ay Now total lockdown in Gandhinagar from Sunday By timesofindia.indiatimes.com Published On :: Sat, 09 May 2020 18:54:14 IST To curb the increasing number of corona positive cases and the spread of virus infection, the Gandhinagar Collector on Saturday said there would be a total lockdown in Gandhinagar city and Kalol municipality on the lines of Ahmedabad and Surat. Full Article
ay Ahmedabad lockdown news: Today's updates By timesofindia.indiatimes.com Published On :: Sun, 10 May 2020 07:52:21 IST Amid prevalent chaos and uncertainty over access to the essential services and commodities during the lockdown, we bring you the latest updates from your city. Full Article
ay COVID-19 testing capacity scaled to 95k per day: Govt By www.rediff.com Published On :: Sat, 09 May 2020 21:43:08 +0530 A total of 15,25,631 tests have been conducted so far across 332 government and 121 private laboratories. Full Article
ay 'Famotidine may become the next HCQ for Covid-19' By www.rediff.com Published On :: Sun, 10 May 2020 10:39:32 +0530 Researchers at Northwell Health in New York are testing the effects on Famotidine (used in high intravenous doses) on Covid-19 patients as a potential treatment. After the hospital announced its clinical trials, it led to a drug shortage in the US. Back home, however, there has not been any surge in the demand for Famotidine yet. Full Article
ay Rock ‘n’ roll pioneer Little Richard passes away By indianexpress.com Published On :: Sat, 09 May 2020 14:35:59 +0000 Full Article Entertainment Pop/Bollywood Music
ay Happy Mother’s Day: Five iconic moms of Indian television By indianexpress.com Published On :: Sun, 10 May 2020 02:50:27 +0000 Full Article Entertainment Television
ay Netflix’s Mother’s Day watchlist: Lady Bird, Roma and others By indianexpress.com Published On :: Sun, 10 May 2020 04:55:32 +0000 Full Article Entertainment Web series
ay Andy Serkis says The Batman will be darker than previous films By indianexpress.com Published On :: Sun, 10 May 2020 05:43:56 +0000 Full Article Entertainment Hollywood
ay Amitabh Bachchan: Everyday is Mother’s Day By indianexpress.com Published On :: Sun, 10 May 2020 06:33:09 +0000 Full Article Bollywood Entertainment
ay Random sampling finds two positive cases in two days in Panchkula By indianexpress.com Published On :: Sat, 09 May 2020 20:43:31 +0000 Full Article Chandigarh Cities
ay Ayurveda medicine trial to begin on asymptomatic Covid-19 patients in Chandigarh By indianexpress.com Published On :: Sat, 09 May 2020 21:05:18 +0000 Full Article Chandigarh Cities
ay 13 lakh registered migrants in Haryana have rejoined work, says Khattar By indianexpress.com Published On :: Sat, 09 May 2020 22:10:31 +0000 Full Article Chandigarh Cities
ay If the lockdown is not lifted, there may be defiance on a larger scale than at present By indianexpress.com Published On :: Sat, 09 May 2020 19:00:16 +0000 Full Article Columns Opinion
ay Happy Mother’s Day 2020: Wishes, images, quotes, status, messages, cards, wallpapers, and photos By indianexpress.com Published On :: Sat, 09 May 2020 14:00:03 +0000 Full Article Life-style Lifestyle
ay Happy Mother’s Day 2020: Wishes, images, Whatsapp messages, status, quotes and photos By indianexpress.com Published On :: Sun, 10 May 2020 00:30:16 +0000 Full Article Life-style Lifestyle
ay This Mother’s Day, doctors share what it’s like to help other women become mothers By indianexpress.com Published On :: Sun, 10 May 2020 04:08:54 +0000 Full Article Feelings Lifestyle
ay On Mother’s Day, relive nostalgia with these 3 recipes for dips By indianexpress.com Published On :: Sun, 10 May 2020 05:33:49 +0000 Full Article Food & Wine Lifestyle
ay Chandigarh lockdown news: Today's updates By timesofindia.indiatimes.com Published On :: Sun, 10 May 2020 08:03:57 IST Amid prevalent chaos and uncertainty over access to the essential services and commodities during the lockdown, we bring you the latest updates from your city. Full Article
ay Mother’s Day: 5 apps that can make a mother’s life easier By indianexpress.com Published On :: Sun, 10 May 2020 03:59:43 +0000 Full Article Technology Techook
ay Irfan Pathan, Suresh Raina rally for allowing Indian players in foreign T20 leagues By indianexpress.com Published On :: Sat, 09 May 2020 17:28:14 +0000 Full Article Cricket Sports
ay Mother’s Day 2020: Vicky Kaushal, Kiara Advani, Mahesh Babu and others share adorable photos By indianexpress.com Published On :: Sun, 10 May 2020 05:54:10 +0000 Full Article
