s

Pyridine-based compounds, especially phosphonates

A class of pyridine phosphonate compounds is disclosed that are useful as ligands in the one manufacture of oxidation-reduction catalysts. In particular, pyridine-2,6-disphosphonic acid is a specie of the pyridine phosphonate ligands that can be combined with a polyvalent metal to produce a catalyst to convert hydrogen sulfide to solid sulfur.




s

Method of treating hepatitis virus infections

A method of treating hepatitis virus infection is disclosed. The method comprising administering to a human subject in need of such treatment an effective hepatitis virus-combatting amount of an alkyl lipid or alkyl lipid derivative.




s

Germanium bridged metallocenes producing polymers with increased melt strength

This invention relates to a process for polymerizing ethylene comprising contacting ethylene and optional comonomers with a catalyst system comprising an activator and a transition metal compound represented by the formula: ##STR1## Wherein R1 and R2 are independently hydrogen or a group having up to 100 carbon atoms, Cp1 is a bulky ligand; Cp2 is a bulky ligand or a heteroatom optionally bound to a C1 to C50 hydrocarbyl group, n is the valence state of the transition metal, Tm is a Group 3 to 10 metal, and each X is independently an anionic leaving group.




s

Production of alkali metal cyclopentadienylide and production of dihalobis (η-substituted-cyclopentadienyl) zirconium from alkali metal cyclopentadienylide

A process for producing an alkali metal cyclopentadienylide is disclosed which comprises reacting in a solvent an alkali metal hydride with a disubstituted or trisubstituted 1,3-cyclopentadiene. Further, a process for producing a dihalobis(η-substituted-cyclopentadienyl)zirconium is disclosed which comprises reacting a zirconium halide with the above alkali metal cyclopentadienylide. The former process enables performing the reaction between the disubstituted or trisubstituted 1,3-cyclopentadiene and the alkali metal hydride at an easily controllable temperature of room temperature to about 150° C. and also enables obtaining the alkali metal cyclopentadienylide in high yield. The latter process enables obtaining the dihalobis(η-substituted-cyclopentadienyl)zirconium in high yield.




s

Bridged bis-fluorenyl metallocenes, process for the preparation thereof and use thereof in catalysts for the polymerization of olefins

Metallocene compounds having two fluorenyl ligands bridged with a single silicon or germanium atom, said atom having two substituent groups containing a total of at least four carbon atoms, are useful as catalyst components for the polymerization of olefins. Particularly, it is possible to prepare high molecular weight atactic polypropylene with improved yields with respect to the known catalysts.




s

Arene-transition metal linkers for solid phase synthesis

Compositions and methods for the solid phase synthesis of organic compounds are provided. The compositions are solid supports having an attached traceless linker precursor and are represented by the formula: ##STR1## In this formula, S0 is a solid support; B is a connecting group; M is a transition metal, for example ruthenium, chromium, iron, molybdenum and manganese; each L is independently a transition metal ligand; the letter n represents an integer of from 1 to 4, such that M has a sufficient number of ligands to fill the available valences; and X- represents an anion which is typically a non-nucleophilic anion.




s

Process for cyclopentadiene substitution with groups differing from each other

Polysubstituted cyclopentadiene compound wherein at least two different substituents are present from the group consisting of linear, branched and cyclic alkyls, aralkyls and alkenyls, and a process for the preparation of a cyclopentadiene compound substituted with at least two different groups chosen from the group consisting of linear, branched, cyclic and aromatic alkyls and alkenyls, characterized in that it comprises the reacting of a halide of a first substituting group in a mixture of the cyclopentadiene compound and an aqueous solution of a base, in which the quantity of the base relative to the cyclopentadiene compound is between 5 and 30 mol/mol, in the presence of a phase transfer catalyst, followed by the addition of a halide of a second or optionally a third substituting group to the reaction mixture.




s

Diene complexes of group 4 metals and process of preparation

Disclosed is a process for preparing bridged Group 4 metal complexes containing a neutral diene ligand starting from the corresponding novel, metal diene containing complexes by reaction thereof with the divalent derivative of a bridged bidentate ligand compound. The novel, intermediate metal diene complexes, their formation from tetravalent metal salts and an integrated process combining both process steps are claimed.




