transmission

Power transmission belt

A power transmission belt comprising cord, elastomeric undercord, at least one pair of opposing v-shaped pulley contact surfaces, and having discontinuous fiber embedded in the undercord, some of which protrude from a contact surface. The fiber comprises deformable polymer, such as nylon, and the fiber protrusions are substantially erect with respect to the surface and substantially straight or slightly bowed, especially near the free end, and the fiber protrusions are deformed from an original cross-sectional shape, which may be substantially round or oval or the like, to an elongated, oval, oblong, kidney, or flattened circle shape. The protruding fiber length is at least two fiber diameters.




transmission

Continuously variable transmission oil composition

A continuously variable transmission oil composition comprising a base oil and at least one phosphorous compound in such an amount that the phosphorus in the phosphorus compound accounts for 0.005 to 0.15 mass % of the total mass of the composition and wherein the continuously variable transmission oil composition has a friction coefficient from 0.146 to 0.164 when tested according to ASTM D2714.




transmission

Lubricant composition and continuously variable transmission

Provided is a lubricating oil composition containing a base oil which includes a mineral oil and/or a synthetic oil, and compounded therein, (A) at least one phosphorus-containing compound selected from phosphoric acid monoesters, phosphoric acid diesters and phosphorous acid monoesters, each having a C1 to C8 hydrocarbon group or groups and (B) a tertiary amine compound having C6 to C10 hydrocarbon groups as substituents thereof. The lubricating oil composition provides both a high metal to metal friction coefficient and an excellent wear resistance and is suitably used in a continuously variable transmission.




transmission

Method and system for WDM transmission with chromato-temporal encoding

A transmitter and a receiver for an optical telecommunication system of the WDM type are disclosed. In one aspect, the transmitter uses a chromato-temporal encoder which, with each block of symbols to be transmitted, associates a code matrix, where each element of the matrix corresponds to a wavelength and a use of the channel. The transmitter includes multiple modulators, where each modulator modulates a laser beam at a wavelength during a use of the channel by an element corresponding to the code matrix. The beams modulated in this manner are multiplexed in an optical fiber. Another embodiment using both a wavelength and a polarization encoding is also proposed.




transmission

Long-haul undersea transmission system and fiber

An undersea long-haul transmission system includes an optical fiber transmission span and a coherent detection and digital signal processing module for providing dispersion compensation. The transmission span includes at least one fiber pair comprising substantially equal lengths of a positive-dispersion first fiber and a negative-dispersion second fiber that are configured to provide a signal output at transmission distances greater than 10,000 km, in which the combined accumulated dispersion across the operating bandwidth does not exceed the dispersion-compensating capacity of the coherent detection and digital signal processing module. Further described is a fiber for use in an undersea long-haul transmission span. At a transmission wavelength of 1550 nm, the fiber has a dispersion coefficient in the range of −16 to −25 ps/nm·km, and a dispersion slope in the range of 0.04 to 0.02 ps/nm2·km.




transmission

Pre-emphasis control method and optical transmission system

A pre-emphasis control method includes calculating an average value of transmission characteristics based on transmission characteristics of a plurality of light beams received by a receiver, and determining that, among signals of the plurality of light beams, a wavelength with a deviation from the average value is a wavelength at which control is to be performed, determining that the wavelength at which control is to be performed and a wavelength adjacent thereto are a group of wavelengths at which control is to be performed, obtaining an average of transmission characteristics of the group of wavelengths at which control is to be performed, and based on a difference between averaged transmission characteristics and respective transmission characteristics of the group of wavelengths at which control is to be performed, changing a light intensity output from each transmitter that transmits a group of wavelengths at which control is to be performed.




transmission

Signal transmission device

A signal transmission device drives a light-emitting element and outputs an optical signal depending on a data signal from an electronic device. The device includes an element driving portion which supplies a driving current to the light-emitting element, wherein the driving current is obtained by superimposing a modulation current on a bias current, the modulation current being dependent on the data signal indicating emitting information of the light-emitting element. A temperature compensation portion of the device controls the bias current and the modulation current depending on the temperature so that a temperature-current characteristic of the light-emitting element is reproduced based on the voltage which is dependent on the temperature and the voltage which is independent from the temperature, thereby performing current control depending on the temperature.