ay Device for source position stabilization and beam parameter monitoring at inverse Compton X-ray sources By scripts.iucr.org Published On :: 2019-08-07 Compact X-ray sources based on inverse Compton scattering provide brilliant and partially coherent X-rays in a laboratory environment. The cross section for inverse Compton scattering is very small, requiring high-power laser systems as well as small laser and electron beam sizes at the interaction point to generate sufficient flux. Therefore, these systems are very sensitive to distortions which change the overlap between the two beams. In order to monitor X-ray source position, size and flux in parallel to experiments, the beam-position monitor proposed here comprises a small knife edge whose image is acquired with an X-ray camera specifically designed to intercept only a very small fraction of the X-ray beam. Based on the source position drift recorded with the monitor, a closed-loop feedback stabilizes the X-ray source position by adjusting the laser beam trajectory. A decrease of long-term source position drifts by more than one order of magnitude is demonstrated with this device. Consequently, such a closed-loop feedback system which enables stabilization of source position drifts and flux of inverse Compton sources in parallel to experiments has a significant impact on the performance of these sources. Full Article text
ay A versatile nanoreactor for complementary in situ X-ray and electron microscopy studies in catalysis and materials science By scripts.iucr.org Published On :: 2019-08-27 Two in situ `nanoreactors' for high-resolution imaging of catalysts have been designed and applied at the hard X-ray nanoprobe endstation at beamline P06 of the PETRA III synchrotron radiation source. The reactors house samples supported on commercial MEMS chips, and were applied for complementary hard X-ray ptychography (23 nm spatial resolution) and transmission electron microscopy, with additional X-ray fluorescence measurements. The reactors allow pressures of 100 kPa and temperatures of up to 1573 K, offering a wide range of conditions relevant for catalysis. Ptychographic tomography was demonstrated at limited tilting angles of at least ±35° within the reactors and ±65° on the naked sample holders. Two case studies were selected to demonstrate the functionality of the reactors: (i) annealing of hierarchical nanoporous gold up to 923 K under inert He environment and (ii) acquisition of a ptychographic projection series at ±35° of a hierarchically structured macroporous zeolite sample under ambient conditions. The reactors are shown to be a flexible and modular platform for in situ studies in catalysis and materials science which may be adapted for a range of sample and experiment types, opening new characterization pathways in correlative multimodal in situ analysis of functional materials at work. The cells will presently be made available for all interested users of beamline P06 at PETRA III. Full Article text
ay Scientific instrument Femtosecond X-ray Experiments (FXE): instrumentation and baseline experimental capabilities By scripts.iucr.org Published On :: 2019-08-09 The European X-ray Free-Electron Laser (EuXFEL) delivers extremely intense (>1012 photons pulse−1 and up to 27000 pulses s−1), ultrashort (<100 fs) and transversely coherent X-ray radiation, at a repetition rate of up to 4.5 MHz. Its unique X-ray beam parameters enable novel and groundbreaking experiments in ultrafast photochemistry and material sciences at the Femtosecond X-ray Experiments (FXE) scientific instrument. This paper provides an overview of the currently implemented experimental baseline instrumentation and its performance during the commissioning phase, and a preview of planned improvements. FXE's versatile instrumentation combines the simultaneous application of forward X-ray scattering and X-ray spectroscopy techniques with femtosecond time resolution. These methods will eventually permit exploitation of wide-angle X-ray scattering studies and X-ray emission spectroscopy, along with X-ray absorption spectroscopy, including resonant inelastic X-ray scattering and X-ray Raman scattering. A suite of ultrafast optical lasers throughout the UV–visible and near-IR ranges (extending up to mid-IR in the near future) with pulse length down to 15 fs, synchronized to the X-ray source, serve to initiate dynamic changes in the sample. Time-delayed hard X-ray pulses in the 5–20 keV range are used to probe the ensuing dynamic processes using the suite of X-ray probe tools. FXE is equipped with a primary monochromator, a primary and secondary single-shot spectrometer, and a timing tool to correct the residual timing jitter between laser and X-ray pulses. Full Article text
ay Low-dose X-ray structure analysis of cytochrome c oxidase utilizing high-energy X-rays By scripts.iucr.org Published On :: 2019-06-14 To investigate the effect of high-energy X-rays on site-specific radiation-damage, low-dose diffraction data were collected from radiation-sensitive crystals of the metal enzyme cytochrome c oxidase. Data were collected at the Structural Biology I beamline (BL41XU) at SPring-8, using 30 keV X-rays and a highly sensitive pixel array detector equipped with a cadmium telluride sensor. The experimental setup of continuous sample translation using multiple crystals allowed the average diffraction weighted dose per data set to be reduced to 58 kGy, and the resulting data revealed a ligand structure featuring an identical bond length to that in the damage-free structure determined using an X-ray free-electron laser. However, precise analysis of the residual density around the ligand structure refined with the synchrotron data showed the possibility of a small level of specific damage, which might have resulted from the accumulated dose of 58 kGy per data set. Further investigation of the photon-energy dependence of specific damage, as assessed by variations in UV-vis absorption spectra, was conducted using an on-line spectrometer at various energies ranging from 10 to 30 keV. No evidence was found for specific radiation damage being energy dependent. Full Article text
