ref

Military and postal telegraph: January 31, 1888, referred to the House calendar and ordered to be printed ... report to accompany bill H.R. 1426.

Archives, Room Use Only - HE7781.U554 1888




ref

Kerala HC refuses to interfere with plea for state to impose 14-day institutional quarantine for foreign returnees




ref

Kerala HC refuses to interfere with plea for state to impose 14-day institutional quarantine for foreign returnees




ref

Liquor sale: ‘E-token holders to get preference’




ref

Mixed response to State Govt move on labour reforms

Mixed response to State Govt move on labour reforms




ref

COVID-19: Delhi HC disposes of plea seeking relief for Rohingya refugees, directs petitioner to approach nodal officers




ref

Maharashtra CM refutes rumours of deploying Army in Mumbai




ref

When families refuse to lit pyre of Covid-19 patients in Punjab




ref

Punjab COVID-19 patient's family refuse to claim his body, district officials perform last rites




ref

Banned Umar Akmal refuses to divulge details of two meetings with suspected bookies: PCB sources




ref

X-ray reflecto-interferometer based on compound refractive lenses

An X-ray amplitude-splitting interferometer based on compound refractive lenses, which operates in the reflection mode, is proposed and realized. The idea of a reflecto-interferometer is to use a very simplified experimental setup where a focused X-ray beam reflected from parallel flat surfaces creates an interference pattern in a wide angular range. The functional capabilities of the interferometer were experimentally tested at the European Synchrotron Radiation Facility (ESRF) ID06 beamline in the X-ray energy range from 10 keV to 15 keV. The main features of the proposed approach, high spatial and temporal resolution, were demonstrated experimentally. The reflections from free-standing Si3N4 membranes, gold and resist layers were studied. Experimentally recorded interferograms are in good agreement with our simulations. The main advantages and future possible applications of the reflecto-interferometer are discussed.




ref

In-depth analysis of subclass-specific conformational preferences of IgG antibodies

An extended analysis of structural ensembles obtained from small-angle X-ray scattering data reveals subclass-specific conformational preferences of IgG antibodies, which are largely determined by the hinge-region structure.




ref

New refinement of the crystal structure of Zn(NH3)2Cl2 at 100 K

The crystal structure of [ZnCl2(NH3)2], diamminedi­chlorido­zinc, was re-investigated at low temperature, revealing the positions of the hydrogen atoms and thus a deeper insight into the hydrogen-bonding scheme in the crystal packing. In comparison with previous crystal structure determinations [MacGillavry & Bijvoet (1936). Z. Kristallogr. 94, 249–255; Yamaguchi & Lindqvist (1981). Acta Chem. Scand. 35, 727–728], an improved precision of the structural parameters was achieved. In the crystal, tetra­hedral [Zn(NH3)2Cl2] units (point-group symmetry mm2) are linked through N—H⋯Cl hydrogen bonds into a three-dimensional network.




ref

Tetra-n-butyl­ammonium orotate monohydrate: knowledge-based comparison of the results of accurate and lower-resolution analyses and a non-routine disorder refinement

The title hydrated mol­ecular salt (systematic name: tetra-n-butyl­ammonium 2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidine-4-carboxyl­ate monohydrate), C16H36N+·C5H3N2O4−·H2O, crystallizes with N—H⋯O and O—H⋯O hydrogen-bonded double-stranded anti­parallel ribbons consisting of the hydro­philic orotate monoanions and water mol­ecules, separated by the bulky hydro­phobic cations. The hydro­phobic and hydro­philic regions of the structure are joined by weaker non-classical C—H⋯O hydrogen bonds. An accurate structure analysis conducted at T = 100 K is compared to a lower-resolution less accurate determination using data measured at T = 295 K. The results of both analyses are evaluated using a knowledge-based approach, and it is found that the less accurate room-temperature structure analysis provides geometric data that are similar to those derived from the accurate low-temperature analysis, with both sets of results consistent with previously analyzed structures. A minor disorder of one methyl group in the cation at low temperature was found to be slightly more complex at room temperature; while still involving a minor fraction of the structure, the disorder at room temperature was found to require a non-routine treatment, which is described in detail.




ref

Some reflections on symmetry: pitfalls of automation and some illustrative examples

