penta

Continuous production of 1,2-pentanediol from furfuryl alcohol over highly stable bimetallic Ni–Sn alloy catalysts

Green Chem., 2024, 26,11164-11176
DOI: 10.1039/D4GC02757D, Paper
Ajaysing S. Nimbalkar, Kyung-Ryul Oh, Do-Young Hong, Byung Gyu Park, Maeum Lee, Dong Won Hwang, Ali Awad, Pravin P. Upare, Seung Ju Han, Young Kyu Hwang
A bimetallic NiSn/ZnO catalyst converts biomass-derived furfuryl alcohol into 1,2-PDO continuously, yielding 91.0% over 400 hours.
The content of this RSS Feed (c) The Royal Society of Chemistry




penta

Correction: Continuous production of 1,2-pentanediol from furfuryl alcohol over highly stable bimetallic Ni–Sn alloy catalysts

Green Chem., 2024, 26,11364-11364
DOI: 10.1039/D4GC90117G, Correction
Open Access
  This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Ajaysing S. Nimbalkar, Kyung-Ryul Oh, Do-Young Hong, Byung Gyu Park, Maeum Lee, Dong Won Hwang, Ali Awad, Pravin P. Upare, Seung Ju Han, Young Kyu Hwang
The content of this RSS Feed (c) The Royal Society of Chemistry




penta

Amazing repentance

An OM worker in Russia finds opportunities to share Christ's love with members of the Romani ethnic group.





penta

Polymeric poly[[decaaquabis(μ6-1,8-disulfonato-9H-carbazole-3,6-dicarboxylato)di-μ3-hydroxy-pentazinc] decahydrate]

The asymmetric unit of the title MOF, [Zn5(C14H5NO10S2)2(OH)2(H2O)10]n comprises three ZnII atoms, one of which is located on a centre of inversion, a tetra-negative carboxyl­ate ligand, one μ3-hydroxide and five water mol­ecules, each of which is coordinated. The ZnII atom, lying on a centre of inversion, is coordinated by trans sulfoxide-O atoms and four water mol­ecules in an octa­hedral geometry. Another ZnII atom is coordinated by two carboxyl­ate-O atoms, one hy­droxy-O, one sulfoxide-O and a water-O atom to define a distorted trigonal–bipyramidal geometry; a close Zn⋯O(carboxyl­ate) inter­action derived from an asymmetrically coordinating ligand (Zn—O = 1.95 and 3.07 Å) suggests a 5 + 1 coordination geometry. The third ZnII atom is coordinated in an octa­hedral fashion by two hy­droxy-O atoms, one carboxyl­ate-O, one sulfoxide-O and two water-O atoms, the latter being mutually cis. In all, the carboxyl­ate ligand binds six ZnII ions leading to a three-dimensional architecture. In the crystal, all acidic donors form hydrogen bonds to oxygen acceptors to contribute to the stability of the three-dimensional architecture.




penta

Dicaesium tetra­magnesium penta­kis­(carbonate) deca­hydrate, Cs2Mg4(CO3)5·10H2O

The title carbonate hydrate, Cs2Mg4(CO3)5·10H2O, was crystallized at room temperature out of aqueous solutions containing caesium bicarbonate and magnesium nitrate. Its monoclinic crystal structure (P21/n) consists of double chains of composition 1∞[Mg(H2O)2/1(CO3)3/3], isolated [Mg(H2O)(CO3)2]2– units, two crystallographically distinct Cs+ ions and a free water mol­ecule. The crystal under investigation was twinned by reticular pseudomerohedry.




penta

Crystal structure and Hirshfeld surface analysis of a conformationally unsymmetrical bis­chalcone: (1E,4E)-1,5-bis­(4-bromo­phen­yl)penta-1,4-dien-3-one

In the title bis­chalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromo­phenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromo­phenyl rings is 51.56 (2)°. In the crystal, mol­ecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π inter­actions. The conformations of related bis­chalcones are surveyed and a Hirshfeld surface analysis is used to investigate and qu­antify the inter­molecular contacts.




penta

Crystal structure of 7,8,15,16,17-penta­thiadi­spiro­[5.2.59.36]hepta­deca­ne

The title compound, C12H20S5, crystallizes in the monoclinic space group P21/c with four mol­ecules in the unit cell. In the crystal, the asymmetric unit comprises the entire mol­ecule with the three cyclic moieties arranged in a line. The mol­ecules in the unit cell pack in a parallel fashion, with their longitudinal axes arranged along a uniform direction. The packing is stabilized by the one-dimensional propagation of non-classical hydrogen-bonding contacts between the central sulfur atom of the S3 fragment and the C—H of a cyclo­hexyl group from a glide-related mol­ecule [C⋯S = 3.787 (2) Å].




penta

Crystal structures of trans-di­aqua­(3-R-1,3,5,8,12-penta­aza­cyclo­tetra­deca­ne)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl)