ay Fast identification of mineral inclusions in diamond at GSECARS using synchrotron X-ray microtomography, radiography and diffraction By scripts.iucr.org Published On :: 2019-07-19 Mineral inclusions in natural diamond are widely studied for the insight that they provide into the geochemistry and dynamics of the Earth's interior. A major challenge in achieving thorough yet high rates of analysis of mineral inclusions in diamond derives from the micrometre-scale of most inclusions, often requiring synchrotron radiation sources for diffraction. Centering microinclusions for diffraction with a highly focused synchrotron beam cannot be achieved optically because of the very high index of refraction of diamond. A fast, high-throughput method for identification of micromineral inclusions in diamond has been developed at the GeoSoilEnviro Center for Advanced Radiation Sources (GSECARS), Advanced Photon Source, Argonne National Laboratory, USA. Diamonds and their inclusions are imaged using synchrotron 3D computed X-ray microtomography on beamline 13-BM-D of GSECARS. The location of every inclusion is then pinpointed onto the coordinate system of the six-circle goniometer of the single-crystal diffractometer on beamline 13-BM-C. Because the bending magnet branch 13-BM is divided and delivered into 13-BM-C and 13-BM-D stations simultaneously, numerous diamonds can be examined during coordinated runs. The fast, high-throughput capability of the methodology is demonstrated by collecting 3D diffraction data on 53 diamond inclusions from Juína, Brazil, within a total of about 72 h of beam time. Full Article text
ay Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering By scripts.iucr.org Published On :: 2019-08-09 Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode. Full Article text
ay Linear array detector for online diagnostics of spectral distributions at MHz repetition rates By scripts.iucr.org Published On :: 2019-09-01 Free-electron lasers (FELs) based on superconducting accelerator technology and storage ring facilities operate with bunch repetition rates in the MHz range, and the need arises for bunch-by-bunch electron and photon diagnostics. For photon-pulse-resolved measurements of spectral distributions, fast one-dimensional profile monitors are required. The linear array detector KALYPSO (KArlsruhe Linear arraY detector for MHz-rePetition rate SpectrOscopy) has been developed for electron bunch or photon pulse synchronous read-out with frame rates of up to 2.7 MHz. At the FLASH facility at DESY, a current version of KALYPSO with 256 pixels has been installed at a grating spectrometer as online diagnostics to monitor the pulse-resolved spectra of the high-repetition-rate FEL pulses. Application-specific front-end electronics based on MicroTCA standard have been developed for data acquisition and processing. Continuous data read-out with low latency in the microsecond range enables the integration into fast feedback applications. In this paper, pulse-resolved FEL spectra recorded at 1.0 MHz repetition rate for various operation conditions at FLASH are presented, and the first application of an adaptive feedback for accelerator control based on photon beam diagnostics is demonstrated. Full Article text
ay X-ray reflecto-interferometer based on compound refractive lenses By scripts.iucr.org Published On :: 2019-08-12 An X-ray amplitude-splitting interferometer based on compound refractive lenses, which operates in the reflection mode, is proposed and realized. The idea of a reflecto-interferometer is to use a very simplified experimental setup where a focused X-ray beam reflected from parallel flat surfaces creates an interference pattern in a wide angular range. The functional capabilities of the interferometer were experimentally tested at the European Synchrotron Radiation Facility (ESRF) ID06 beamline in the X-ray energy range from 10 keV to 15 keV. The main features of the proposed approach, high spatial and temporal resolution, were demonstrated experimentally. The reflections from free-standing Si3N4 membranes, gold and resist layers were studied. Experimentally recorded interferograms are in good agreement with our simulations. The main advantages and future possible applications of the reflecto-interferometer are discussed. Full Article text