s

Preparation of addition polymerization catalysts

Metal complexes useful as components of addition polymerization catalysts are prepared by oxidizing Group 4 or Lanthanide metal containing complexes using an organic halide oxidizing agent in a unique one electron oxidation.




s

Method for removing parasites and in particular ectoparasites of vertebrates, in particular of mammals, and compositions for the implementation of this method

Methods for removing parasites and in particular ectoparasites of vertebrates, in particular of mammals, and compositions for the implementation of this method.Methods for removing parasites of vertebrates, and in particular arthropods, mainly insects and Arachnida, wherein an effectively parasiticidal amount of a compound of formula (I) ##STR1## in particular of fipronil, is administered to the animal via an administration route which makes possible systemic distribution and good absorption.




s

Metallocene compounds, processes for the preparation thereof, catalyst components for olefin polymerization, and processes for the production of olefin polymers

A metallocene compound is provided wherein to a transition metal compound is bonded a multidentate compound wherein a substituted cycloalkadienyl ring CA1 having therein a heteroaromatic group Ra containing an oxygen, sulfur or nitrogen atom on a cycloalkadienyl ring, preferably the five-membered ring thereof, and an unsubstituted or substituted cycloalkadienyl group CA2 or --(R1)N--, --O--, --S-- or --(R1)P--, preferably CA2, more preferably a substituted cycloalkadienyl group identical with CA1 are bonded through a divalent linking group. The metallocene compound is suitable as a principal ingredient of a catalyst for the polymerization of olefins, particularly achieving a very high effect in making the molecular weight of a polypropylene higher.




s

Curable organopolysiloxane compositions

Curable organopolysiloxane compositions comprising a platinum catalyst selected from the group consisting of (PR23)2 Pt(--C.tbd.C--R3)2 (III), (R22 P--R4 --PR22)Pt(--C.tbd.C--R3)2 (IV)and H--C.tbd.C--R5 --C.tbd.C--[--Pt(PR23)2 --C.tbd.C--R5 --C.tbd.C--]e --H (V)where R2, R3, R4, R5 and e are as defined in claim 1.




s

Metallocene production process

A number of process steps are provided that can be combined to produce bridged cyclopentadienyl-fluorenyl metallocenes. The process steps include production of a cyclopentadiene compound from dicyclopentadiene; production and recovery of a fulvene compound using the cyclopentadiene compound; production of a raw metallocene product using the fulvene compound; and recovery of the pure metallocene from the raw product.




s

Process for preparing a methylene-bridged biscyclopentadienyl compound

The present invention relates to a process for preparing a methylene-bridged biscyclopentadienyl compound having the formula I ##STR1##where L are, independently of one another, identical or different and are each a cyclopentadienyl group, by reacting one or two cyclopentadienyl compounds LH with formaldehyde in monomeric, oligomeric or polymeric form or formaldehyde-generating reagents in the presence of at least one base and at least one phase transfer catalyst.




s

Osmium oxide composition

The present invention provides an osmium oxide composition comprising an osmium oxide microencapsulated in an aromatic polyolefin (hereinafter abbreviated as MCOsOx), a method for preparation of MCOsOx, which comprises allowing an osmium oxide to contact with an aromatic polyolefin in an organic solvent, and precipitating MCOsOx, an oxidizing agent comprising MCOsOx, a method for preparing a chiral diol compound, which comprises reacting MCOsOx, a chiral ligand and an olefin compound with each other, and a method for preparing a chiral diol compound, which comprises oxidizing an olefin compound with MCOsOx wherein a chiral ligand further coordinates to an osmium oxide.




s

Osmium oxide composition

The present invention provides an osmium oxide composition comprising an osmium oxide microencapsulated in an aromatic polyolefin (hereinafter abbreviated as MCOsOx), a method for preparation of MCOsOx, which comprises allowing an osmium oxide to contact with an aromatic polyolefin in an organic solvent, and precipitating MCOsOx, an oxidizing agent comprising MCOsOx, a method for preparing a chiral diol compound, which comprises reacting MCOsOx, a chiral ligand and an olefin compound with each other, and a method for preparing a chiral diol compound, which comprises oxidizing an olefin compound with MCOsOx, wherein a chiral ligand further coordinates to an osmium oxide.