The asymmetric units of the title compounds, trans-di­aqua­(3-benzyl-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-di­aqua­[3-(pyridin-3-ylmeth­yl)-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12]copper(II) iso­phthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one di­aqua macrocyclic cation, one di­carboxyl­ate anion and uncoordinated water mol­ecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water mol­ecules in a tetra­gonally distorted octa­hedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding inter­actions between the N—H groups of the macrocycles and the O—H groups of coordinated water mol­ecules as the proton donors and the O atoms of the carboxyl­ate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water mol­ecules of crystallization, the isophthalate dianions form layers lying parallel to the (overline{1}01) and (100) planes in (I) and (II), respectively.




penta

(1R,2S,4r)-1,2,4-Tri­phenyl­cyclo­pentane-1,2-diol and (1R,2S,4r)-4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol: application as initiators for ring-opening polymerization of ∊-caprolactone

Reductive cyclization of 1,3,5-triphenyl- and 3-(2-meth­oxy­phen­yl)-1,5-di­phenyl­pentane-1,5-diones by zinc in acetic acid medium leads to the formation of 1,2,4-tri­phenyl­cyclo­pentane-1,2-diol [1,2,4-Ph3C5H5-1,2-(OH)2, C23H22O2, (I)] and 4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol [4-(2-MeOC6H4)-1,2-Ph2C5H5-1,2-(OH)2, C24H24O3, (II)]. Their single crystals have been obtained by crystallization from a THF/hexane solvent mixture. Diols (I) and (II) crystallize in ortho­rhom­bic (Pbca) and triclinic (Poverline{1}) space groups, respectively, at 150 K. Their asymmetric units comprise one [in the case of (I)] and three [in the case of (II)] crystallographically independent mol­ecules of the achiral (1R,2S,4r)-diol isomer. Each hydroxyl group is involved in one intra­molecular and one inter­molecular O—H⋯O hydrogen bond, forming one-dimensional chains. Compounds (I) and (II) have been used successfully as precatalyst activators for the ring-opening polymerization of ∊-caprolactone.




penta

Multicentered hydrogen bonding in 1-[(1-de­oxy-β-d-fructo­pyranos-1-yl)aza­nium­yl]cyclo­pentane­carboxyl­ate (`d-fructose-cyclo­leucine')

The title compound, C12H21NO7, (I), is conformationally unstable; the predominant form present in its solution is the β-pyran­ose form (74.3%), followed by the β- and α-furan­oses (12.1 and 10.2%, respectively), α-pyran­ose (3.4%), and traces of the acyclic carbohydrate tautomer. In the crystalline state, the carbohydrate part of (I) adopts the 2C5 β-pyran­ose conformation, and the amino acid portion exists as a zwitterion, with the side chain cyclo­pentane ring assuming the E9 envelope conformation. All heteroatoms are involved in hydrogen bonding that forms a system of anti­parallel infinite chains of fused R33(6) and R33(8) rings. The mol­ecule features extensive intra­molecular hydrogen bonding, which is uniquely multicentered and involves the carboxyl­ate, ammonium and carbohydrate hy­droxy groups. In contrast, the contribution of inter­molecular O⋯H/H⋯O contacts to the Hirshfeld surface is relatively low (38.4%), as compared to structures of other d-fructose-amino acids. The 1H NMR data suggest a slow rotation around the C1—C2 bond in (I), indicating that the intra­molecular heteroatom contacts survive in aqueous solution of the mol­ecule as well.




penta

Crystal structure of (15,20-bis­(2,3,4,5,6-penta­fluoro­phen­yl)-5,10-{(pyridine-3,5-di­yl)bis­[(sulfane­diyl­methyl­ene)[1,1'-biphen­yl]-4',2-di­yl]}porph­yrin­ato)nickel(II) di­chloro

The crystal structure of the title compound, [Ni(C63H31F10N5S2)]·xCH2Cl2 (x > 1/2), consists of Ni–porphyrin complexes that are located in general positions and di­chloro­methane solvent mol­ecules that are disordered around centers of inversion. The NiII ions are in a square-pyramidal (CN5) coordination, with four porphyrin N atoms in the equatorial and a pyridine N atom in the apical position and are shifted out of the porphyrine N4 plane towards the coordinating pyridine N atom. The pyridine substituent is not exactly perpendicular to the N4 plane with an angle of inter­section between the planes planes of 80.48 (6)°. The di­chloro­methane solvent mol­ecules are hydrogen bonded to one of the four porphyrine N atoms. Two complexes are linked into dimers by two symmetry-equivalent C—H⋯S hydrogen bonds. These dimers are closely packed, leading to cavities in which additional di­chloro­methane solvent mol­ecules are embedded. These solvent mol­ecules are disordered and because no reasonable split model was found, the data were corrected for disordered solvent using the PLATON SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18].




penta

Syntheses and crystal structures of 2-methyl-1,1,2,3,3-penta­phenyl-2-sila­propane and 2-methyl-1,1,3,3-tetra­phenyl-2-silapropan-2-ol

