to ⅓ to 1/10 of an average particle diameter of the first perovskite powder, and included in an amount of 1 to 70 parts by weight with respect to 100 parts by weight of the first perovskite powder, wherein particles of the second perovskite powder have pores having a volume fraction of 3 to 50 vol % therein. According to the present invention, there are provided a dielectric composition having excellent dielectric characteristics and electrical characteristics, and a preparation method thereof.




s

Dielectric ceramic material and multilayer ceramic capacitor using the same

A dielectric ceramic material comprises a primary component of barium titanate (BaTiO3) and at least one additive component. The additive component has a mole percentage from 1% to 50% and is selected from the group consisting of lithium tantalite (LiTaO3), barium cerate (BaCeO3), sodium metaniobate (NaNbO3) and the combinations thereof.




s

Process for producing α-olefin polymer, α-olefin polymer, and lubricating oil composition

Provided is a method of producing an α-olefin polymer including a step of polymerizing one or more kinds of α-olefins each having 6 to 20 carbon atoms with a catalyst obtained by using a specific transition metal compound. By the method, an α-olefin polymer having a viscosity suitable for use in a lubricating oil can be produced on an industrial scale with ease, and further, the characteristics of the product can be widely changed through the control of reaction conditions.




s

Glass ceramic body, substrate for mounting light-emitting element, and light emitting device

To provide a glass ceramic body wherein the deterioration of the reflectance due to black coloration is suppressed, and the unevenness of the firing shrinkage is suppressed. A glass ceramic body comprising a glass matrix and alumina particles dispersed therein, wherein the glass matrix is not crystallized, a ceramic part composed of the dispersed alumina particles has an α-alumina crystal structure and a crystal structure other than the α-alumina crystal structure.




s

Powdered NiaM1bM2c(O)x(OH)y compounds, method for the production thereof and use thereof in batteries

The invention is directed to a pulverulent compound of the formula NiaM1bM2cOx(OH)y where M1 is at least one element selected from the group consisting of Fe, Co, Zn, Cu and mixtures thereof, M2 is at least one element selected from the group consisting of Mn, Al, Cr, B, Mg, Ca, Sr, Ba, Si and mixtures thereof, 0.3≦a≦0.83, 0.1≦b≦0.5, 0.01≦c≦0.5, 0.01≦x≦0.99 and 1.01≦y≦1.99, wherein the ratio of tapped density measured in accordance with ASTM B 527 to the D50 of the particle size distribution measured in accordance with ASTM B 822 is at least 0.2 g/cm3·μm. The invention is also directed to a method for the production of the pulverulent compound and the use as a precursor material for producing lithium compounds for use in lithium secondary batteries.




s

Chemically strengthened glass for display device

The present invention relates to a chemically strengthened glass for a display device, having a visible light transmittance Tva of 50% or more and less than 91% at a thickness of 1 mm using A light source, and an excitation purity Pe of less than 0.5% at a thickness of 1 mm.




s

Alumino-borosilicate glass for the confinement of radioactive liquid effluents, and method for treating radioactive liquid effluents

An alumino-borosilicate glass for the confinement, isolation of a radioactive liquid effluent of medium activity, and a method for treating a radioactive liquid effluent of medium activity, wherein calcination of said effluent is carried out in order to obtain a calcinate, and a vitrification adjuvant is added to said calcinate.




s

Glass composition for producing high strength and high modulus fibers

A glass composition including SiO2 in an amount from 74.5 to 80.0% by weight, Al2O3 in an amount from 5.0 to 9.5%>> by weight, MgO in an amount from 8.75 to 14.75% by weight, CaO in an amount from 0.0 to 3.0% by weight, Li2O in an amount from 2.0 to 3.25% by weight, Na2O in an amount from 0.0 to 2.0% by weight is provided. Glass fibers formed from the inventive composition may be used in applications that require high strength, high stiffness, and low weight. Such applications include woven fabrics for use in forming wind blades, armor plating, and aerospace structures.