transmission

Optical transport network system, optical-signal transmission path selecting method, and optical transmission device

An optical transport network system includes a plurality of NEs, each transmitting wavelength-multiplexed optical signals. Each NE includes a routing information DB that is used to store reachable area information, which contains identifiers of other NEs in a range within which the optical signals can be transmitted from the own NE without using an REG. A FROM NE includes a path candidate searching unit that searches for a plurality of path candidates for transmitting optical signals from the FROM NE to a TO NE. The TO NE includes a path selecting unit that selects a path for transmitting optical signals from among a plurality of path candidates. The path selecting unit obtains the number of times for which the REG is used for each of the plurality of path candidates; and, based on each number of times that is obtained, selects a path for transmitting the optical signals.




transmission

Increased spectral efficiency and reduced synchronization delay with bundled transmissions

Techniques are provided for increasing spectral efficiency over data channels in a storage or communication system. In some embodiments, data may be encoded and transmitted over multiple channels. The transmitted data from the multiple channels may be considered together as a channel bundle, thereby increasing the edge transitions of the group of signals to improve clock recovery and reduce coding constraints. In some embodiments, the channel bit size is reduced to maximize data rates based on the reduced coding constraints. Furthermore, the channel bundle has only one channel with timing markers, so that a receiver may receive information from the channel bundle and recover clocking based on the timing markers in the one channel.




transmission

Flexible coupling means and a mechanical transmission

A coupling means (10) provided with a first member (20) suitable for being fastened to a first rotary part (2) and with a second member (30) suitable for being fastened to a second rotary part (3), the first member (20) being provided with a first diaphragm (22) and the second member (30) being provided with a second diaphragm (32) that is secured to the first diaphragm (22). An emergency torque transmission device comprises at least one bayonet system including a protuberance (50) secured to one member (30) and co-operating with an angled groove (60) secured to the other member (20) by being inserted in the angled groove (60) by a thrust-and-rotation movement, in the absence of said breakage said coupling means (10) including both axial clearances in compression (70') and in translation (70″) and also circumferential clearance between each protuberance (50) and walls defining the corresponding angled groove (60).




transmission

Torque limiting device, particularly for power transmission elements

A torque limiting device, particularly for power transmission elements, is provided. The torque limiting device includes a first connecting member and a second connecting member, which is connected rotatably to a driven element. The first connecting member includes a motor driving disk and the second connecting member includes a sliding disk, and further includes a pin supporting body which comprises a drum that is assembled on the second connecting member and includes a plurality of radial holes, each one of which accommodates a pin that is pressed, toward the center of the drum, by elastic means, and abuts, with at least one of its faces which is inclined with respect to the central rotation axis of the second connecting member, against at least one corresponding abutment face.




transmission

Method for controlling pump transitions in a multi-mode hybrid transmission

A method of controlling a pump for a hybrid transmission includes commanding a first line pressure of the transmission and deriving a first torque value—an open-loop torque value—from the first line pressure command, and commanding the pump to operate at the first torque value. The method monitors actual speed of the pump and derives a second torque value—a closed-loop torque value—therefrom. A third torque value is derived from the first and second torque values, and the pump commanded to operate at the third torque value. A first speed value may be derived from the first line pressure command, and the second torque value derived from the difference between the monitored and the first speed values. Deriving the third torque value may include a substantially-linear combination of the first and second torque values.




transmission

Engine ignition-transmission shift interlock

A method for controlling a vehicle equipped with a manual transmission and engine includes automatically engaging a brake, locking the transmission in neutral and starting the engine, in response to a signal whose origin is remote from the vehicle representing a desired engine start; and automatically engaging a brake and locking the transmission in neutral in response to a second signal indicating that the driver has exited the vehicle while the engine is running.




transmission

Method for controlling the engine of a motor vehicle having a manual transmission

In a motor vehicle having a manual transmission, for, in particular, limiting the engine speed during the start-up operation when fulfilling at least one permission criterion for the engine torque, the criterion depending on the driving state of the motor vehicle, a default engine torque is preset, which is specified according to at least one engine characteristic value and which can be reduced with regard to the set engine torque called for by the position of the accelerator pedal of the motor vehicle.