The sterically hindered silicon compound 2-methyl-1,1,2,3,3-penta­phenyl-2-sila­propane, C33H30Si (I), was prepared via the reaction of two equivalents of di­phenyl­methyl­lithium (benzhydryllithium) and di­chloro­methyl­phenyl­silane. This bis­benzhydryl-substituted silicon compound was then reacted with tri­fluoro­methane­sulfonic acid, followed by hydrolysis with water to give the silanol 2-methyl-1,1,3,3-tetra­phenyl-2-silapropan-2-ol, C27H26OSi (II). Key geometric features for I are the Si—C bond lengths that range from 1.867 (2) to 1.914 (2) Å and a τ4 descriptor for fourfold coordination around the Si atom of 0.97 (indicating a nearly perfect tetra­hedron). Key geometric features for compound II include Si—C bond lengths that range from 1.835 (4) to 1.905 (3) Å, a Si—O bond length of 1.665 (3) Å, and a τ4 descriptor for fourfold coordination around the Si atom of 0.96. In compound II, there is an intra­molecular C—H⋯O hydrogen bond present. In the crystal of I, mol­ecules are linked by two pairs of C—H⋯π inter­actions, forming dimers that are linked into ribbons propagating along the b-axis direction. In the crystal of II, mol­ecules are linked by C—H⋯π and O—H⋯π inter­actions that result in the formation of ribbons that run along the a-axis direction.




penta

Absolute structure of (3aS,5S,7aS,7bS,9aR,10R,12aR,12bS)-7b-hy­droxy-4,4,7a,9a,12a-penta­methyl-10-[(2'R)-6-methyl­heptan-2-yl]-2,8,9-trioxo­octa­deca­hydro­benzo[d]indeno­[4,5-b]azepin-5-yl acetate from 62-year-old

The structure of the title compound, C32H51NO6, was determined from 62-year-old crystals at room temperature and refined with 100 K data in a monoclinic (C2) space group. This compound with a triterpenoid structure, now confirmed by this study, played an important role in the determination of the structure of lanosterol. The mol­ecules pack in linear O—H⋯O hydrogen-bonded chains along the short axis (b), while parallel chains display weak van der Waals inter­actions that explain the needle-shaped crystal morphology. The structure exhibits disorder of the flexible methyl­heptane chain at one end of the main mol­ecule with a small void around it. Crystals of the compounds were resistant to data collection for decades with the available cameras and Mo Kα radiation single-crystal diffractometer in our laboratory until a new instrument with Cu Kα radiation operating at 100 K allowed the structure to be solved and refined.




penta

Crystal structure of (15,20-bis­(2,3,4,5,6-penta­fluoro­phen­yl)-5,10-{(4-methyl­pyridine-3,5-di­yl)bis­[(sulfanediyl­methyl­ene)[1,1'-biphen­yl]-4',2-di­yl]}porphyrinato)nickel(II) di­chloro

The title compound, [Ni(C64H33F10N5S2)]·xCH2Cl2, consists of discrete NiII porphyrin complexes, in which the five-coordinate NiII cations are in a distorted square-pyramidal coordination geometry. The four porphyrin nitro­gen atoms are located in the basal plane of the pyramid, whereas the pyridine N atom is in the apical position. The porphyrin plane is strongly distorted and the NiII cation is located above this plane by 0.241 (3) Å and shifted in the direction of the coordinating pyridine nitro­gen atom. The pyridine ring is not perpendicular to the N4 plane of the porphyrin moiety, as observed for related compounds. In the crystal, the complexes are linked via weak C—H⋯F hydrogen bonds into zigzag chains propagating in the [001] direction. Within this arrangement cavities are formed, in which highly disordered di­chloro­methane solvate mol­ecules are located. No reasonable structural model could be found to describe this disorder and therefore the contribution of the solvent to the electron density was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18].




penta

Crystal structure of benzyl N'-[(1E,4E)-1,5-bis­(4-meth­oxy­phen­yl)penta-1,4-dien-3-yl­idene]hydrazine-1-carbodi­thio­ate

In the title hydrazinecarbodi­thio­ate derivative, C27H26N2O2S2, the asymmetric unit is comprised of four mol­ecules (Z = 8 and Z' = 4). The 4-meth­oxy­phenyl rings are slightly twisted away from their attached olefinic double bonds [torsion angles = 5.9 (4)–19.6 (4)°]. The azomethine double bond has an s-trans configuration relative to one of the C=C bonds and an s-cis configuration relative to the other [C=C—C= N = 147.4 (6)–175.7 (2) and 15.3 (3)–37.4 (7)°, respectively]. The torsion angles between the azomethine C=N double bond and hydrazine-1-carbodi­thio­ate moiety indicate only small deviations from planarity, with torsion angles ranging from 0.9 (3) to 6.9 (3)° and from 174.9 (3) to 179.7 (2)°, respectively. The benzyl ring and the methyl­enesulfanyl moiety are almost perpendicular to each other, as indicated by their torsion angles [range 93.7 (3)–114.6 (2)°]. In the crystal, mol­ecules are linked by C—H⋯O, N—H⋯S and C—H⋯π(ring) hydrogen-bonding inter­actions into a three-dimensional network. Structural details of related benzyl hydrazine-1-carbodi­thio­ate are surveyed and compared with those of the title compound.