s

Process for the preparation of polyether phosphates

The invention provides an improved process for the synthesis of compounds carrying at least one phosphate group, especially polyalkylene glycol phosphate compounds, said process comprising the steps of: (a) reacting a compound containing at least one primary alcohol moiety with a diaryl- or diaralkyl-halophosphate whereby to form the corresponding diaryl- or diaralkyl-phosphate ester; (b) reductively cleaving the resulting product; and (c) if desired, repeating steps (a) and (b) with the product of step (b) whereby to produce a compound carrying two or more phosphate groups. Advantages of the process in accordance with the invention are that this avoids the production of by-products and results in products which are low in impurities. Also provided are novel diaryl- and diaralkyl-phosphate ester compounds, in particular polyethylene glycol diphenylphosphate ester and derivatives thereof.




s

Process of preparing a fluid rare earth alkoxylation catalyst

A process to prepare an improved fluid rare earth phosphate catalyst composition useful in preparing alkylene oxide adducts of organic compounds having active hydrogen atoms is provided. The catalyst is prepared by dissolving a rare earth salt in a C9-C30 active hydrogen containing organic compound and then adding phosphoric acid to the organic compound rare earth mixture.




s

Process for the oxidation of cyclohexanone to &egr -caprolactone

This invention relates to a composition comprising antimony trifluoride and silica, a method for the preparation of said composition and use of said composition as a catalyst in a process for the oxidation of cyclohexanone to ε-caprolactone.




s

Porphyrin compounds, their conjugates and assay methods based on the use of said conjugates

The preparation of phosphorescent metalloporphyrin labelling reagents and their use for preparation of phosphorescent conjugates with biomolecules. The labelling reagents obtainable are water soluble monofunctional derivatives of Pt- and Pd-coproporphyrins, where the term “monofunctional” refers to the number of reactive groups in the porphyrin moiety.




s

Metal complex having β-diketonate, process for production thereof, photoelectric conversion element, and photochemical cell

A metal complex having a β-diketonate represented by the following formula (1): wherein M represents a metal atom of the VIII group, R1, R2 and R3 represent a group or an atom selected from the group consisting of an alkyl group, an aryl group, a hydroxyl group, an amino group, an alkoxy group, a hydrogen atom and a halogen atom; X−1 represents an ion selected from a halogen, nitric acid, sulfonic acid, fluoroboric acid, fluorophosphoric acid, or perchloric acid ion; L1 or L2 represents a 2,2'-bipyridine or 1,10-phenanthroline group where these groups may be substituted with a group or an atom selected from an alkyl group, a carboxyl group, a sulfonic acid group, a phosphonic acid group, a hydroxyl group, an amino group, a hydrogen atom and a halogen atom. A photoelectric conversion element and a photochemical cell using the above-mentioned metal complex.




s

Preparation of triethyl phosphate

The invention relates to a process for preparing triethyl phosphate by reacting phosphorus oxychloride with a greater than stoichiometric quantity of ethanol under reduced pressure at temperatures of from 0 to 50° C. in a reaction vessel, wherein a) the volatile components resulting from the reaction are predominantly condensed by means of a reflux condenser and the remaining volatile components are passed into a scrubber filled with water,b) after the end of the reaction, the reaction mixture is separated distillatively in an outgassing column into a top product and a bottom product which predominantly comprises triethyl phosphate,c) the top product of the outgassing column is combined with the contents of the scrubber andd) the contents of the scrubber are separated distillatively in an azeotropic distillation to obtain water and ethanol as top product and the ethanol, preferably after dewatering, is preferably returned to the reaction.