ay Soft X-ray varied-line-spacing gratings fabricated by near-field holography using an electron beam lithography-written phase mask By scripts.iucr.org Published On :: 2019-08-16 A fabrication method comprising near-field holography (NFH) with an electron beam lithography (EBL)-written phase mask was developed to fabricate soft X-ray varied-line-spacing gratings (VLSGs). An EBL-written phase mask with an area of 52 mm × 30 mm and a central line density greater than 3000 lines mm−1 was used. The introduction of the EBL-written phase mask substantially simplified the NFH optics for pattern transfer. The characterization of the groove density distribution and diffraction efficiency of the fabricated VLSGs indicates that the EBL–NFH method is feasible and promising for achieving high-accuracy groove density distributions with corresponding image properties. Vertical stray light is suppressed in the soft X-ray spectral range. Full Article text
ay Microsecond time-resolved X-ray diffraction for the investigation of fatigue behavior during ultrasonic fatigue loading By scripts.iucr.org Published On :: 2019-08-20 A new method based on time-resolved X-ray diffraction is proposed in order to measure the elastic strain and stress during ultrasonic fatigue loading experiments. Pure Cu was chosen as an example material for the experiments using a 20 kHz ultrasonic fatigue machine mounted on the six-circle diffractometer available at the DiffAbs beamline on the SOLEIL synchrotron facility in France. A two-dimensional hybrid pixel X-ray detector (XPAD3.2) was triggered by the strain gage signal in a synchronous data acquisition scheme (pump–probe-like). The method enables studying loading cycles with a period of 50 µs, achieving a temporal resolution of 1 µs. This allows a precise reconstruction of the diffraction patterns during the loading cycles. From the diffraction patterns, the position of the peaks, their shifts and their respective broadening can be deduced. The diffraction peak shift allows the elastic lattice strain to be estimated with a resolution of ∼10−5. Stress is calculated by the self-consistent scale-transition model through which the elastic response of the material is estimated. The amplitudes of the cyclic stresses range from 40 to 120 MPa and vary linearly with respect to the displacement applied by the ultrasonic machine. Moreover, the experimental results highlight an increase of the diffraction peak broadening with the number of applied cycles. Full Article text
ay X-ray radiation damage to biological samples: recent progress By scripts.iucr.org Published On :: 2019-07-01 With the continuing development of beamlines for macromolecular crystallography (MX) over the last few years providing ever higher X-ray flux densities, it has become even more important to be aware of the effects of radiation damage on the resulting structures. Nine papers in this issue cover a range of aspects related to the physics and chemistry of the manifestations of this damage, as observed in both MX and small-angle X-ray scattering (SAXS) on crystals, solutions and tissue samples. The reports include measurements of the heating caused by X-ray irradiation in ruby microcrystals, low-dose experiments examining damage rates as a function of incident X-ray energy up to 30 keV on a metallo-enzyme using a CdTe detector of high quantum efficiency as well as a theoretical analysis of the gains predicted in diffraction efficiency using these detectors, a SAXS examination of low-dose radiation exposure effects on the dissociation of a protein complex related to human health, theoretical calculations describing radiation chemistry pathways which aim to explain the specific structural damage widely observed in proteins, investigation of radiation-induced damage effects in a DNA crystal, a case study on a metallo-enzyme where structural movements thought to be mechanism related might actually be radiation-damage-induced changes, and finally a review describing what X-ray radiation-induced cysteine modifications can teach us about protein dynamics and catalysis. These papers, along with some other relevant literature published since the last Journal of Synchrotron Radiation Radiation Damage special issue in 2017, are briefly summarized below. Full Article text
ay Performance of nearly fixed offset asymmetric channel-cut crystals for X-ray monochromators By scripts.iucr.org Published On :: 2019-10-16 X-ray double-crystal monochromators face a shift of the exit beam when the Bragg angle and thus the transmitted photon energy changes. This can be compensated for by moving one or both crystals accordingly. In the case of monolithic channel-cut crystals, which exhibit utmost stability, the shift of the monochromated beam is inevitable. Here we report performance tests of novel, asymmetrically cut, channel-cut crystals which reduce the beam movements by more than a factor of 20 relative to the symmetric case over the typical energy range of an EXAFS spectrum at the Cu K-edge. In addition, the presented formulas for the beam offset including the asymmetry angle directly indicate the importance of this value, which has been commonly neglected so far in the operation of double-crystal monochromators. Full Article text