penta

An iridium complex with an unsupported Ir—Zn bond: di­iodido­(η5-penta­methyl­cyclo­penta­dien­yl)bis­(tri­methyl­phosphane)iridiumzinc(Ir—Zn) benzene hemisolvate

The title compound, [IrZnI2(C10H15)(C3H9P)2]·0.5C6H6 or [Cp*(PMe3)2Ir]-[ZnI2] (Cp* = cyclo-C5Me5) was obtained and characterized as its benzene solvate [Cp*(PMe3)2Ir]-[ZnI2]·0.5C6H6. The bimetallic complex in this structure contains the Lewis-acidic fragment ZnI2 bonded to the Lewis-basic fragment Cp*(PMe3)2Ir, with an Ir—Zn bond distance of 2.452 (1) Å. The compound was obtained by reacting [Cp*(PMe3)IrI2] with 2-Ad2Zn (2-Ad = 2-adamant­yl), resulting in the reduction of the IrIII complex and formation of the IrI–ZnII adduct. The crystal studied was a twin by non-merohedry with a refined BASF parameter of 0.223 (1).




penta

(μ-Di-tert-butyl­silanediolato)bis­[bis­(η5-cyclo­penta­dien­yl)methyl­zirconium]

The reaction of t-Bu2Si(OH)2 with two equivalents of Cp2Zr(CH3)2 produces the title t-Bu2SiO2-siloxide bridged dimer, [Zr2(CH3)2(C5H5)4(C8H18O2Si)] or [Cp2Zr(CH3)]2[μ-t-Bu2SiO2] (1), where one methyl group is retained per zirconium atom. The same product is obtained at room temperature even when equimolar ratios of the silanediol and Cp2Zr(CH3)2 are used. Attempts to thermally eliminate methane and produce a bridging methyl­ene complex resulted in decomposition. The crystal structure of 1 displays typical Zr—CH3 and Zr—O distances but the Si—O distance [1.628 (2) Å] and O—Si—O angle [110.86 (15)°] are among the largest observed in this family of compounds suggesting steric crowding between the t-Bu substituents of the silicon atom and the cyclo­penta­dienyl groups. The silicon atom lies on a crystallographic twofold axis and both Cp rings are disordered over two orientations of equal occupancy.




penta

Crystal structure of tris­[bis­(2,6-diiso­propyl­phen­yl) phosphato-κO]penta­kis­(methanol-κO)europium methanol monosolvate

The mononuclear title complex, [Eu(C24H34O4P)3(CH4O)5]·CH4O, (1), has been obtained as a minor product in the reaction between EuCl3(H2O)6 and lithium bis­(2,6-diiso­propyl­phen­yl) phosphate in a 1:3 molar ratio in a methanol medium. Its structure exhibits monoclinic (P21/c) symmetry at 120 K and is isostructural with the La, Ce and Nd analogs reported previously [Minyaev et al. (2018a). Acta Cryst. C74, 590–598]. In (1), all three bis­(2,6-diiso­propyl­phen­yl) phosphate ligands display the terminal κ1O-coordination mode. All of the hy­droxy H atoms are involved in O—H⋯O hydrogen bonding, exhibiting four intra­molecular and two inter­molecular hydrogen bonds. Photophysical studies have demonstrated luminescence of (1) with a low quantum yield.




penta

Crystal structure, Hirshfeld analysis and a mol­ecular docking study of a new inhibitor of the Hepatitis B virus (HBV): ethyl 5-methyl-1,1-dioxo-2-{[5-(pentan-3-yl)-1,2,4-oxa­diazol-3-yl]meth­yl}-2H-1,2,6-thia­diazine-4-carboxyl­a

The title compound, C15H22N4O5S, was prepared via alkyl­ation of 3-(chloro­meth­yl)-5-(pentan-3-yl)-1,2,4-oxa­diazole in anhydrous dioxane in the presence of tri­ethyl­amine. The thia­diazine ring has an envelope conformation with the S atom displaced by 0.4883 (6) Å from the mean plane through the other five atoms. The planar 1,2,4-oxa­diazole ring is inclined to the mean plane of the thia­diazine ring by 77.45 (11)°. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the inter­molecular contacts present in the crystal. Mol­ecular docking studies were use to evaluate the title compound as a potential system that inter­acts effectively with the capsid of the Hepatitis B virus (HBV), supported by an experimental in vitro HBV replication model.




penta

Synthesis and crystal structure of catena-poly[[bis[(2,2';6',2''-terpyridine)­manganese(II)]-μ4-penta­thio­dianti­monato] tetra­hydrate] showing a 1D MnSbS network

The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water mol­ecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by inter­molecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed.




penta

Crystal structure of di-μ-tri­hydro­(penta­fluoro­phenyl)­borato-tetra­kis­(tetra­hydro­furan)­disodium