In the context of increasing hardware and software automation in the process of crystal structure determination by X-ray diffraction, and based on conference sessions presenting some of the experience of senior crystallographers for the benefit of younger colleagues, an outline is given here of some basic concepts and applications of symmetry in crystallography. Three specific examples of structure determinations are discussed, for which an understanding of these aspects of symmetry avoids mistakes that can readily be made by reliance on automatic procedures. Topics addressed include pseudo-symmetry, twinning, real and apparent disorder, chirality, and structure validation.




ref

Structure refinement of (NH4)3Al2(PO4)3 prepared by ionothermal synthesis in phospho­nium based ionic liquids – a redetermination

After crystallization during ionothermal syntheses in phospho­nium-containing ionic liquids, the structure of (NH4)3Al2(PO4)3 [tri­ammonium dialuminum tris­(phosphate)] was refined on the basis of powder X-ray diffraction data from a synchrotron source. (NH4)3Al2(PO4)3 is a member of the structural family with formula A3Al2(PO4)3, where A is a group 1 element, and of which the NH4, K, and Rb forms were previously known. The NH4 form is isostructural with the K form, and was previously solved from single-crystal X-ray data when the material (SIZ-2) crystallized from a choline-containing eutectic mixture [Cooper et al. (2004). Nature, 430, 1012–1017]. Our independent refinement incorporates NH4 groups and shows that these NH4 groups are hydrogen bonded to framework O atoms present in rings containing 12 T sites in a channel along the c-axis direction. We describe structural details of (NH4)3Al2(PO4)3 and discuss differences with respect to isostructural forms.




ref

Energetics of interactions in the solid state of 2-hydroxy-8-X-quinoline derivatives (X = Cl, Br, I, S-Ph): comparison of Hirshfeld atom, X-ray wavefunction and multipole refinements

In this work, two methods of high-resolution X-ray data refinement: multipole refinement (MM) and Hirshfeld atom refinement (HAR) – together with X-ray wavefunction refinement (XWR) – are applied to investigate the refinement of positions and anisotropic thermal motion of hydrogen atoms, experiment-based reconstruction of electron density, refinement of anharmonic thermal vibrations, as well as the effects of excluding the weakest reflections in the refinement. The study is based on X-ray data sets of varying quality collected for the crystals of four quinoline derivatives with Cl, Br, I atoms and the -S-Ph group as substituents. Energetic investigations are performed, comprising the calculation of the energy of intermolecular interactions, cohesive and geometrical relaxation energy. The results obtained for experimentally derived structures are verified against the values calculated for structures optimized using dispersion-corrected periodic density functional theory. For the high-quality data sets (the Cl and -S-Ph compounds), both MM and XWR could be successfully used to refine the atomic displacement parameters and the positions of hydrogen atoms; however, the bond lengths obtained with XWR were more precise and closer to the theoretical values. In the application to the more challenging data sets (the Br and I compounds), only XWR enabled free refinement of hydrogen atom geometrical parameters, nevertheless, the results clearly showed poor data quality. For both refinement methods, the energy values (intermolecular interactions, cohesive and relaxation) calculated for the experimental structures were in similar agreement with the values associated with the optimized structures – the most significant divergences were observed when experimental geometries were biased by poor data quality. XWR was found to be more robust in avoiding incorrect distortions of the reconstructed electron density as a result of data quality issues. Based on the problem of anharmonic thermal motion refinement, this study reveals that for the most correct interpretation of the obtained results, it is necessary to use the complete data set, including the weak reflections in order to draw conclusions.




ref

Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data

With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent diffraction data. The method is based on the gradient search method and considers the missing region of a diffraction pattern and the small number of detected photons. We introduced an initial estimate of the structure in the method to improve the convergence. The present method is applied to an experimental diffraction pattern of an Xe cluster obtained in an X-ray scattering experiment at the SPring-8 Angstrom Compact free-electron LAser (SACLA) facility. It is found that the electron density is successfully reconstructed from the diffraction pattern with a large missing region, with a good initial estimate of the structure. The diffraction pattern calculated from the reconstructed electron density reproduced the observed diffraction pattern well, including the characteristic intensity modulation in each ring. Our refinement method enables structure reconstruction from diffraction patterns under difficulties such as missing areas and low diffraction intensity, and it is potentially applicable to the structure determination of samples that have low scattering power.




ref

fragHAR: towards ab initio quantum-crystallographic X-ray structure refinement for polypeptides and proteins