s

Catalyst and methods for polymerizing cycloolefins

Methods for the addition polymerization of cycloolefins using a cationic Group 10 metal complex and a weakly coordinating anion of the formula: [(R')zM(L')x(L″)y]b[WCA]dwherein [(R')zM(L')x(L″)y] is a cation complex where M represents a Group 10 transition metal; R' represents an anionic hydrocarbyl containing ligand; L' represents a Group 15 neutral electron donor ligand; L″ represents a labile neutral electron donor ligand; x is 1 or 2; and y is 0, 1, 2, or 3; and z is 0 or 1, wherein the sum of x, y, and z is 4; and [WCA] represents a weakly coordinating counteranion complex; and b and d are numbers representing the number of times the cation complex and weakly coordinating counteranion complex are taken to balance the electronic charge on the overall catalyst complex.




s

Methods, complexes, and system for forming metal-containing films

A method of forming a film on a substrate using Group IIIA metal complexes. The complexes and methods are particularly suitable for the preparation of semiconductor structures using chemical vapor deposition techniques and systems.




s

Preparation of silicon-bridged metallocene compounds

A process for obtaining silicon-bridged metallocene compounds comprising the following steps: a) reacting, at a temperature of between −10° C. and 70° C., the starting ligand with about 2 molar equivalents of an alkylating agent;b) after the reaction has been completed, adding at least 2 molar equivalents of an alkylating agent that can be also different from the first one; andc) reacting, at a temperature of between −10° C. and 70° C., the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML's, wherein M is a transition metal; s is an integer corresponding to the oxidation state of the metal; and L' is an halogen atom selected from chlorine, bromine and iodine.




s

Ferrocenyl ligands for homogeneous, enantioselective hydrogenation catalysts

Compounds of the formula (I) or (I'), where R1 is a hydrogen atom or C1-C4-alkyl and R'1 is C1-C4-alkyl; X1 and X2 are each, independently of one another, a secondary phosphine group; R2 is hydrogen, R01R02R03Si—, C1-C18.acyl substituted by halogen, hydroxy, C1-C8-alkoxy or R04R05N—, -or R06—X01—C(O)—; R01, R02 and R03 are each, independently of one another, C1-C12-alkyl, unsubstituted or C1-C4-alkyl or C1-C4-alkoxy-substituted C6-C10-aryl or C7-C12-aralkyl; R04 and R05 are each, independently of one another, hydrogen, C1-C12-alkyl, C3-C8-cycloalkyl, C6-C10-aryl or C7-C12-aralkyl, or R04 and R05 together are trimethylene, tetramethylene, pentamethylene or 3-oxapcntylene; R06 is C1-C18-alkyl, unsubstituted or C1-C4-alkyl- or C1-C4-alkoxy-substituted C3-C8-cycloalkyl, C6-C10-aryl or C7-C12-aralkyl; X01 is —O— or —NH—; T is C6-C20-arylene; v is 0 or an integer from 1 to 4; and * denotes a mixture of racemic or enantiomerically pure diastereomers or pure racemic or enantiomerically diastereomers, are excellent chiral ligands for metal complexes as enantioselective catalysts for the hydrogenation of prochiral organic compounds.




s

Processes for the production of organometallic compounds

This invention relates to processes for the production of organometallic compounds represented by the formula M(L)3 wherein M is a Group VIII metal, e.g., ruthenium, and L is the same or different and represents a substituted or unsubstituted amidinato group or a substituted or unsubstituted amidinato-like group, which process comprises (i) reacting a substituted or unsubstituted metal source compound, e.g., ruthenium (II) compound, with a substituted or unsubstituted amidinate or amidinate-like compound in the presence of a solvent and under reaction conditions sufficient to produce a reaction mixture comprising said organometallic compound, e.g., ruthenium (III) compound, and (ii) separating said organometallic compound from said reaction mixture. The organometallic compounds are useful in semiconductor applications as chemical vapor or atomic layer deposition precursors for film depositions.




s

Ferrocene-containing conductive polymer, organic memory device using the same and fabrication method of the organic memory device

Disclosed are a ferrocene-containing conductive polymer, an organic memory device using the conductive polymer and a method for fabricating the organic memory device. The conductive polymer may include a fluorenyl repeating unit, a thienyl repeating unit and a diarylferrocenyl repeating unit. The organic memory device may possess the advantages of rapid switching time, decreased operating voltage, decreased fabrication costs and increased reliability. Based on these advantages, the organic memory device may be used as a highly integrated, large-capacity memory device.