ay Coherence properties of the high-energy fourth-generation X-ray synchrotron sources By scripts.iucr.org Published On :: 2019-11-01 An analysis of the coherence properties of the fourth-generation high-energy storage rings with emittance values of 10 pm rad is performed. It is presently expected that a storage ring with these low emittance values will reach diffraction limit at hard X-rays. Simulations of coherence properties were performed with the XRT software and an analytical approach for different photon energies from 500 eV to 50 keV. It was demonstrated that a minimum photon emittance (diffraction limit) reached at such storage rings is λ/2π. Using mode decomposition it is shown that, for the parameters of the storage ring considered in this work, the diffraction limit will be reached for soft X-ray energies of 500 eV. About ten modes will contribute to the radiation field at 12 keV photon energy and even more modes give a contribution at higher photon energies. Energy spread effects of the electron beam in a low-emittance storage ring were analysed in detail. Simulations were performed at different relative energy spread values from zero to 2 × 10−3. A decrease of the degree of coherence with an increase of the relative energy spread value was observed. This analysis shows that, to reach the diffraction limit for high photon energies, electron beam emittance should go down to 1 pm rad and below. Full Article text
ay A von Hamos-type hard X-ray spectrometer at the PETRA III beamline P64 By scripts.iucr.org Published On :: 2020-01-01 The design and performance of the high-resolution wavelength-dispersive multi-crystal von Hamos-type spectrometer at PETRA III beamline P64 are described. Extended analyzer crystal collection available at the beamline allows coverage of a broad energy range from 5 keV to 20 keV with an energy resolution of 0.35–1 eV. Particular attention was paid to enabling two-color measurements by a combination of two types of analyzer crystals and two two-dimensional detectors. The performance of the spectrometer is demonstrated by elastic-line and emission-line measurements on various compounds. Full Article text
ay X-ray fluorescence analysis of metal distributions in cryogenic biological samples using large-acceptance-angle SDD detection and continuous scanning at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III By scripts.iucr.org Published On :: 2020-01-01 A new Rococo 2 X-ray fluorescence detector was implemented into the cryogenic sample environment at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III, DESY, Hamburg, Germany. A four sensor-field cloverleaf design is optimized for the investigation of planar samples and operates in a backscattering geometry resulting in a large solid angle of up to 1.1 steradian. The detector, coupled with the Xspress 3 pulse processor, enables measurements at high count rates of up to 106 counts per second per sensor. The measured energy resolution of ∼129 eV (Mn Kα at 10000 counts s−1) is only minimally impaired at the highest count rates. The resulting high detection sensitivity allows for an accurate determination of trace element distributions such as in thin frozen hydrated biological specimens. First proof-of-principle measurements using continuous-movement 2D scans of frozen hydrated HeLa cells as a model system are reported to demonstrate the potential of the new detection system. Full Article text
ay Characterization of the soft X-ray spectrometer PEAXIS at BESSY II By scripts.iucr.org Published On :: 2020-01-01 The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200–1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 1012 photons s−1 within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of ∼400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106° within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to ∼100 meV at 1000 eV incident photon energy are discussed. Full Article text
ay Methods for dynamic synchrotron X-ray respiratory imaging in live animals By scripts.iucr.org Published On :: 2020-01-01 Small-animal physiology studies are typically complicated, but the level of complexity is greatly increased when performing live-animal X-ray imaging studies at synchrotron and compact light sources. This group has extensive experience in these types of studies at the SPring-8 and Australian synchrotrons, as well as the Munich Compact Light Source. These experimental settings produce unique challenges. Experiments are always performed in an isolated radiation enclosure not specifically designed for live-animal imaging. This requires equipment adapted to physiological monitoring and test-substance delivery, as well as shuttering to reduce the radiation dose. Experiment designs must also take into account the fixed location, size and orientation of the X-ray beam. This article describes the techniques developed to overcome the challenges involved in respiratory X-ray imaging of live animals at synchrotrons, now enabling increasingly sophisticated imaging protocols. Full Article text