The first ab initio aspherical structure refinement against experimental X-ray structure factors for polypeptides and proteins using a fragmentation approach to break up the protein into residues and solvent, thereby speeding up quantum-crystallographic Hirshfeld atom refinement (HAR) calculations, is described. It it found that the geometric and atomic displacement parameters from the new fragHAR method are essentially unchanged from a HAR on the complete unfragmented system when tested on dipeptides, tripeptides and hexapeptides. The largest changes are for the parameters describing H atoms involved in hydrogen-bond interactions, but it is shown that these discrepancies can be removed by including the interacting fragments as a single larger fragment in the fragmentation scheme. Significant speed-ups are observed for the larger systems. Using this approach, it is possible to perform a highly parallelized HAR in reasonable times for large systems. The method has been implemented in the TONTO software.




ref

Supercell refinement: a cautionary tale

Theoretically, crystals with supercells exist at a unique crossroads where they can be considered as either a large unit cell with closely spaced reflections in reciprocal space or a higher dimensional superspace with a modulation that is commensurate with the supercell. In the latter case, the structure would be defined as an average structure with functions representing a modulation to determine the atomic location in 3D space. Here, a model protein structure and simulated diffraction data were used to investigate the possibility of solving a real incommensurately modulated protein crystal using a supercell approximation. In this way, the answer was known and the refinement method could be tested. Firstly, an average structure was solved by using the `main' reflections, which represent the subset of the reflections that belong to the subcell and in general are more intense than the `satellite' reflections. The average structure was then expanded to create a supercell and refined using all of the reflections. Surprisingly, the refined solution did not match the expected solution, even though the statistics were excellent. Interestingly, the corresponding superspace group had multiple 3D daughter supercell space groups as possibilities, and it was one of the alternate daughter space groups that the refinement locked in on. The lessons learned here will be applied to a real incommensurately modulated profilin–actin crystal that has the same superspace group.




ref

Deriving and refining atomic models in crystallography and cryo-EM: the latest Phenix tools to facilitate structure analysis




ref

Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix

The refinement of biomolecular crystallographic models relies on geometric restraints to help to address the paucity of experimental data typical in these experiments. Limitations in these restraints can degrade the quality of the resulting atomic models. Here, an integration of the full all-atom Amber molecular-dynamics force field into Phenix crystallographic refinement is presented, which enables more complete modeling of biomolecular chemistry. The advantages of the force field include a carefully derived set of torsion-angle potentials, an extensive and flexible set of atom types, Lennard–Jones treatment of nonbonded interactions and a full treatment of crystalline electrostatics. The new combined method was tested against conventional geometry restraints for over 22 000 protein structures. Structures refined with the new method show substantially improved model quality. On average, Ramachandran and rotamer scores are somewhat better, clashscores and MolProbity scores are significantly improved, and the modeling of electrostatics leads to structures that exhibit more, and more correct, hydrogen bonds than those refined using traditional geometry restraints. In general it is found that model improvements are greatest at lower resolutions, prompting plans to add the Amber target function to real-space refinement for use in electron cryo-microscopy. This work opens the door to the future development of more advanced applications such as Amber-based ensemble refinement, quantum-mechanical representation of active sites and improved geometric restraints for simulated annealing.




ref

Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data. Corrigendum

Corrections are published for the article by Caldararu et al. [(2019), Acta Cryst. D75, 368–380].




ref

Shack–Hartmann wavefront sensors based on 2D refractive lens arrays and super-resolution multi-contrast X-ray imaging

Different approaches of 2D lens arrays as Shack–Hartmann sensors for hard X-rays are compared. For the first time, a combination of Shack–Hartmann sensors for hard X-rays (SHSX) with a super-resolution imaging approach to perform multi-contrast imaging is demonstrated. A diamond lens is employed as a well known test object. The interleaving approach has great potential to overcome the 2D lens array limitation given by the two-photon polymerization lithography. Finally, the radiation damage induced by continuous exposure of an SHSX prototype with a white beam was studied showing a good performance of several hours. The shape modification and influence in the final image quality are presented.




ref

Focusing with saw-tooth refractive lenses at a high-energy X-ray beamline

The Advanced Photon Source 1-ID beamline, operating in the 40–140 keV X-ray energy range, has successfully employed continuously tunable saw-tooth refractive lenses to routinely deliver beams focused in both one and two dimensions to experiments for over 15 years. The practical experience of implementing such lenses, made of silicon and aluminium, is presented, including their properties, control, alignment, and diagnostic methods, achieving ∼1 µm focusing (vertically). Ongoing development and prospects towards submicrometre focusing at these high energies are also mentioned.