s

Flame retardant and polymer composition using the same

A flame retardant suitable for manufacturing a polymer composition is provided. The polymer composition is used for forming a cured film in which a balance among flame retardancy, adhesion, chemical resistance, heat resistance, and elasticity, and so on, is provided. A flame-retardant polymer composition with an excellent balance among the above properties is also provided. The flame retardant of the invention has a structure of Formula (1), (2), or (3): (in which, R1 is hydrogen or methyl, R2 is C2-20 alkylene or C2-20 alkylene in which any —CH2— is replaced by —O—, R3 and R4 are C1-20 alkyl, phenyl, and phenyl substituted by C1-5 alkyl or phenyl, R3 and R4 may also be an integrally-formed cyclic group, and p and q are 0 or 1).




s

Methods for forming lead zirconate titanate nanoparticles

Methods for forming lead zirconate titanate (PZT) nanoparticles are provided. The PZT nanoparticles are formed from a precursor solution, comprising a source of lead, a source of titanium, a source of zirconium, and a mineralizer, that undergoes a hydrothermal process. The size and morphology of the PZT nanoparticles are controlled, in part, by the heating schedule used during the hydrothermal process.




s

Aqueous ink for producing high-temperature electrochemical cell electrodes

The invention aims at an aqueous ink for high-temperature electrochemical cell electrodes and/or electrolyte containing particles of at least one mineral filler, at least one binder, and at least one dispersant. It also concerns the electrode and the electrolyte using such an ink.




s

Biocompatible material and uses thereof

The present invention relates to a biocompatible ceramic material comprising Baghdadite (Ca3ZrSi2O9), and a method for its preparation. Preferably the Baghdadite is synthetically prepared. The present invention also relates to an implantable medical device comprising biocompatible Baghdadite, and a method for its production. The present invention further relates to a method for improving the long term stability of an implantable medical device and an implantable drug delivery device comprising Baghdadite. Further, the present invention relates to the use of comprising biocompatible Baghdadite in the regeneration or resurfacing of tissue.




s

Ultra-broad bandwidth laser glasses for short-pulse and high peak power lasers

The invention relates to glasses for use in solid laser applications, particularly short-pulsed, high peak power laser applications. In particular, the invention relates to a method for broadening the emission bandwidth of rare earth ions used as lasing ions in solid laser glass mediums, especially phosphate-based glass compositions, using Nd and Yb as co-dopants. The invention further relates to a laser system using a Nd-doped and Yb-doped phosphate laser glass, and a method of generating a laser beam pulse using such a laser system.




s

Construction articles and methods of forming same

A pipe choke for use in drilling and mining operations comprising a body including a first end and a second end configured to couple to a pipe, an opening extending through the body from the first end to the second end, and wherein the body includes a first phase comprising recrystallized silicon carbide and a second phase comprising silicon.




s

Dielectric ceramic and dielectric filter having the same

There are provided a dielectric ceramic having a high Qf value in a relative permittivity ∈r range of 35 to 45, and a small absolute value of a temperature coefficient τf which indicates change of the resonant frequency in a wide temperature range from a low temperature range to a high temperature range, and a dielectric filter having the dielectric ceramic. A dielectric ceramic includes: a main component, molar ratios α, β, and γ satisfying expressions of 0.240≦α≦0.470, 0.040≦β≦0.200, 0.400≦γ≦0.650, and α+β+γ=1 when a composition formula of the main component is represented as αZrO2.βSnO2.γTiO2; and Mn, a content of Mn in terms of MnO2 being greater than or equal to 0.01% by mass and less than 0.1% by mass with respect to 100% by mass of the main component.




s

Vacuum glass panel and manufacturing method of same

Disclosed are a vacuum glass panel and a manufacturing method of the same. The vacuum glass panel according to the present invention includes a first glass plate, a second glass plate facing the first glass plate with a vacuum space therebetween, an edge of the second glass plate being in contact with the first glass plate, and a plurality of spacers disposed between the first glass plate and the second glass plates to separate the first glass plate and the second glass plate from each other. The plurality of spacers are formed of a glass including alumina (Al2O3) particles and silica (SiO2) particles.