s

Glass substrate for flat panel display and method for manufacturing same

A substrate for p-Si TFT flat panel displays made of a glass having a high low-temperature-viscosity characteristic temperature and manufactured while avoiding erosion/wear of a melting tank during melting through direct electrical heating. The glass substrate comprises 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-20 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-0.8 mass % of R2O, wherein R2O is total amount of Li2O, Na2O, and K2O, and 0-0.3 mass % of Sb2O3, and substantially does not comprise As2O3, wherein the mass ratio CaO/RO is equal to or greater than 0.65, the mass ratio (SiO2+Al2O3)/B2O3 is in a range of 7-30, and the mass ratio (SiO2+Al2O3)/RO is equal to or greater than 5. A related method involves melting glass raw materials blended to provide the glass composition; a forming step of forming the molten glass into a flat-plate glass; and an annealing step of annealing the flat-plate glass.




s

Strengthened borosilicate glass containers with improved damage tolerance

According to one embodiment, a glass container may include a body formed from a Type I, Class B glass composition according to ASTM Standard E438-92. The body may have an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. The body may also include a compressively stressed layer extending into the wall thickness from at least one of the outer surface and the inner surface. A lubricous coating may be positioned on at least a portion of the outer surface of the body, wherein the outer surface of the body with the lubricous coating has a coefficient of friction less than or equal to 0.7.




s

Tempered glass substrate and method of producing the same

A tempered glass substrate has a compression stress layer on a surface thereof, and has a glass composition comprising, in terms of mass %, 40 to 70% of SiO2, 12 to 21% of Al2O3, 0 to 3.5% of Li2O, 10 to 20% of Na2O, 0 to 15% of K2O, and 0 to 4.5% of TiO2, wherein the tempered glass substrate has a plate thickness of 1.5 mm or less, and an internal tensile stress in the tempered glass substrate is 15 to 150 MPa.




s

Optical glass

Provided is an optical glass that has desired optical properties, superior resistance to devitrification, and superior mass productivity. An optical glass is made of a SiO2—Nb2O5—TiO2-based glass having a refractive index (nd) of 1.75 to 1.95 and an Abbe's number (νd) of 15 to 35 and has an operation temperature range (ΔT=(temperature at 100.5 poise)−(liquidus temperature)) of 20° C. or more. The optical glass preferably contains, in percent by mass, 15% to 45% SiO2, 15% to 40% (but excluding 40%) Nb2O5 and 1% to 30% TiO2 as glass components.




s

Dielectric composition and ceramic electronic component including the same

There is provided a dielectric composition including: a base powder including BaTiO3; a first accessory component including a content (x1) of 0.1 to 1.0 at % of an oxide or a carbonate including transition metals, based on 100 moles of the base powder; a second accessory component including a content (y) of 0.01 to 3.0 at % of oxide or carbonate including a fixed valence acceptor element, based on 100 moles of the base powder; a third accessory component including an oxide or a carbonate including a Ce element (content of z at %) and at least one rare earth element (content of w at %); and a fourth accessory component including a sintering aid, wherein 0.01≦z≦x1+4y and 0.01≦z+w≦x1+4y based on 100 moles of the base powder.




s

Optical glass, optical element, and method for manufacturing optical glass

An optical glass including B3+, La3+ and Nb5+ as cationic components constituting the glass, wherein the optical glass satisfies the following expressions represented in cation percentages: 10 cat. %≦B3+≦50 cat. %;40 cat. %≦La3+≦65 cat. %;0 cat. %≦Nb5+≦40 cat. %;80 cat. %≦(total amount of B3++La3++Nb5+)≦100 cat. %; and0 cat. %≦Si4+≦10 cat. %;0 cat. %≦Ge4+≦5 cat. %;0 cat. %≦Mg2+≦5 cat. %;0 cat. %≦Ba2+≦10 cat. %;0 cat. %≦Ca2+≦10 cat. %;0 cat. %≦Sr2+≦10 cat. %;0 cat. %≦Zn2+≦20 cat. %;0 cat. %≦W6+≦5 cat. %;0 cat. %≦Zr4+≦5 cat. %;0 cat. %≦Ti4+≦5 cat. %;0 cat. %≦Bi3+≦5 cat. %;0 cat. %≦Ta5+≦10 cat. %;0 cat. %≦(total amount of Y3++Gd3+)≦20 cat. %; and0 cat. %≦(total amount of Yb3++Lu3+)≦10 cat. %.