ref

PDB2INS: bridging the gap between small-molecule and macromolecular refinement

The open-source Python program PDB2INS is designed to prepare a .ins file for refinement with SHELXL [Sheldrick (2015). Acta Cryst. C71, 3–8], taking atom coordinates and other information from a Protein Data Bank (PDB)-format file. If PDB2INS is provided with a four-character PDB code, both the PDB file and the accompanying mmCIF-format reflection data file (if available) are accessed via the internet from the PDB public archive [Read et al. (2011). Structure, 19, 1395–1412] or optionally from the PDB_REDO server [Joosten, Long, Murshudov & Perrakis (2014). IUCrJ, 1, 213–220]. The SHELX-format .ins (refinement instructions and atomic coordinates) and .hkl (reflection data) files can then be generated without further user intervention, appropriate restraints etc. being added automatically. PDB2INS was tested on the 23 974 X-ray structures deposited in the PDB between 2008 and 2018 that included reflection data to 1.7 Å or better resolution in a recognizable format. After creating the two input files for SHELXL without user intervention, ten cycles of conjugate-gradient least-squares refinement were performed. For 96% of these structures PDB2INS and SHELXL completed successfully without error messages.




ref

Fast fitting of reflectivity data of growing thin films using neural networks

X-ray reflectivity (XRR) is a powerful and popular scattering technique that can give valuable insight into the growth behavior of thin films. This study shows how a simple artificial neural network model can be used to determine the thickness, roughness and density of thin films of different organic semiconductors [diindenoperylene, copper(II) phthalocyanine and α-sexithiophene] on silica from their XRR data with millisecond computation time and with minimal user input or a priori knowledge. For a large experimental data set of 372 XRR curves, it is shown that a simple fully connected model can provide good results with a mean absolute percentage error of 8–18% when compared with the results obtained by a genetic least mean squares fit using the classical Parratt formalism. Furthermore, current drawbacks and prospects for improvement are discussed.




ref

GIWAXS-SIIRkit: Scattering Intensity, Indexing, and Refraction Calculation Toolkit for Grazing Incidence Wide Angle X-ray Scattering of Organic Materials

A software package for Grazing Incident Wide Angle X-ray Scattering (GIWAXS) geared toward weakly ordered materials, including: scattering intensity normalization/uncertainty, scattering pattern indexing, and refractive shift correction.




ref

Orientational disorder of monomethyl-quinacridone investigated by Rietveld refinement, structure refinement to the pair distribution function and lattice-energy minimizations

The crystal structure of the organic pigment 2-monomethyl-quinacridone (Pigment Red 192, C21H14N2O2) was solved from X-ray powder diffraction data. The resulting average structure is described in space group Poverline 1, Z = 1 with the molecule on the inversion centre. The molecules are arranged in chains. The molecules, which have no inversion symmetry, show orientational head-to-tail disorder. In the average structure, the methyl group is disordered and found on both ends of the molecule with an occupancy of 0.5 each. The disorder and the local structure were investigated using various ordered structural models. All models were analysed by three approaches: Rietveld refinement, structure refinement to the pair distribution function (PDF) and lattice-energy minimization. All refinements converged well. The Rietveld refinement provided the average structure and gave no indication of a long-range ordering. The refinement to the PDF turned out to be very sensitive to small structural details, giving insight into the local structure. The lattice-energy minimizations revealed a significantly preferred local ordering of neighbouring molecules along the [0ar 11] direction. In conclusion, all methods indicate a statistical orientational disorder with a preferred parallel orientation of molecules in one direction. Additionally, electron diffraction revealed twinning and faint diffuse scattering.




ref

Orientational disorder of mono­methyl-quinacridone investigated by Rietveld refinement, structure refinement to the pair-distribution function and lattice-energy minimizations

The crystal structure of the nanocrystalline pigment mono­methyl-quinacridone was solved from X-ray powder data. The orientational disorder was investigated using Rietveld refinements, structure refinement to the pair-distribution function, and lattice-energy minimizations of various ordered structural models.




ref

Stranding records are faithful reflection of live whale and dolphin populations, new study reveals

By compiling and comparing long-term data from stranding records and visual sighting records, both taken from nearly every ocean basin in the world, Pyenson verified that stranding records “faithfully reflect the number of species and the relative abundance” found in live surveys.