The title compound, [Na(μ-C6F5BH3)(C4H8O)2]2, represents a dimeric structure of sodium and organoborohydride, located about a centre of inversion. The Na⋯B distances of 2.7845 (19) and 2.7494 (18) Å were apparently longer than the Li⋯B distances (2.403–2.537 Å) of the lithium organotri­hydro­borates in the previous reports. Moreover, an inter­action between the sodium atom and one fluorine atom on the 2-position of the benzene ring is observed [Na—F = 2.6373 (12) Å]. In the crystal, the dimeric mol­ecules are stacked along the b-axis via a π–π inter­action between the benzene rings.




penta

Structural characterization and Hirshfeld surface analysis of 2-iodo-4-(penta­fluoro-λ6-sulfan­yl)benzo­nitrile

The title compound, C7H3F5INS, a penta­fluoro­sulfanyl (SF5) containing arene, was synthesized from 4-(penta­fluoro­sulfan­yl)benzo­nitrile and lithium tetra­methyl­piperidide following a variation to the standard approach, which features simple and mild conditions that allow direct access to tri-substituted SF5 inter­mediates that have not been demonstrated using previous methods. The mol­ecule displays a planar geometry with the benzene ring in the same plane as its three substituents. It lies on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the penta­fluoro­sulfanyl substituent in the plane of the mol­ecule. The equatorial F atoms have symmetry-related counterparts generated by the mirror plane. The penta­fluoro­sulfanyl group exhibits a staggered fashion relative to the ring and the two hydrogen atoms ortho to the substituent. S—F bond lengths of the penta­fluoro­sulfanyl group are unequal: the equatorial bond facing the iodo moiety has a longer distance [1.572 (3) Å] and wider angle compared to that facing the side of the mol­ecules with two hydrogen atoms [1.561 (4) Å]. As expected, the axial S—F bond is the longest [1.582 (5) Å]. In the crystal, in-plane C—H⋯F and N⋯I inter­actions as well as out-of-plane F⋯C inter­actions are observed. According to the Hirshfeld analysis, the principal inter­molecular contacts for the title compound are F⋯H (29.4%), F⋯I (15.8%), F⋯N (11.4%), F⋯F (6.0%), N⋯I (5.6%) and F⋯C (4.5%).




penta

Crystal structures of 2,3,7,8,12,13,17,18-octa­bromo-5,10,15,20-tetra­kis­(penta­fluoro­phen­yl)porphyrin as the chloro­form monosolvate and tetra­hydro­furan monosolvate

The crystal structures of the title compounds, two solvates (CHCl3 and THF) of a symmetric and highly substituted porphyrin, C44H2Br8F20N4 or OBrTPFPP, are described. These structures each feature a non-planar porphyrin ring, exhibiting a similar conformation of the strained ring independent of solvent identity. These distorted porphyrins are able to form hydrogen bonds and sub-van der Waals halogen inter­actions with enclathrated solvent; supra­molecular inter­actions of proximal macrocycles are additionally affected by solvent choice. The crystal studied for compound 1·CHCl3 was refined as an inversion twin. One penta­fluoro­phenyl group was modelled as disordered over two sites [occupancy ratio = 0.462 (7):0.538 (7)]. The chloro­form solvate was also modelled as disordered over two orientations [occupancy ratio = 0.882 (7): 0.118 (7).




penta

A new pseudopolymorph of perchlorinated neo­penta­silane: the benzene monosolvate Si(SiCl3)4·C6H6

A new pseudopolymorph of dodeca­chloro­penta­silane, namely a benzene monosolvate, Si5Cl12·C6H6, is described. There are two half mol­ecules of each kind in the asymmetric unit. Both Si5Cl12 mol­ecules are completed by crystallographic twofold symmetry. One of the benzene mol­ecules is located on a twofold rotation axis with two C—H groups located on this rotation axis. The second benzene mol­ecule has all atoms on a general position: it is disordered over two equally occupied orientations. No directional inter­actions beyond normal van der Waals contacts occur in the crystal.




penta

Crystal structures of trans-acetyl­dicarbon­yl(η5-cyclo­penta­dien­yl)(1,3,5-tri­aza-7-phosphaadamantane)molybdenum(II) and trans-acetyl­di­carbon­yl(η5-cyclo­penta­dien­yl)(3,7-diacetyl-1,3,7-tr

The title compounds, [Mo(C5H5)(COCH3)(C6H12N3P)(CO)2], (1), and [Mo(C5H5)(COCH3)(C9H16N3O2P)(C6H5)2))(CO)2], (2), have been prepared by phosphine-induced migratory insertion from [Mo(C5H5)(CO)3(CH3)]. The mol­ecular structures of these complexes are quite similar, exhibiting a four-legged piano-stool geometry with trans-disposed carbonyl ligands. The extended structures of complexes (1) and (2) differ substanti­ally. For complex (1), the molybdenum acetyl unit plays a dominant role in the organization of the extended structure, joining the mol­ecules into centrosymmetrical dimers through C—H⋯O inter­actions with a cyclo­penta­dienyl ligand of a neighboring mol­ecule, and these dimers are linked into layers parallel to (100) by C—H⋯O inter­actions between the molybdenum acetyl and the cyclo­penta­dienyl ligand of another neighbor. The extended structure of (2) is dominated by C—H⋯O inter­actions involving the carbonyl groups of the acetamide groups of the DAPTA ligand, which join the mol­ecules into centrosymmetrical dimers and link them into chains along [010]. Additional C—H⋯O inter­actions between the molybdenum acetyl oxygen atom and an acetamide methyl group join the chains into layers parallel to (101).