s

Oxide sintered body and sputtering target

Provided are an oxide sintered body and a sputtering target that are ideal for the production of an oxide semiconductor film for a display device. The oxide sintered body and sputtering target that are provided have both high conductivity and high relative density, are capable of forming an oxide semiconductor film having a high carrier mobility, and in particular, have excellent direct-current discharge stability in that long-term, stable discharge is possible, even when used by the direct-current sputtering method. The oxide sintered body of the invention is an oxide sintered body obtained by mixing and sintering zinc oxide, tin oxide, and an oxide of at least one metal (M metal) selected from the group consisting of Al, Hf, Ni, Si, Ga, In, and Ta. When the in-plane specific resistance and the specific resistance in the direction of depth are approximated by Gaussian distribution, the distribution coefficient σ of the specific resistance is 0.02 or less.




s

Shaped or unshaped refractory or kiln furniture composition

The present description relates to a refractory composition including 70 weight percent to 98 weight percent particulate refractory material and 2 weight percent to 30 weight percent of a binder phase including reactive filler and a binder, the binder phase substantially includes solely reactive andalusite as reactive filler.




s

Powder comprising stabilized zirconia granules and a binder having Tg of 25C or lower

The invention relates to a granulated powder intended, in particular, for the production of ceramic sintered parts, said powder having the following chemical weight composition, based on dry matter, namely: a zirconia stabiliser selected from the group containing Y2O3, Sc2O3, MgO, CaO, CeO2, and mixtures thereof, the weight content of stabiliser, based on the total zirconia and stabiliser content, being between 2% and 20% and the MgO+CaO content being less than 5% based on the total zirconia and stabiliser content; at least 1% of a first binder having a glass transition temperature less than or equal to 25° C.; 0-4% of an additional binder having a glass transition temperature greater than 25° C.; 5-50% alumina; 0-4% of a temporary additive different from the first binder and the additional binder, the total content of the first binder, the additional binder and the temporary additive being less than 9%; less than 2% impurities; and ZrO2 to make up 100%. According to the invention, the median diameter D50 of the powder is between 80 and 130 μm, the percentile D99.5 is less than 500 μm and the relative density of the granules is between 30% and 60%.




s

Adsorption of acid gases

An adsorption process is disclosed for removal of acid gas contaminants from a liquid or gas which comprises providing an activated alumina adsorbent which is impregnated with a compound selected from the group consisting of one or more alkali metal compounds, one or more alkaline earth metal compounds, or a mixture of such compounds; contacting the liquid or gas containing acid gas contaminants with the activated alumina adsorbent to adsorb enough acid gas contaminant in the liquid or gas to lower the contaminant content of the liquid or gas, the alumina adsorbent being formed from agglomerated calcined alumina powder and provided with a mercury pore volume of pores greater than 500 angstroms at least 0.10 cc/g.




s

Process for removing oxygenate from an olefin stream

The present invention provides a process for removing oxygenate from an olefin stream comprising oxygenate, comprising providing to an oxygenate recovery zone the olefin stream comprising oxygenate and a solvent comprising ethanol, treating the olefin stream comprising oxygenate with the solvent, and retrieving from the oxygenate recovery zone at least one oxygenate-depleted olefinic product stream comprising olefin and a spent solvent comprising at least part of the oxygenate.




s

Separation of components from a multi-component hydrocarbon stream which includes ethylene

A process to separate a multi-component hydrocarbon stream which includes ethylene and other components with at least some of the components being present in a number of phases, is provided. The process includes in a first flash stage, flashing the multi-component hydrocarbon stream, from an elevated pressure and temperature to a pressure in the range of 10-18 bar(a), producing a first ethylene-containing vapor stream at a pressure in the range of 10-18 bar(a) and a multi-phase stream which includes some ethylene. In a second flash stage, the multi-phase stream is flashed to a pressure of less than 6 bar(a), producing a second vapor stream at a pressure of less than 6 bar(a) and a bottoms stream. The first ethylene-containing vapor stream is removed from the first flash stage, the second vapor stream is removed from the second flash stage and the bottoms stream is removed from the second flash stage.