transmission

Temperature determination for transmission fluid in a vehicle

A transmission assembly in a vehicle includes a transmission configured to receive a transmission fluid. A controller operatively connected to the transmission and configured to store a first look-up table defining respective warm-up calibration factors (Fw) for a respective first set of ambient temperatures. The controller has a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for determining a current temperature (TTF) of the transmission fluid. The vehicle is keyed off and then keyed on after a key-off time duration (te), the controller being deactivated when the vehicle is keyed off and activated when the vehicle is keyed on. The controller is configured to determine the current temperature of the transmission fluid (TTF) based at least partially on the first look-up table and a key-on temperature (TTFkey-on) of the transmission fluid.




transmission

Control device of continuously variable transmission for vehicle

A control device continuously variable transmission for vehicle according to the present invention includes a continuously variable transmission mechanism capable of continuously changing a speed ratio, a sub-transmission mechanism provided in series with the continuously variable transmission mechanism, including a first gear position and a second gear position having a smaller speed ratio than the first gear position as forward gear positions and adapted to switch between the first gear position and the second gear position by selectively engaging or releasing a plurality of frictional engagement elements, and a transmission control unit wherein a vehicle is stopped with the gear position of the sub-transmission mechanism kept in the second gear position when being stopped in a state where the gear position of the sub-transmission mechanism is in the second gear position.




transmission

Method and system for determining clutch assembly vent time for transmission shift control

A method and transmission control unit configured to improve shift event performance in a vehicle with an automatic transmission by determining a vent time for release of a clutch assembly in a transmission of a vehicle. The vehicle must be stopped and a gear selector in the vehicle must be set to a drive condition. If these conditions are met, the clutch assembly is vented. The vent time from when venting begins to when a turbine (or input shift) speed of the transmission rises is tracked. Once the turbine speed of the transmission rises, the clutch assembly is reapplied. The clutch assembly vent time is set based on the tracked vent time.




transmission

Automatic transmission and starting time control method

A transmission controller increases an indicated hydraulic pressure to a starting frictional engagement element to a normal hydraulic pressure, causes a hydraulic piston to stroke and executes a learning control of the indicated hydraulic pressure so that a time until the starting frictional engagement element starts generating a transmission capacity after the range is switched from the neutral range to the drive range becomes a target time when a range is switched from a neutral range to a drive range. The transmission controller further detects a driver's starting intention and increases the indicated hydraulic pressure to the starting frictional engagement element to a starting time hydraulic pressure higher than the normal hydraulic pressure and prohibits the learning control if the starting intention is detected before the starting frictional engagement element starts generating the transmission capacity.




transmission

Control apparatus for automatic transmission

A control apparatus for an automatic transmission including three frictional engagement elements is configured to set engagement pressures of first and second frictional engagement elements at the time when a predetermined shift speed is established such that a torque capacity of a third frictional engagement element becomes smaller than torque capacities of the first and second frictional engagement elements in the case where an engagement pressure is generated in the third frictional engagement element at the time when the predetermined shift speed is established.




transmission

Multi-speed transmission with an engine start/stop enabler

A transmission includes an input member, an output member, four planetary gear sets, and a plurality of torque transmitting mechanisms that are selectively engageable to establish at least ten forward speed ratios and at least one reverse speed ratio between the input member and the output member. The transmission further includes one or more locking mechanisms that engage one or more of the plurality of torque transmitting mechanisms during a start/stop event.




transmission

Control device for automatic transmission

A control device of an automatic transmission comprises a torque converter and a lock-up clutch which are arranged between an engine and an automatic transmission; and an up-shift control means that, when an up-shift is required with an accelerator pedal kept depressed by a driver, lowers an engaging capacity of releasing side engaging elements engaged at a speed stage before a gear shifting and then increases an engaging capacity of engaging side engaging elements engaged at a speed stage after the gear shifting thereby to establish a power-on up-shift, wherein the up-shift control means is configured in that when the acceleration pedal is released from the driver during the time when the power-on up-shift is being carried out, the power-on up-shift is continued while lowering the engaging capacity of the lock-up clutch.