ay Full-field spectroscopic measurement of the X-ray beam from a multilayer monochromator using a hyperspectral X-ray camera By scripts.iucr.org Published On :: 2020-01-01 Multilayer monochromator devices are commonly used at (imaging) beamlines of synchrotron facilities to shape the X-ray beam to relatively small bandwidth and high intensity. However, stripe artefacts are often observed and can deteriorate the image quality. Although the intensity distribution of these artefacts has been described in the literature, their spectral distribution is currently unknown. To assess the spatio-spectral properties of the monochromated X-ray beam, the direct beam has been measured for the first time using a hyperspectral X-ray detector. The results show a large number of spectral features with different spatial distributions for a [Ru, B4C] strip monochromator, associated primarily with the higher-order harmonics of the undulator and monochromator. It is found that their relative contributions are sufficiently low to avoid an influence on the imaging data. The [V, B4C] strip suppresses these high-order harmonics even more than the former, yet at the cost of reduced efficiency. Full Article text
ay White beam diagnostics using X-ray back-scattering from a CVD diamond vacuum window By scripts.iucr.org Published On :: 2020-01-01 Collecting back-scattered X-rays from vacuum windows using a pinhole X-ray camera provides an efficient and reliable method of measuring the beam shape and position of the white synchrotron beam. In this paper, measurements are presented that were conducted at ESRF beamline ID6 which uses an in-vacuum cryogenically cooled permanent-magnet undulator (CPMU18) and a traditional U32 undulator as its radiation sources, allowing tests to be performed at very high power density levels that were adjusted by changing the gap of the undulators. These measurements show that it is possible to record beam shape and beam position using a simple geometry without having to place any further items in the beam path. With this simple test setup it was possible to record the beam position with a root-mean-square noise figure of 150 nm. Full Article text
ay Picosecond pump–probe X-ray scattering at the Elettra SAXS beamline By scripts.iucr.org Published On :: 2020-01-01 A new setup for picosecond pump–probe X-ray scattering at the Austrian SAXS beamline at Elettra-Sincrotrone Trieste is presented. A high-power/high-repetion-rate laser has been installed on-site, delivering UV/VIS/IR femtosecond-pulses in-sync with the storage ring. Data acquisition is achieved by gating a multi-panel detector, capable of discriminating the single X-ray pulse in the dark-gap of the Elettra hybrid filling mode. Specific aspects of laser- and detection-synchronization, on-line beam steering as well protocols for spatial and temporal overlap of laser and X-ray beam are also described. The capabilities of the setup are demonstrated by studying transient heat-transfer in an In/Al/GaAs superlattice structure and results are confirmed by theoretical calculations. Full Article text
ay A semi-analytical approach for the characterization of ordered 3D nanostructures using grazing-incidence X-ray fluorescence By scripts.iucr.org Published On :: 2020-02-11 Following the recent demonstration of grazing-incidence X-ray fluorescence (GIXRF)-based characterization of the 3D atomic distribution of different elements and dimensional parameters of periodic nanoscale structures, this work presents a new computational scheme for the simulation of the angular-dependent fluorescence intensities from such periodic 2D and 3D nanoscale structures. The computational scheme is based on the dynamical diffraction theory in many-beam approximation, which allows a semi-analytical solution to the Sherman equation to be derived in a linear-algebraic form. The computational scheme has been used to analyze recently published GIXRF data measured on 2D Si3N4 lamellar gratings, as well as on periodically structured 3D Cr nanopillars. Both the dimensional and structural parameters of these nanostructures have been reconstructed by fitting numerical simulations to the experimental GIXRF data. Obtained results show good agreement with nominal parameters used in the manufacturing of the structures, as well as with reconstructed parameters based on the previously published finite-element-method simulations, in the case of the Si3N4 grating. Full Article text