penta

Synthesis and crystal structure of a penta­copper(II) 12-metallacrown-4: cis-di­aqua­tetra­kis­(di­methyl­formamide-κO)manganese(II) tetra­kis­(μ3-N,2-dioxido­benzene-1-carboximidate)penta­copper(II)

The title compound, [Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NO or cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF, where MC is metallacrown, shi3− is salicyl­hydroximate, and DMF is N,N-di­methyl­formamide, crystallizes in the monoclinic space group P21/n. Two crystallographically independent metallacrown anions are present in the structure, and both anions exhibit minor main mol­ecule disorder by an approximate (non-crystallographic) 180° rotation with occupancy ratios of 0.9010 (9) to 0.0990 (9) for one anion and 0.9497 (8) to 0.0503 (8) for the other. Each penta­copper(II) metallacrown contains four CuII ions in the MC ring and a CuII ion captured in the central cavity. Each CuII ion is four-coordinate with a square-planar geometry. The anionic {Cu[12-MCCu(II)N(shi)-4]}2− is charged-balanced by the presence of a cis-[Mn(H2O)2(DMF)4]2+ cation located in the lattice. In addition, the octa­hedral MnII counter-cation is hydrogen bonded to both MC anions via the coordinated water mol­ecules of the MnII ion. The water mol­ecules form hydrogen bonds with the phenolate and carbonyl oxygen atoms of the shi3− ligands of the MCs.




penta

Crystal structure and Hirshfeld surface analysis of 4,4'-(propane-1,3-diyl)bis(4H-1,2,4-triazol-1-ium) penta­fluorido­oxidovanadate(V)

In the structure of the title salt, second-order Jahn–Teller distortion of the coordination octa­hedra around V ions is reflected by coexistence of short V—O bonds and trans-positioned long V—F bonds, with four equatorial V—F distances being inter­mediate in magnitude. Hydrogen bonding of the anions is restricted to F-atom acceptors only, with particularly strong N–H⋯F inter­actions [N⋯F = 2.5072 (15) Å] established by axial and cis-positioned equatorial F atoms.




penta

Co-crystal structure, Hirshfeld surface analysis and DFT studies of 3,4-ethyl­ene­dioxy­thio­phene solvated bis­[1,3-bis­(penta­fluoro­phen­yl)propane-1,3-dionato]copper(II)

The title complex, Cu(L)2 or [Cu(C15HF10O2)2], comprising one copper ion and two fully fluorinated ligands (L−), was crystallized with 3,4-ethyl­ene­dioxy­thio­phene (EDOT, C6H6O2S) as a guest mol­ecule to give in a di­chloro­methane solution a unique co-crystal, Cu(L)2·3C6H6O2S.




penta

Crystal structure and Hirshfeld surface analysis of 4,4'-(propane-1,3-diyl)bis(4H-1,2,4-triazol-1-ium) pentafluoridooxidovanadate(V)

In the structure of the title salt, (C7H12N6)[VOF5], second-order Jahn–Teller distortion of the coordination octahedra around V ions is reflected by coexistence of short V—O bonds [1.5767 (12) Å] and trans-positioned long V—F bonds [2.0981 (9) Å], with four equatorial V—F distances being intermediate in magnitude [1.7977 (9)–1.8913 (9) Å]. Hydrogen bonding of the anions is restricted to F-atom acceptors only, with particularly strong N–H...F interactions [N...F = 2.5072 (15) Å] established by axial and cis-positioned equatorial F atoms. Hirshfeld surface analysis indicates that the most important interactions are overwhelmingly H...F/F...H, accounting for 74.4 and 36.8% of the contacts for the individual anions and cations, respectively. Weak CH...F and CH...N bonds are essential for generation of three-dimensional structure.




penta

Messages of Condolence and Support From Representatives of Academies and Research Institutions in the Wake of Attacks on the World Trade Center and Pentagon

Representatives from academies and research organizations around the world sent messages of condolence and support to members, officials and staff of the U.S. National Academies in the wake of terrorist attacks on the World Trade Center and the Pentagon. The following are excerpts from some of these messages.




penta

OpenTable pays $10 million to buy Foodspotting

Open Table pays $10 million to Foodspotting for its library of user-generated restaurant food photos.