transmission

Method of shifting a transmission

A method of controlling a multiple step downshift is disclosed. Two offgoing shift elements are released and two oncoming shift elements are engaged to complete the downshift. During a first phase of the downshift, one of the offgoing shift elements controls the rate of increase of input shaft speed. During a second phase of the downshift, one of the oncoming shift elements controls the rate of increase of the input shaft speed. The method computes target torque capacities such that output torque and input shaft acceleration are continuous during the transition between phases. Furthermore, the method computes target torque capacities such that both oncoming clutches reach zero relative speed simultaneously as the input shaft reaches the final speed ratio.




transmission

Device for controlling automatic transmission

A device for controlling an automatic transmission including a lock-up clutch control portion and a zero slip control portion for bringing a lock-up clutch into a zero slip state immediately before slippage occurs in accordance with a zero slip request outputted during a non-gear shift, wherein in a case where a target slip amount is equal to or smaller than a slip amount threshold value upon transition to the zero slip state, the zero slip control portion fixes the target slip amount to the slip amount threshold value and retains the fixed target slip amount for a predetermined period of time, and after the predetermined period of time has elapsed, gradually decreases the target slip amount from the slip amount threshold value to a zero slip amount with a predetermined gradient with time.




transmission

Method for controlling an automated transmission

A method of controlling an automated transmission for motor vehicles with one or several pressure activated positioning cylinders (6, 8, 20), via the assigned shift valves (10, 12), at least one main cut-off valve (4) which is positioned prior to the shift valves, and a control device for controlling the shift and main cut-off valves. The pressure requests, for the shifting, are determined and the respective main cut-off valves are triggered depending on the determined pressure requests. To enable a variable match of the supply pressure during transmission shifts, respective optimized pressures or pressure patterns are determined for certain shift scenarios which, for instance, consider a mass to be synchronized, the existence of a tooth-on-tooth position, or the like. Through this method, for instance, the load on shift elements, the shift timing, and the shift noise can be positively influenced.




transmission

Transmission shift assembly for a vehicle and a method of monitoring the same

The present invention provides for a transmission shift assembly for a vehicle and methods of monitoring and controlling the same. The transmission shift assembly includes a transmission having a shift position member movable between a plurality of gear positions, an actuator configured to move the shift position between the gear positions, and a linkage coupled to the actuator and movable between a plurality of positions in response to movement of the actuator. The assembly further includes a controller to control the actuator, an ignition to receive a key, and at least one key sensor positioned within the ignition and configured to transmit a signal to the controller upon sensing removal of the key, the controller controlling the actuator to move the shift position member to a predetermined gear position upon receiving the signal from the key sensor that the key has been removed from the ignition.




transmission

Dog clutch control apparatus for automated transmission

A dog clutch control apparatus for an automated transmission includes a rotary shaft, plural dog clutch mechanisms, each of the dog clutch mechanisms including a clutch ring, a clutch hub arranged next to the clutch ring, a sleeve fitted with the clutch hub, a dog clutch portion which is provided at the clutch ring and selectively meshes with a spline formed at the sleeve, an axial driving device for moving the sleeve, the dog clutch control apparatus includes a disengagement detecting portion for detecting disengagement before the sleeve reaches a neutral position and a control apparatus for controlling operation of the axial driving device, wherein in a case where the disengagement is detected at a time of shifting operation, the control apparatus starts a shift-related control.




transmission

Continuously variable transmission

Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a shift rod that cooperates with a shift rod nut to actuate a ratio change in a CVT. In another embodiment, an axial force generating mechanism can include a torsion spring, a traction ring adapted to receive the torsion spring, and a roller cage retainer configured to cooperate with the traction ring to house the torsion spring. Various inventive power roller-leg assemblies can be used to facilitate shifting the ratio of a CVT. Embodiments of a hub shell and a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.




transmission

Continuously variable transmission

Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of a CVT. In another embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various inventive traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.




transmission

Friction type transmission device and pressing force control method for friction type transmission device

In a friction drive transmission apparatus arranged to transmit power by a frictional transmission force between two roller units pressed against each other, there is provided a pressing force imparting means to increase and decrease a pressing force imparted to a roller pair to vary the frictional transmission force between both roller units smoothly at the time of a shift.