ay X-ray fluorescence detection for serial macromolecular crystallography using a JUNGFRAU pixel detector By scripts.iucr.org Published On :: 2020-02-07 Detection of heavy elements, such as metals, in macromolecular crystallography (MX) samples by X-ray fluorescence is a function traditionally covered at synchrotron MX beamlines by silicon drift detectors, which cannot be used at X-ray free-electron lasers because of the very short duration of the X-ray pulses. Here it is shown that the hybrid pixel charge-integrating detector JUNGFRAU can fulfill this function when operating in a low-flux regime. The feasibility of precise position determination of micrometre-sized metal marks is also demonstrated, to be used as fiducials for offline prelocation in serial crystallography experiments, based on the specific fluorescence signal measured with JUNGFRAU, both at the synchrotron and at SwissFEL. Finally, the measurement of elemental absorption edges at a synchrotron beamline using JUNGFRAU is also demonstrated. Full Article text
ay A five-axis parallel kinematic mirror unit for soft X-ray beamlines at MAX IV By scripts.iucr.org Published On :: 2020-01-29 With the introduction of the multi-bend achromats in the new fourth-generation storage rings the emittance has decreased by an order of magnitude resulting in increased brightness. However, the higher brightness comes with smaller beam sizes and narrower radiation cones. As a consequence, the requirements on mechanical stability regarding the beamline components increases. Here an innovative five-axis parallel kinematic mirror unit for use with soft X-ray beamlines using off-axis grazing-incidence optics is presented. Using simulations and measurements from the HIPPIE beamline at the MAX IV Laboratory it is shown that it has no Eigen frequencies below 90 Hz. Its positioning accuracy is better than 25 nm linearly and 17–35 µrad angularly depending on the mirror chamber dimensions. Full Article text
ay A portable on-axis laser-heating system for near-90° X-ray spectroscopy: application to ferropericlase and iron silicide By scripts.iucr.org Published On :: 2020-02-13 A portable IR fiber laser-heating system, optimized for X-ray emission spectroscopy (XES) and nuclear inelastic scattering (NIS) spectroscopy with signal collection through the radial opening of diamond anvil cells near 90°with respect to the incident X-ray beam, is presented. The system offers double-sided on-axis heating by a single laser source and zero attenuation of incoming X-rays other than by the high-pressure environment. A description of the system, which has been tested for pressures above 100 GPa and temperatures up to 3000 K, is given. The XES spectra of laser-heated Mg0.67Fe0.33O demonstrate the potential to map the iron spin state in the pressure–temperature range of the Earth's lower mantle, and the NIS spectra of laser-heated FeSi give access to the sound velocity of this candidate of a phase inside the Earth's core. This portable system represents one of the few bridges across the gap between laser heating and high-resolution X-ray spectroscopies with signal collection near 90°. Full Article text
ay X-ray free-electron laser wavefront sensing using the fractional Talbot effect By scripts.iucr.org Published On :: 2020-02-12 Wavefront sensing at X-ray free-electron lasers is important for quantitatively understanding the fundamental properties of the laser, for aligning X-ray instruments and for conducting scientific experimental analysis. A fractional Talbot wavefront sensor has been developed. This wavefront sensor enables measurements over a wide range of energies, as is common on X-ray instruments, with simplified mechanical requirements and is compatible with the high average power pulses expected in upcoming X-ray free-electron laser upgrades. Single-shot measurements were performed at 500 eV, 1000 eV and 1500 eV at the Linac Coherent Light Source. These measurements were applied to study both mirror alignment and the effects of undulator tapering schemes on source properties. The beamline focal plane position was tracked to an uncertainty of 0.12 mm, and the source location for various undulator tapering schemes to an uncertainty of 1 m, demonstrating excellent sensitivity. These findings pave the way to use the fractional Talbot wavefront sensor as a routine, robust and sensitive tool at X-ray free-electron lasers as well as other high-brightness X-ray sources. Full Article text
ay IRIXS: a resonant inelastic X-ray scattering instrument dedicated to X-rays in the intermediate energy range By scripts.iucr.org Published On :: 2020-02-26 A new resonant inelastic X-ray scattering (RIXS) instrument has been constructed at beamline P01 of the PETRA III synchrotron. This instrument has been named IRIXS (intermediate X-ray energy RIXS) and is dedicated to X-rays in the tender-energy regime (2.5–3.5 keV). The range covers the L2,3 absorption edges of many of the 4d elements (Mo, Tc, Ru, Rh, Pd and Ag), offering a unique opportunity to study their low-energy magnetic and charge excitations. The IRIXS instrument is currently operating at the Ru L3-edge (2840 eV) but can be extended to the other 4d elements using the existing concept. The incoming photons are monochromated with a four-bounce Si(111) monochromator, while the energy analysis of the outgoing photons is performed by a diced spherical crystal analyzer featuring (102) lattice planes of quartz (SiO2). A total resolution of 100 meV (full width at half-maximum) has been achieved at the Ru L3-edge, a number that is in excellent agreement with ray-tracing simulations. Full Article text