  • Gadgets & Electronics

penta

Pentax Medical Company Agrees to Pay $43 Million to Resolve Criminal Investigation Concerning Misbranded Endoscopes




penta

Method for producing a concentrate of eicosapentaenoic and docosahexaenoic acids

The current invention describes processes for obtaining of concentrates of esters of eicosapentaenoic acid and docosahexaenoic acid for their use in massive and regular human consumption either as a pharmaceutical ingredient or as a food ingredient, which are characterized by having neutral and stable organoleptic properties, free of side effects, which are typical from marine oils derivatives, and with low content of Persistent Organic Pollutants (POP).




penta

Production of alkali metal cyclopentadienylide and production of dihalobis (η-substituted-cyclopentadienyl) zirconium from alkali metal cyclopentadienylide

A process for producing an alkali metal cyclopentadienylide is disclosed which comprises reacting in a solvent an alkali metal hydride with a disubstituted or trisubstituted 1,3-cyclopentadiene. Further, a process for producing a dihalobis(η-substituted-cyclopentadienyl)zirconium is disclosed which comprises reacting a zirconium halide with the above alkali metal cyclopentadienylide. The former process enables performing the reaction between the disubstituted or trisubstituted 1,3-cyclopentadiene and the alkali metal hydride at an easily controllable temperature of room temperature to about 150° C. and also enables obtaining the alkali metal cyclopentadienylide in high yield. The latter process enables obtaining the dihalobis(η-substituted-cyclopentadienyl)zirconium in high yield.




penta

Process for cyclopentadiene substitution with groups differing from each other

Polysubstituted cyclopentadiene compound wherein at least two different substituents are present from the group consisting of linear, branched and cyclic alkyls, aralkyls and alkenyls, and a process for the preparation of a cyclopentadiene compound substituted with at least two different groups chosen from the group consisting of linear, branched, cyclic and aromatic alkyls and alkenyls, characterized in that it comprises the reacting of a halide of a first substituting group in a mixture of the cyclopentadiene compound and an aqueous solution of a base, in which the quantity of the base relative to the cyclopentadiene compound is between 5 and 30 mol/mol, in the presence of a phase transfer catalyst, followed by the addition of a halide of a second or optionally a third substituting group to the reaction mixture.




penta

Process for preparing a methylene-bridged biscyclopentadienyl compound

The present invention relates to a process for preparing a methylene-bridged biscyclopentadienyl compound having the formula I ##STR1##where L are, independently of one another, identical or different and are each a cyclopentadienyl group, by reacting one or two cyclopentadienyl compounds LH with formaldehyde in monomeric, oligomeric or polymeric form or formaldehyde-generating reagents in the presence of at least one base and at least one phase transfer catalyst.




penta

Method and apparatus for continuously producing 1,1,1,2,3-pentafluoropropane with high yield

A method and apparatus for method of continuously producing 1,1,1,2,3-pentafluoropropane with high yield is provided. The method includes (a) bringing a CoF3-containing cobalt fluoride in a reactor into contact with 3,3,3-trifluoropropene to produce a CoF2-containing cobalt fluoride and 1,1,1,2,3-pentafluoropropane, (b) transferring the CoF2-containing cobalt fluoride in the reactor to a regenerator and bringing the transferred CoF2-containing cobalt fluoride into contact with fluorine gas to regenerate a CoF3-containing cobalt fluoride, and (c) transferring the CoF3-containing cobalt fluoride in the regenerator to the reactor and employing the transferred CoF3-containing cobalt fluoride in Operation (a). Accordingly, the 1,1,1,2,3-pentafluoropropane can be continuously produced with high yield from the 3,3,3-trifluoropropene using a cobalt fluoride (CoF2/CoF3) as a fluid catalyst, thereby improving the reaction stability and readily adjusting the optimum conversion rate and selectivity.




penta

Synthesis of alkyl cyclopentadiene compounds

A method of synthesizing an alkyl cyclopentadiene compound is disclosed. The method includes contacting at least one cyclopentadienyl anion source and at least one alkyl group source to form at least one alkyl cyclopentadiene compound. The method further includes extracting the alkyl cyclopentadiene compound with a hydrocarbon solvent. The alkyl cyclopentadiene compound may be converted to a metallocene catalyst compound.




penta

Method for producing pentafluoroethane

The present invention aims in a method wherein tetrachloroethylene (PCE) is reacted with HF in a gas phase in the presence of a catalyst to obtain pentafluoroethane (HFC-125), to reduce production of undesirable by-products and maintain a catalytic activity at a high level over a long period of time while achieving a high conversion ratio of PCE and suppressing deterioration of the catalyst. In a method for producing pentafluoroethane wherein tetrachloroethylene is reacted with HF in a gas phase in the presence of a catalyst to obtain pentafluoroethane, characterized in that chromium oxyfluoride is disposed in a reactor as the catalyst, and oxygen is fed into the reactor together with tetrachloroethylene and HF, at a amount of 0.4-1.8% by mole with respect to tetrachloroethylene.




penta

Process for the preparation of the monomer pentabromobenzyl acrylate and polymerization thereof