The post Stranding records are faithful reflection of live whale and dolphin populations, new study reveals appeared first on Smithsonian Insider.




ref

Browsing suburbia: Virginia’s parceled-up farms and forests are ideal refuge for white-tailed deer

Forget the deep forest, “today the highest densities of deer in the state of Virginia are in suburbia,” says William McShea, ecologist and research scientist at the Smithsonian’s Conservation Biology Institute in Front Royal, Va.

The post Browsing suburbia: Virginia’s parceled-up farms and forests are ideal refuge for white-tailed deer appeared first on Smithsonian Insider.




ref

Multiple Bragg reflection by a thick mosaic crystal. II. Simplified transport equation solved on a grid

The generalized Darwin–Hamilton equations [Wuttke (2014). Acta Cryst. A70, 429–440] describe multiple Bragg reflection from a thick, ideally imperfect crystal. These equations are simplified by making full use of energy conservation, and it is demonstrated that the conventional two-ray Darwin–Hamilton equations are obtained as a first-order approximation. Then an efficient numeric solution method is presented, based on a transfer matrix for discretized directional distribution functions and on spectral collocation in the depth coordinate. Example solutions illustrate the orientational spread of multiply reflected rays and the distortion of rocking curves, especially if the detector only covers a finite solid angle.




ref

How to keep firefox session for suddenly restart





ref

Reflections on a changing Washington, D.C.

Peter Sefton, D.C. Preservation League trustee, reflects on how Washington, D.C. has changed in recent years. (Anacostia Community Museum video series)  

The post Reflections on a changing Washington, D.C. appeared first on Smithsonian Insider.



  • History & Culture
  • Video
  • Anacostia Community Museum


ref

Firefox. Earlier version for 32 bit os?




ref

Simulink - Update diagram fails for referenced model when anonymous structure type matches multiple bus types

In a Model block, if the instance-specific value of a model argument has an anonymous structure type, an update diagram reports an error when there are multiple bus types that match that anonymous structure type.This bug exists in the following release(s):
R2020a

This bug has a workaround

Interested in Upgrading?




ref

Simulink - Subsystem Reference block's position changes on loading or during synchronization of contents

In certain scenarios, a Subsystem Reference block changes its position. It can happen during: 

  1. Loading of top model which contains the Subsystem Reference block 
  2. Synchronization of Subsystem Reference block's contents
  3. Converting a subsystem to Subsystem Reference block 
This bug exists in the following release(s):
R2019b

Interested in Upgrading?




ref

Optimum won't load emails in Firefox




ref

Cash App refund support |+l.929.344.6502| number




ref

Help refurbishing an older built PC




ref

Comparison of azimuthal plots for reflection high-energy positron diffraction (RHEPD) and reflection high-energy electron diffraction (RHEED) for Si(111) surface

Features of azimuthal plots for RHEED and its new counterpart, RHEPD, are discussed. The plots, for both electrons and positrons, are determined using dynamical diffraction theory.




ref

Multiple Bragg reflection by a thick mosaic crystal. II. Simplified transport equation solved on a grid

To describe multiple Bragg reflection from a thick, ideally imperfect crystal, the transport equations are reformulated in three-dimensional phase space and solved by spectral collocation in the depth coordinate. Example solutions illustrate the orientational spread of multiply reflected rays and the distortion of rocking curves, especially for finite detectors.




ref

Direct recovery of interfacial topography from coherent X-ray reflectivity: model calculations for a one-dimensional interface

The inversion of X-ray reflectivity to reveal the topography of a one-dimensional interface is evaluated through model calculations.




ref

Paysafe report shows shifts in consumers' payment preferences

UK-based payments solutions provider


ref

New Rapyd report on disbursement reveals how consumers across Asia prefer to be paid

The 2020 State of Disbursements: APAC Outlook Report by Rapyd...




ref

Reforms Needed to Improve Childrens Reading Skills

Widespread reforms are needed to ensure that all children are equipped with the skills and instruction they need to learn to read, according to a new report from a committee of the National Research Council.




ref

Health Care Reform and Increased Patient Needs Require Transformation of Nursing Profession

Nurses roles, responsibilities, and education should change significantly to meet the increased demand for care that will be created by health care reform and to advance improvements in Americas increasingly complex health system, says a new report from the Institute of Medicine.