ay Limited angle tomography for transmission X-ray microscopy using deep learning By scripts.iucr.org Published On :: 2020-02-13 In transmission X-ray microscopy (TXM) systems, the rotation of a scanned sample might be restricted to a limited angular range to avoid collision with other system parts or high attenuation at certain tilting angles. Image reconstruction from such limited angle data suffers from artifacts because of missing data. In this work, deep learning is applied to limited angle reconstruction in TXMs for the first time. With the challenge to obtain sufficient real data for training, training a deep neural network from synthetic data is investigated. In particular, U-Net, the state-of-the-art neural network in biomedical imaging, is trained from synthetic ellipsoid data and multi-category data to reduce artifacts in filtered back-projection (FBP) reconstruction images. The proposed method is evaluated on synthetic data and real scanned chlorella data in 100° limited angle tomography. For synthetic test data, U-Net significantly reduces the root-mean-square error (RMSE) from 2.55 × 10−3 µm−1 in the FBP reconstruction to 1.21 × 10−3 µm−1 in the U-Net reconstruction and also improves the structural similarity (SSIM) index from 0.625 to 0.920. With penalized weighted least-square denoising of measured projections, the RMSE and SSIM are further improved to 1.16 × 10−3 µm−1 and 0.932, respectively. For real test data, the proposed method remarkably improves the 3D visualization of the subcellular structures in the chlorella cell, which indicates its important value for nanoscale imaging in biology, nanoscience and materials science. Full Article text
ay X-ray absorption linear dichroism at the Ti K-edge of rutile (001) TiO2 single crystal By scripts.iucr.org Published On :: 2020-02-14 X-ray absorption linear dichroism of rutile TiO2 at the Ti K-edge provides information about the electronic states involved in the pre-edge transitions. Here, linear dichroism with high energy resolution is analyzed in combination with ab initio finite difference method calculations and spherical tensor analysis. It provides an assignment of the three pre-edge peaks beyond the octahedral crystal field splitting approximation and estimates the spatial extension of the corresponding final states. It is then discussed for the first time the X-ray absorption (XAS) of pentacoordinated titanium atoms due to oxygen vacancies and it is found that, similarly to anatase TiO2, rutile is expected to exhibit a transition on the low-energy side of peak A3. Its apparent absence in the experiment is related to the degree of p–d orbital mixing which is small in rutile due to its centrosymmetric point group. A recent XAS linear dichroism study on anatase TiO2 single crystals has shown that peak A2 has an intrinsic origin and is due to a quadrupolar transition to the 3d energy levels. In rutile, due to its centrosymmetric point group, the corresponding peak A2 has a small dipole moment explaining the weak transition. The results are confronted with recent picosecond X-ray absorption spectroscopy on rutile TiO2 nanoparticles. Full Article text
ay Understanding the mechanical limitations of the performance of soft X-ray monochromators at MAX IV laboratory By scripts.iucr.org Published On :: 2020-02-19 MAX IV is a fourth-generation, or diffraction-limited, synchrotron light source with a number of state-of-the-art beamlines. The performance of a beamline is, to a high degree, set by the energy resolution it can achieve, which in turn is governed to a large extent by the monochromator. During the design phase of a monochromator, the mechanical requirements must be fully understood and met with margin. During commissioning, the performance must be verified and optimized. In this paper, six soft X-ray monochromators at MAX IV beamlines (Bloch, Veritas, HIPPIE, SPECIES, FinEstBeAMS and SoftiMAX) are examined with a focus on their resolving power, energy range and the time required to change measurement range, as those parameters are dependent on each other. The monochromators have a modern commercial design, planned and developed in close collaboration with the vendors. This paper aims to present the current status of the commissioning at MAX IV with emphasis on elucidating the mechanical limitations on the performance of the monochromators. It contains analysis of the outcome and our approach to achieve fast and high-resolution monochromators. Full Article text