The invention relates to a process for preparing pentabromobenzyl acrylate through the reaction of pentahalobenzyl halide with a salt of acrylic acid in water-immiscible solvent, wherein said salt is in aqueous form and the reaction is carried out in the presence of a phase transfer catalyst. A process for polymerizing the pentabromobenzyl acrylate in halogenated aromatic solvent and the poly (pentabromobenzyl acrylate) obtained are also disclosed.




penta

Cycloalkyl triamine pentacarboxylate as ligands for paramagnetic metal complexes

A cycloalkyl triamine pentacarboxylate compound coordinating to a metal ion to form a high stability metal complex in serum is provided. The metal complex of the present invention can be used as a contrast agent for magnetic resonance imaging (MRI).




penta

Synthesis method of metal cyclopentadienide in bulk

The present invention relates to a synthesis method of metal cyclopentadienide by direct reaction of dicyclopentadiene with a group 1 metal in the presence of an aprotic solvent. Unlike the conventional method depending on retro Diels-Alder reaction of dicyclopentadiene to generate indirectly cyclopentadiene, the method of the present invention favors generation of cyclopentadiene and metal cyclopentadienide as well by adding dicyclopentadiene directly when the reaction temperature reaches to the boiling point of a reaction solvent.




penta

Processes for producing phosphorus pentafluoride and phosphate hexafluoride

An object the invention is to provide a phosphorus pentafluoride producing process wherein phosphorus pentafluoride is separated/extracted from a pentavalent phosphorus compound or a solution thereof, or a composition obtained by allowing the pentavalent phosphorus compound or the solution thereof to react with hydrogen fluoride, thereby producing phosphorus pentafluoride; and a phosphate hexafluoride producing process wherein the resultant phosphorus pentafluoride is used as raw material to produce a phosphate hexafluoride high in purity. The present invention relates to a process for producing phosphorus pentafluoride, wherein a carrier gas is brought into contact with either of the following one: a pentavalent phosphorus compound, a solution thereof, or a solution in which a composition obtained by allowing the pentavalent phosphorus compound or the solution thereof to react with hydrogen fluoride is dissolved, thereby a phosphorus pentafluoride is extracted into the career gas.




penta

The Pentagon Papers: Secrets, lies and leaks

Special counsel Robert Mueller’s investigation into Russian meddling in the U.S. elections seems to yield a new bombshell every week. Amid such high-profile revelations, we revisit a decades-old story that echoes to this day among the powerful in the nation’s capital.

This episode of Reveal tells the story of Daniel Ellsberg, a former government strategist responsible for leaking the Pentagon Papers – thousands of classified documents that called into question America’s war in Vietnam. Our story juxtaposes Ellsberg’s story with that of Robert Rosenthal, our former executive director, whose first journalism job exposed him to the top-secret documents.  

Those papers are the subject of a new movie in theaters this holiday season. Steven Spielberg’s “The Post” depicts the Washington, D.C. paper’s decision to publish the Pentagon Papers after the Nixon administration sued the first news organization to expose them, The New York Times.

Follow us on Facebook at fb.com/ThisIsReveal and on Twitter @reveal.

And to see some of what you’re hearing, we’re also on Instagram @revealnews.




penta

The Pentagon Papers: Secrets, lies and leaks (rebroadcast)

In 1971, a 22-year-old journalist named Robert Rosenthal got a call from his boss at The New York Times. He told him to go to room 1111 of the Hilton Hotel, bring enough clothes for at least a month and not tell anyone.

Don’t miss out on the next big story. Get the Weekly Reveal newsletter today.




penta

The Pentagon Papers: Secrets, lies and leaks (rebroadcast)

This episode was originally broadcast in May 2016. Back in 1971, a 22-year-old journalist named Robert Rosenthal got a call from his boss at The New York Times. He told him to go to Room 1111 of the Hilton Hotel, bring enough clothes for at least a month and not tell anyone. 


Don’t miss out on the next big story. Get the Weekly Reveal newsletter today.




penta

Sweet Repentance

We can do nothing by ourselves except make daily the decision to depend on Christ ; by His virtue we can reflect, regret and reform. We are all struggling amid this time of separation and distance, but our Friend is Always there... commune with Him and reach for your Bible with us ! You'll learn about the unpardonable sin and Satan's repentance, and you'll understand which biblical laws are still active for us to obey today, or if we can solely fall under God's grace with no other regard.



  • Bible Answers Live

penta

Pentagon asks to reconsider part of JEDI cloud decision after Amazon protest


The Pentagon has asked a federal court to give it 120 days to “reconsider certain aspects” of a controversial decision to award an important cloud computing contract known as JEDI to Microsoft, according to a court document made public Thursday. Amazon is suing the Defense Department over the decision, which it claims fell in Microsoft’s […]




penta

Pentagon watchdog, in probe limited by White House, clears Microsoft’s $10 billion cloud-computing win over Amazon


The 317-page report by the inspector general also found that giving the contract to a single company — Microsoft — rather than dividing it among competitors was "consistent with applicable acquisition standards."