transmission

Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor

Inventive embodiments are directed to components, subassemblies, systems, and/or methods for infinitely variable transmissions (IVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of an IVT. In another embodiment, a control system includes a carrier member configured to have a number of radially offset slots. Various inventive carrier members and carrier drivers can be used to facilitate shifting the ratio of an IVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the carrier members. In one embodiment, the carrier member is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a carrier member is operably coupled to a carrier driver. In some embodiments, the carrier member is configured to couple to a source of rotational power. Among other things, shift control interfaces for an IVT are disclosed.




transmission

Toroidal continuously variable transmission

A toroidal continuously variable transmission includes: an input disk; an output disk; a plurality of power rollers; a plurality of trunnions; an oil pump; a pressing hydraulic mechanism that moves and brings the input disk and output disk closer to each other; a shifting hydraulic mechanism that moves the trunnions forward and rearward; and a hydraulic control device that controls the pressing hydraulic mechanism and the shifting hydraulic mechanism by oil pressure. The hydraulic control device has an oil pressure regulation unit that sets an oil pressure in a shifting hydraulic line that is a hydraulic source of the shifting hydraulic mechanism to an oil pressure at which shifting control can be performed by the shifting hydraulic mechanism till the transmission of power between the input disk and output disk is interrupted when the operation of the oil pump is stopped.




transmission

Systems and methods for control of transmission and/or prime mover

Disclosed here are inventive systems and methods for a powertrain of an electric vehicle (EV). In some embodiments, said powertrain includes a continuously variable transmission (CVT) coupled to an electric drive motor, wherein a control system is configured to control the CVT and/or the drive motor to optimize various efficiencies associated with the EV and/or its subsystems. In one specific embodiment, the control system is configured to operate the EV in an economy mode. Operating in said mode, the control system simultaneously manages the CVT and the drive motor to optimize the range of the EV. The control system can be configured to manage the current provided to the drive motor, as well as adjust a transmission speed ratio of the CVT. Other modes of operation are also disclosed. The control system can be configured to manage the power to the drive motor and adjust the transmission speed ratio of the CVT taking into account battery voltage, throttle position, and transmission speed ratio, for example.




transmission

Drive mechanism for infinitely variable transmission

A variator transmission comprises an input shaft (18), an input disc (10) mounted on the input shaft for rotation therewith and an output disc (12) facing the input disc and arranged to rotate coaxially therewith, the input and output discs defining between them a toroidal cavity. Two rollers (14, 16) are located in the toroidal cavity and first and second roller carriage means are provided upon which the first and second rollers respectively are rotatably mounted and end load means (34, 36) urge the rollers into contact with the input and output discs to transmit drive. The two roller carriage means are mounted on opposite sides of the pivotal axis of a lever (50) and the pivotal axis of the lever (50) is movable in both the radial and non-radial directions with respect to the rotational axis of the input and output discs.




transmission

Continuously variable transmission

A continuously variable transmission having a continuously variable transmission mechanism including an input member, an output member, and a rotary member sandwiched therebetween, transmitting torque between the input member and the output member by means of frictional forces generated by pushing the input member and the output member against the rotary member, and continuously varying a transmission gear ratio between the input member and the output member, an axial force generating portion which rotates in one direction to generate a first axial force for pushing one of the input member and the output member toward the other and rotates in the other direction to generate a second axial force opposite to the first force, and an opposite axial force transmitting portion for transmitting the second force to the other of the input member and the output member when the axial force generating portion generates the second force.




transmission

Continuously variable transmission

A continuously variable transmission includes a continuously variable transmission mechanism that includes an input disk, an output disk, and planetary balls sandwiched between them and that steplessly changes a transmission ratio between the input disk and the output disk by tilting the planetary balls, wherein cooling performance of a cooling device for the continuously variable transmission mechanism is enhanced as the transmission ratio becomes larger than 1 or smaller than 1.