s

Catalyst composition and process for oligomerization of ethylene

The present invention relates to a catalyst composition for oligomerization of ethylene, comprising a chromium compound; a ligand of the general structure R1R2P—N(R3)—P(R4)—N(R5)—H, wherein R1, R2, R3, R4 and R5 are independently selected from halogen, amino, trimethylsilyl, C1-C10-alkyl, aryl and substituted aryl; a modifier containing organic or inorganic halide; and an activator or co-catalyst; and a process for oligomerization utilizing that catalyst.




s

Lubricant composition for an internal combustion engine and method for lubricating an internal combustion engine

A lubricating oil composition for an internal combustion engine contains: a base oil including a component (A) of a polyalphaolefin having a kinematic viscosity at 100 degrees C. of 5.5 mm2/s or less, a CCS viscosity at −35 degrees C. of 3000 mPa·s or less and a NOACK of 12 mass % or less and a component (B) of a mineral oil having a viscosity index of 120 or more; and polyisobutylene having a mass average molecular weight of 500,000 or more. A content of the composition (A) is 25 mass % or more of a total amount of a lubricating oil.




s

Lubricant composition for an internal combustion engine and method for lubricating an internal combustion engine

A lubricating oil composition for an internal combustion engine contains a component (A) of a polyalphaolefin having a kinematic viscosity at 100 degrees C. of 5.5 mm2/s or less, a CCS viscosity at −35 degrees C. of 3000 mPA·s or less and a NOACK of 12 mass % or less, and a component (B) of a mineral oil having a viscosity index of 120 or more. The component (A) is contained at a content of 10 mass % or more of a total amount of the composition.




s

Dehydrogenation process

A dehydrogenation process for the dehydrogenation of at least one dehydrogenatable hydrocarbon, the process comprising contacting a feed comprising the at least one dehydrogenatable hydrocarbon under dehydrogenation conditions with a catalyst composition comprising a support and at least one dehydrogenation component wherein said conditions include a temperature of from 400° C. to 750° C. and a pressure of at least 50 psig (345 kPag).




s

Method and apparatus for preparing fuel components from crude tall oil

A method for preparing fuel components from crude tall oil. Feedstock containing tall oil including unsaturated fatty acids is introduced to a catalytic hydrodeoxygenation to convert unsaturated fatty acids, rosin acids and sterols to fuel components. Crude tall oil is purified in a purification by washing the crude tall oil with washing liquid and separating the purified crude tall oil from the washing liquid. The purified crude tall oil is introduced directly to the catalytic hydrodeoxygenation as a purified crude tall oil feedstock. An additional feedstock may be supplied to the catalytic hydrodeoxygenation.




s

Integrated hydrogenation/dehydrogenation reactor in a catalytic reforming process configuration for improved aromatics production

A process for reforming hydrocarbons is presented. The process involves applying process controls over the reaction temperatures to preferentially convert a portion of the hydrocarbon stream to generate an intermediate stream, which will further react with reduced endothermicity. The intermediate stream is then processed at a higher temperature, where a second reforming reactor is operated under substantially isothermal conditions.




s

Initial hydrotreating of naphthenes with subsequent high temperature reforming

A process for the production of aromatics through the reforming of a hydrocarbon stream is presented. The process utilizes the differences in properties of components within the hydrocarbon stream to increase the energy efficiency. The differences in the reactions of different hydrocarbon components in the conversion to aromatics allows for different treatments of the different components to reduce the energy used in reforming process.




s

Co-current catalyst flow with feed for fractionated feed recombined and sent to high temperature reforming reactors

A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The catalyst is passed through the reactors in a sequential manner.




s

Process for producing olefins

The present invention discloses a process for producing olefins from petroleum saturated hydrocarbons. The process of the present invention comprises: contacting a preheated petroleum saturated hydrocarbons feedstock with a dehydrogenation catalyst in a dehydrogenation reaction zone of a reaction system to obtain a petroleum hydrocarbon stream containing unsaturated hydrocarbon compounds, in which the dehydrogenation reaction has a conversion rate of at least 20%; and contacting the obtained petroleum hydrocarbon stream containing the unsaturated hydrocarbon compounds with olefins cracking catalyst in an olefin cracking zone of the reaction system to obtain a product stream containing olefins with a reduced number of carbon atoms.




s

Method for controlling 2-phenyl isomer content of linear alkylbenzene and catalyst used in the method