s

Bismuth borate glass encapsulant for LED phosphors

Embodiments are directed to glass frits containing phosphors that can be used in LED lighting devices and for methods associated therewith for making the phosphor containing glass frit and their use in glass articles, for example, LED devices.




s

Substrate for magnetic disk and magnetic disk

The shape and number of surface defects are controlled so that the occurrence of failure is suppressed in an HDD device in which a magnetic head with a very small flying height, such as a DFH head, is mounted. A magnetic disk substrate is characterized in that when laser light with a wavelength of 405 nm and a laser power of 25 mW is irradiated with a spot size of 5 μm and scattered light from the substrate is detected, the number of defects detected to have a size of 0.1 μm to not more than 0.3 μm is less than 50 per 24 cm2 and, with respect to the defects, there is no defect in which, in a bearing curve obtained by a bearing curve plot method using an atomic force microscope, a portion from an apex of the defect to 45% thereof is located in an area of defect height higher than a virtual line connecting from the apex of the defect to 45% thereof.




s

Melt composition for the production of man-made vitreous fibres

The invention relates to a melt composition for the production of man-made vitreous fibers and man-made vitreous fibers comprising the following oxides, by weight of composition: SiO239-43 weight %Al2O320-23 weight %TiO2up to 1.5 weight %Fe2O35-9 weight %, preferably 5-8 weight %CaO8-18 weight %MgO5-7 weight %Na2Oup to 10 weight %, preferably 2-7 weight %K2Oup to 10 weight %, preferably 3-7 weight %P2O5up to 2%MnOup to 2%R2Oup to 10 weight % wherein the proportion of Fe(2+) is greater than 80% based on total Fe and is preferably at least 90%, more preferably at least 95% and most preferably at least 97% based on total Fe.




s

Glass for chemical strengthening

There is provided a glass for chemical strengthening having a black color tone and excelling in characteristics preferred for the purposes of housing or decoration of an electronic device, that is, bubble quality, strength, and light transmittance characteristics. A glass for chemical strengthening contains, in mole percentage based on following oxides, 55% to 80% of SiO2, 3% to 16% of Al2O3, 0% to 12% of B2O3, 5% to 16% of Na2O, 0% to 4% of K2O, 0% to 15% of MgO, 0% to 3% of CaO, 0% to 18% of ΣRO (where R represents Mg, Ca, Sr, Ba or Zn), 0% to 1% of ZrO2, and 0.1% to 7% of a coloring component having at least one metal oxide selected from the group consisting of oxides of Co, Mn, Fe, Ni, Cu, Cr, V and Bi.




s

Glass microspheres comprising sulfide, and methods of producing glass microspheres

A method for manufacturing a plurality of glass microspheres comprises: melting a batch into a first glass melt in a melter system, processing the first glass melt into a second glass, pulverizing the second glass into a plurality of glass fragments, thermally processing the plurality of glass fragments into a plurality of glass microspheres, providing at least one of a plurality of redox reactions and a plurality of events in at least one of the first glass melt and a melt of the second glass, and the plurality of redox reactions and the plurality of events are induced by a plurality of redox active group (RAG) components.




s

Glass for magnetic recording media substrates, magnetic recording media substrates, magnetic recording media and method for preparation thereof

A glass for a magnetic recording medium substrate permitting the realization of a magnetic recording medium substrate affording good chemical durability and having an extremely flat surface, a magnetic recording medium substrate comprised of this glass, a magnetic recording medium equipped with this substrate, and methods of manufacturing the same. The glass is an oxide glass not including As or F.




s

Glass ceramic as a cooktop for induction heating having improved colored display capability and heat shielding, method for producing such a cooktop, and use of such a cooktop

A glass ceramic as cooktop for induction heating having improved colored display capability and heat shielding is provided. The cooktop includes a transparent, dyed glass ceramic plate having high-quartz mixed crystals as a predominant crystal phase. The glass ceramic contains none of the chemical refining agents arsenic oxide and/or antimony oxide and has a transmittance values greater than 0.4% at at least one wavelength in the blue spectrum between 380 and 500 nm, a transmittance >2% at 630 nm, a transmittance of less than 45% at 1600 nm, and a light transmittance of less than 2.5% in the visible spectrum.