transmission

Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor

Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously and infinitely variable transmissions (IVT). In one embodiment, a variator is adapted to receive a control system that cooperates with a shift nut to actuate a ratio change in an IVT. In another embodiment, a neutral lock-out mechanism is adapted to cooperate with the variator to, among other things, disengage an output shaft from a variator. Various inventive mechanical couplings, such as an output engagement mechanism, are provided to facilitate a change in the ratio of an IVT for maintaining a powered zero operating condition. In one embodiment, the output engagement mechanism selectively couples an output member of the variator to a ratio adjuster of the variator. Embodiments of a ratio adjuster cooperate with other components of the IVT to support operation and/or functionality of the IVT. Among other things, user control interfaces for an IVT are disclosed.




transmission

Methods for control of transmission and prime mover

A method of controlling a prime mover and a continuously variable transmission (CVT) is described. The CVT has a group of spherical power adjusters. Each power adjuster has a tiltable axis of rotation. A method of optimizing a vehicle having a drive motor and a continuously variable transmission is also described. The CVT has a plurality of spherical power adjusters, each power adjuster having a tiltable axis of rotation. A drive system having a prime mover and a continuously variable transmission can be optimized in another method.




transmission

Infinitely variable transmission with an IVT stator controlling assembly

An infinitely variable transmission is provided. The transmission includes an input assembly that is coupled to receive input rotational motion and an output assembly that is rotationally coupled to a load. An input/output planetary ratio assembly sets an input to output speed ratio. The input/output planetary ratio assembly has a first stator and a second stator. An input speed feedback control assembly is operationally attached to the input assembly. The input speed feedback control assembly includes a spider that is coupled to one of the first stator and the second stator. A movable member is operationally engaged with the spider with at least one shift weight. The moveable member is further operationally coupled to the other of the first stator and second stator. Moreover a torque feedback control assembly applies an axial load force in response to a torque of a load to the input speed control assembly.




transmission

System and method for controlling a transmission

A system for selecting shift schedules of a transmission of a vehicle includes a controller configured to receive a signal indicative of acceleration of the vehicle prior to a change of a gear of the transmission. The controller is further configured to estimate tractive effort of the vehicle following the change of the gear of the transmission, the tractive effort estimation being based on at least an estimation of a road load on the vehicle. The controller is further configured to select between a first shift schedule and a second shift schedule based on the tractive effort estimation, wherein, if the tractive effort estimation is less than a threshold value, the controller selects the first shift schedule, and if the tractive effort estimation is at least equal to the threshold value, the controller selects the second shift schedule.




transmission

Fast valve actuation system for an automatic transmission

A fast valve actuation system for an automatic vehicle transmission includes a pair of spring-biased shift valves. Solenoids control the application of pressurized hydraulic fluid to the head of each of the shift valves. Each shift valve has at least one port that is coupled to a fluid chamber of a torque transferring mechanism of an automatic transmission. The position of each of the shift valves determines whether its ports are connected with fluid pressure. Fluid passages connect the head of each shift valve to the spring pocket of the other shift valve.




transmission

Continuously variable transmission

Components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT) having a control system adapted to facilitate a change in the ratio of a CVT are provided. In one embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT.




transmission

Continuously variable transmission

Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable accessory drives (CVAD). In one embodiment, a skew-based control system is adapted to facilitate a change in the ratio of a CVAD. In another embodiment, a skew-based control system includes a skew actuator coupled to a carrier member. In some embodiments, the skew actuator is configured to rotate a carrier member of a CVT. Various inventive traction planet assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include legs configured to cooperate with the carrier members. In some embodiments, a traction planet assembly is operably coupled to the carrier members. Embodiments of a shift cam and traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.




transmission

Toroidal continuously variable transmission

A toroidal continuously variable transmission of the present invention comprises: input side disks (1a, 1b) and output side disks (6) being supported concentric with each other such that the disks can rotate freely; a trunnion (9) that comprises end sections (36) on both ends on which tilt shafts (13) that are concentric with each other are provided, and a support beam section (15) that extends between both end sections (36), the trunnion (9) being capable of pivotally displacing around the tilt shafts (13); a thrust rolling bearing (17); and a power roller (8) that is supported to the inside surface of the trunnion (9) by way of the thrust rolling bearing (17) such that it rotates freely; wherein the support beam section (15) comprises an inside surface having a cylindrical convex surface (14); the thrust rolling bearing (17) comprises an outer race (18a) having an outside surface with a concave section (19a) that fits with the cylindrical convex surface (14) of the support beam section (15), and a plurality of rolling bodies (26) that are located between the power roller (8) and a track of an outer race (18a); and the concave section (19a) of the outer race (18a) has side surface sections (29) on both sides in the width direction, fits with the cylindrical convex surface (14) by the cylindrical convex surface (14) coming in contact with both side surface sections (29).