A method for controlling 2-isomer content in linear alkylbenzene obtained by alkylating benzene with olefins and catalyst used in the method.




s

Catalysts, processes for preparing the catalysts, and processes for transalkylating aromatic hydrocarbon compounds

A catalyst comprising an aluminosilicate zeolite having an MOR framework type, an acidic MFI molecular sieve component having a Si/Al2 molar ratio of less than 80, a metal component comprising one or more elements selected from groups VIB, VIIB, VIII, and IVA, an inorganic oxide binder, and a fluoride component.




s

Methods for removing weakly basic nitrogen compounds from a hydrocarbon stream using basic molecular sieves

Disclosed is a method for removing weakly basic nitrogen compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with a basic catalyst to convert a portion of the weakly basic nitrogen compounds to basic nitrogen compounds. The method also includes contacting the hydrocarbon feed stream with an acidic adsorbent to adsorb the basic nitrogen compounds from the stream. The hydrocarbon feed stream comprises an aromatic compound and a weakly basic nitrogen compound.




s

System and process for flushing residual fluid from transfer lines in simulated moving bed adsorption

A process according to various approaches includes flushing an intermediate transfer line between a raffinate stream transfer line and a desorbent stream transfer line away from the adsorptive separation chamber to remove residual fluid including desorbent from intermediate transfer line. The process may include directing the residual fluid flushed from the intermediate transfer line to a recycle stream to introduce the residual fluid into the adsorptive separation chamber.




s

Method for increasing thermal stability of a fuel composition using a solid phosphoric acid catalyst

This invention relates to a method for increasing thermal stability of fuel, as well as in reducing nitrogen content and/or enhancing color quality of the fuel. According to the method, a fuel feedstock can be treated with a solid phosphoric acid catalyst under appropriate catalyst conditions, e.g., to increase the thermal stability of the fuel feedstock. Preferably, the fuel feedstock can be treated with the solid phosphoric acid catalyst at a ratio of catalyst mass within a contact zone to a mass flow rate of feedstock through the zone of at least about 18 minutes to increase the thermal stability of the fuel feedstock, along with reducing nitrogen content and/or enhancing color quality.




s

Demulsifying of hydrocarbon feeds

In various aspects, the invention provides for processing a hydrocarbon feed having hydrocarbon and emulsified aqueous components demulsifying into hydrocarbon and aqueous phases over an initial demulsification time, with an active agent to form a treated feed. The active agent has an active agent solubility in the hydrocarbon component and in the aqueous component, the aqueous component has an aqueous component solubility in the hydrocarbon component. The active agent solubility in the hydrocarbon component is greater than the aqueous component solubility in the hydrocarbon component. The active agent solubility in the aqueous component is greater than the active agent solubility in the hydrocarbon component. The active agent solubility in the aqueous component is greater than the active agent solubility in the hydrocarbon component. A treated demulsified hydrocarbon phase separates from the active agent and the aqueous component in a modified demulsification time that is shorter than the initial demulsification time.




s

Integrated hydrogenation/dehydrogenation reactor in a platforming process

A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.




s

Process to make alpha olefins from ethanol

The present invention relates to a process to make alpha olefins comprising: dehydrating ethanol to recover an ethylene stream,introducing said ethylene stream into an oligomerization zone containing an oligomerization catalyst and into contact with said oligomerization catalyst,operating said oligomerization zone at conditions effective to produce an effluent consisting essentially of 1-butene, 1-hexene, optionally heavier alpha olefins and unconverted ethylene if any,introducing the above effluent into a fractionation zone to recover a stream consisting essentially of 1-butene, a stream consisting essentially of 1-hexene, optionally a stream consisting essentially of heavier alpha olefins and an optional ethylene stream. In an advantageous embodiment the 1-hexene or at least one heavier alpha olefins, if any, are isomerized to an internal olefin and subsequently transformed by metathesis with the aid of additional ethylene into different alpha-olefins with even or odd number of carbons. By way of example 1-hexene is isomerized into 2-hexene and by methathesis with ethylene converted to 1-pentene and propylene.In another embodiment the oligomerization zone is only a dimerization zone and butene is produced. 1-butene is isomerized to 2-butene and sent to a methathesis zone in the presence of ethylene to be converted to propylene. In said embodiment the dehydration catalyst is selected in the group consisting of a crystalline silicate having a ratio Si/Al of at least about 100, a dealuminated crystalline silicate, and a phosphorus modified zeolite.