s

Optical glass

This optical glass contains, as represented by mol %, 18 to 38% P2O5, 0 to 15% B2O3, 23 to 40% P2O5+B2O3, 4 to 28% Nb2O5, 0 to 20% TiO2, 10 to 30% Nb2O5+TiO2, 15 to 35% Li2O+Na2O+K2O, and 21 to 38% ZnO, but does not contain BaO, WO3, Bi2O3 or SiO2, and the ratio of the mol % of ZnO to the total mol % of Li2O+Na2O+K2O (i.e., ZnO/(Li2O+Na2O+K2O)) is 0.8 to 2.0.




s

Light-emitting glass, light-emitting device equipped with the light-emitting glass, and process for producing light-emitting glass

Provided is a light-emitting glass which is applicable to, e.g., white illuminators including a light-emitting diode as a light source, and which emits light of a warm white color when irradiated with near ultraviolet light and combines long-term weatherability with high heat resistance; a light-emitting device containing same and a process for producing same. The light-emitting glass includes, as the base glass, borosilicate or silicate glass having a separated-phase structure, whereby the base glass is efficiently doped with, for example, transition metal ion clusters which emit light of a warm white color upon irradiation with near ultraviolet light. With this glass, it is possible to attain increases in excitation wavelength and emission wavelength. The glass thus emits, based on a multiple scattering effect, high-intensity light of a warm white color upon irradiation with near ultraviolet light.




s

Optical glass

A highly refractive and highly transparent optical glass is provided. The use of such a glass, optical elements and processes for producing the glass or the optical elements are also provided.




s

Ceramic structures for enhanced shape memory and pseudoelastic effects

Shape memory and pseudoelastic martensitic behavior is enabled by a structure in which there is provided a crystalline ceramic material that is capable of undergoing a reversible martensitic transformation and forming martensitic domains, during such martensitic transformation, that have an elongated domain length. The ceramic material is configured as a ceramic material structure including a structural feature that is smaller than the elongated domain length of the ceramic material.




s

Dielectric thin film-forming composition, method of forming dielectric thin film and dielectric thin film formed by the method

A liquid composition is provided for forming a thin film in the form of a mixed composite metal oxide in which a composite oxide B containing copper (Cu) and a composite oxide C containing manganese (Mn) are mixed into a composite metal oxide A represented with the general formula: Ba1-xSrxTiyO3, wherein the molar ratio B/A of the composite oxide B to the composite metal oxide A is within the range of 0.002




s

Zeolite separation membrane, method for producing the same, and bonding agent

A separation membrane according to the present invention is characterized by having a porous tube containing an alumina as a main component and an attachment member disposed in a connection position of the porous tube, wherein the porous tube and the attachment member are bonded by a ceramic oxide-based bonding agent containing 17 to 48 wt % of SiO2, 2 to 8 wt % of Al2O3, 24 to 60 wt % of BaO, and 0.5 to 5 wt % of ZnO as essential components and containing at least one of La2O3, CaO, and SrO, and a thin zeolite layer is formed on a surface of the porous tube. The attachment member is bonded to the porous tube before the formation of the zeolite layer. Therefore, the bonding agent can have a melting temperature higher than 600° C., which is the upper heatproof temperature limit of the zeolite. Thus, the ceramic oxide material for the bonding agent can be selected from a wider range of compositions such as glass compositions (without limitations on the glass softening temperature).




s

Nucleated cements and related methods

Methods and a kit. A cement forming method includes nucleating an acidic metallophosphate reaction mixture with first particles, resulting in forming a settable metallophosphate cement from the acidic metallophosphate reaction mixture. The first particles include a first metal oxide. Each particle of the first particles independently have a particle size in a range from about 15 microns to about 450 microns. A method for applying cement includes seeding a solution with particles, resulting in forming a settable cement from the solution. The particles have a size in a range from about 15 microns to about 450 microns. The solution includes a first metal oxide reacting with phosphate. The settable cement is applied to a substrate. A cement application kit is also described.