transmission

Unlocking controller of irreversible rotary transmission system

An unlocking controller is provided for an irreversible rotary transmission system having the irreversible rotary transmission system having an irreversible rotation transmission element arranged between an input shaft and an output shaft. The unlocking controller includes an input shaft rotation direction determination section and an unlocking torque setting section. The input shaft rotation direction determination section determines whether an input shaft rotational direction is the same as, or opposite to, a direction of the load torque of the output shaft. The unlocking torque setting section conducts an unlocking torque control that sets the unlocking torque a higher value when the input shaft rotational direction and the direction of the load torque of the output shaft are the same as while the lock is released, than when the input shaft rotational direction is opposite to the direction of the direction of the load torque of the output shaft.




transmission

Continuously variable transmission

Disclosed embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a CVT has a number of spherical planets in contact with an idler. Various idler assemblies can be used to facilitate to improve durability, fatigue life, and efficiency of a CVT. In one embodiment, the idler assembly has two rolling elements having contact surfaces that are angled with respect to a longitudinal axis of the CVT. In some embodiments, a bearing is operably coupled between the first and second rolling elements. The bearing is configured to balance axial force between the first and second rolling elements. In one embodiment, the bearing is a ball bearing. In another embodiment, the bearing is an angular contact bearing. In yet other embodiments, needle roller bearings are employed.




transmission

Continuously variable transmission

Components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT) are provided. In one aspect, a control system is adapted to facilitate a change in the ratio of a CVT. A control system includes a control reference nut coupled to a feedback cam and operably coupled to a skew cam. In some cases, the skew cam is configured to interact with carrier plates of a CVT. Various inventive feedback cams and skew cams can be used to facilitate shifting the ratio of a CVT. In some transmissions described, the planet subassemblies include legs configured to cooperate with the carrier plates. In some cases, a neutralizer assembly is operably coupled to the carrier plates. A shift cam and a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are provided.




transmission

Continuously variable transmission

A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.




transmission

Continuously variable transmission

A continuously variable transmission includes plural planetary balls, a carrier, a sun roller, an input shaft, an output shaft, and thrust bearings sandwiched between respective holding surfaces of the input shaft and the output shaft, wherein the holding surface at a time of rest is formed such that a space between the holding surface and a race on one side of the thrust bearing becomes wider on an outside in a radial direction than on an inside in the radial direction, and the holding surface at the time of rest is formed such that a space between the holding surface and a race on the other side of the thrust bearing becomes wider on the outside in the radial direction than on the inside in the radial direction.




transmission

Continuously variable transmission

Provided with first and second rotational members, a sun roller, a plurality of planetary balls sandwiched between the first and second rotational members, a support shaft of each of the planetary balls, a shaft, a carrier, an iris plate and a worm gear for tilting each of the planetary balls, and an input shaft and an output shaft individually fixed to the first and second rotational members, respectively, in which a movable amount of the sun roller relative to the carrier in an axis line direction is set to be smaller than the movable amount of the second rotational member relative to the carrier in the axis line direction when the input shaft is arranged so as to be relatively rotatable on an outer peripheral surface of the output shaft.




transmission

Power transmission device

A power transmission device includes first and second rings arranged opposite each other, having a common rotation center axis, and rotatable relative to each other; a plurality of planetary balls having rotation center axes parallel to the rotation center axis, and radially arranged between the first and second rings and around the rotation center axis; a transmission control unit configured to change a rotation ratio between the first and second rings by changing the respective contact points of the first and second rings and each of the planetary balls through tilting motion of each of the planetary balls; and a rotation restricting unit disposed between the planetary balls adjacent to each other.