s

Selective oligomerization of isobutene

A process for oligomerizing isobutene comprises contacting a feedstock comprising isobutene with a catalyst comprising a MCM-22 family molecular sieve under conditions effective to oligomerize the isobutene, wherein said conditions including a temperature from about 45° C. to less than 140° C. The isobutene may be a component of a hydrocarbon feedstock containing at least one additional C4 alkene. In certain aspects, isobutene oligomers are separated from a first effluent of the oligomerization to produce a second effluent comprising at least one n-butene. The second effluent can be contacted with an alkylation catalyst to produce sec-butylbenzene.




s

Methods for removing weakly basic nitrogen compounds from a hydrocarbon stream using acidic clay

Disclosed is a method for removing weakly basic nitrogen compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with acidic clay to produce a hydrocarbon effluent stream having a lower weakly basic nitrogen compound content relative to the hydrocarbon feed stream. The hydrocarbon feed stream comprises an aromatic compound and a weakly basic nitrogen compound.




s

High octane unleaded aviation gasoline

High octane unleaded aviation fuel compositions having high aromatics content and a CHN content of at least 97.2 wt %, less than 2.8 wt % of oxygen content, a T10 of at most 75° C., T40 of at least 75° C., a T50 of at most 105° C., a T90 of at most 135° C., a final boiling point of less than 190° C., an adjusted heat of combustion of at least 43.5 MJ/kg, a vapor pressure in the range of 38 to 49 kPa, freezing point is less than −58° C. is provided.




s

Biomass feed system including gas assist

An improved biomass feed system and processes for transporting biomass to downstream processing locations are disclosed. The system uses a pressurized gas to assist in the transporting of the biomass to the conversion reactor.




s

Integrated hydrogenation/dehydrogenation reactor in a platforming process

A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.




s

Oligomerisation of olefinic compounds in the presence of an activated oligomerisation catalyst

This invention relates to the oligomerization of olefinic compounds in the presence of an activated oligomerization catalyst. The invention also extends to a particular manner for providing an activated oligomerization catalyst. According to the present invention, there is provided a process for producing an oligomeric product by the oligomerization of at least one olefinic compound, the process including (a) providing an activated oligomerization catalyst by combining, in any order, iii) a source of chromium, ιv) a ligating compound of the formula (R1)mX1(Y)X2(R2)n wherein X1 and X2 are independently an atom selected from the group consisting of nitrogen, phosphorus, arsenic, antimony, bismuth, oxygen, sulphur and selenium or said atom oxidized by S, Se, N or O where the valence of X1 and/or X2 allows for such oxidation, Y is a linking group between X1 and X2 which linking group contains at least one nitrogen atom which is directly bonded to X1 or X2, m and n are independently 0, 1 or a larger integer, and R1 and R2 are independently hydrogen, a hydrocarbyl group, an organoheteryl group or a heterohydrocarbyl group, and the respective R1 groups are the same or different when m>1, and the respective R2 groups are the same or different when n>1, in) a catalyst activator which is an organoboron compound including a cation and a non-coordinating anion of the general formula [(R10)xL*-H]+[B(R20)4]− wherein L* is an atom selected from the group consisting of N, S and P, the cation [(R10)x L*-H]* is a Bronsted acid, x is an integer 1, 2 or 3, each R10 is the same or different when x is 2 or 3 and each is a —H, hydrocarbyl group or a heterohydrocarbyl group, provided that at least one of R10 comprises at least 6 carbon atoms and provided further that the total number of carbon atoms in (R10)x collectively is greater than 12, R20 independently at each occurrence is selected from the group consisting of hydride, dialkylamido, halide, alkoxide, aryloxide, hydrocarbyl, halosubstituted-hydrocarbyl radicals, halosubstituted-alkoxide, halosubstituted-aryloxide and a halosubstituted aromatic ring moiety with at least one halide substituent on the aromatic ring, and vi) an aliphatic solvent, and (b) contacting the at least one olefinic compound with the activated oligomerization catalyst to produce an oligomeric product.