hydra

Discovery of N-substituted-2-oxoindolin benzoylhydrazines as c-MET/SMO modulators in EGFRi-resistant non-small cell lung cancer

RSC Med. Chem., 2024, Advance Article
DOI: 10.1039/D4MD00553H, Research Article
Stefano Tomassi, Benito Natale, Michele Roggia, Luisa Amato, Caterina De Rosa, Carminia Maria Della Corte, Emma Baglini, Giorgio Amendola, Anna Messere, Salvatore Di Maro, Elisabetta Barresi, Federico Da Settimo, Maria Letizia Trincavelli, Fortunato Ciardiello, Sabrina Taliani, Floriana Morgillo, Sandro Cosconati
Non-small cell lung cancer (NSCLC), the leading cause of cancer-related mortality worldwide, poses a formidable challenge due to its heterogeneity and the emergence of resistance to targeted therapies.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




hydra

Ion effects on minimally hydrated polymers: hydrogen bond populations and dynamics

Soft Matter, 2024, 20,8291-8302
DOI: 10.1039/D4SM00830H, Paper
Open Access
Eman Alasadi, Carlos R. Baiz
Compared to bulk water, ions in confined environments or heterogeneous solutions can significantly disrupt hydrogen bond networks.
The content of this RSS Feed (c) The Royal Society of Chemistry




hydra

Effects of Hydration Water on Bioresponsiveness of Polymer Interfaces Revealed by Analysis of Linear and Cyclic Polymer–Grafted Substrates

Soft Matter, 2024, Accepted Manuscript
DOI: 10.1039/D4SM00977K, Paper
Open Access
Shin-nosuke Nishimura, Naoya Kurahashi, Shohei Shiomoto, Yoshihisa Harada, Masaru Tanaka
Given that the hydration water of polymer matrices may differ from that of outermost polymer surfaces, processes at biomaterial–biofluid interfaces and role of hydration water therein cannot be adequately examined...
The content of this RSS Feed (c) The Royal Society of Chemistry




hydra

Hyderabad real estate developers shake off HYDRAA blues

The body said that CM Revanth Reddy’s assurance that buildings with approvals will not be touched has instilled confidence in investors




hydra

HYDRAA created fear among encroachers and big builders and not common people: Telangana CM




hydra

Watch: ‘I am prepared to face political repercussions’: Revanth Reddy on HYDRAA

Telangana Chief Minister A. Revanth Reddy made it clear that the government is not going to spare encroachers and that HYDRAA has been given full powers 




hydra

Chitosan supported ionic liquid, a multifaceted catalyst for streamlined and efficient synthesis of carboxylic, amino acid and carbohydrate esters

RSC Adv., 2024, 14,36193-36208
DOI: 10.1039/D4RA05725B, Paper
Open Access
Praachi Kakati, Satish Kumar Awasthi
Development of a solid heterogeneous catalyst in the form of an ionic liquid incorporated in chitosan which shows high recyclability. This was used in a solvent free esterification reaction of carboxylic acids, amino acids and carbohydrates.
The content of this RSS Feed (c) The Royal Society of Chemistry




hydra

Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights

RSC Adv., 2024, 14,35769-35970
DOI: 10.1039/D4RA06290F, Review Article
Open Access
Nafeesa Naeem, Amina Sadiq, Gehan Ahmed Othman, Habab M. Yassin, Ehsan Ullah Mughal
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities.
The content of this RSS Feed (c) The Royal Society of Chemistry




hydra

Hydrate of neutral iron(III) complex based on pyruvic acid thiosemicarbazone ligand with abrupt spin-crossover with T1/2=340 K and wide hysteresis loop of 45 K

Dalton Trans., 2024, Accepted Manuscript
DOI: 10.1039/D4DT02901A, Paper
Maxim Andreevich Blagov, Alexander V. Akimov, Anatoly S Lobach, Leokadiya Zorina, Sergey Simonov, Konstantin Zakharov, Alexander Vasiliev, Natalia Spitsyna
The hydrate of neutral iron(III) complex based on pyruvic acid thiosemicarbazone ligand [FeIII(Hthpy)(thpy)]·H2O (1) was synthesized and characterized using FT-IR spectroscopy, powder and single-crystal X-ray diffraction, dc magnetic measurements, EPR...
The content of this RSS Feed (c) The Royal Society of Chemistry




hydra

Mathematical modeling to size anaerobic stabilization ponds intended for slaughterhouse wastewater treatment – the role of temperature and hydraulic retention time

Environ. Sci.: Water Res. Technol., 2024, 10,2882-2896
DOI: 10.1039/D4EW00557K, Paper
P. E. S. Soldera, R. F. Dantas, E. Fagnani
A new mathematical model for constructing anaerobic stabilization pond treatment systems for high organic load wastewater, based on biochemical oxygen demand, temperature and hydraulic retention time, is discussed.
The content of this RSS Feed (c) The Royal Society of Chemistry




hydra

When did the duplication of a gene responsible for breaking down complex carbohydrate starch in the mouth occur?




hydra

Effects of zeolite porosity and acidity on catalytic conversion of carbohydrates to bio-based chemicals: a review

Catal. Sci. Technol., 2024, Advance Article
DOI: 10.1039/D4CY01070A, Review Article
Deyu Chu, Jinjing Ma, Qishun Liu, Jie Fu, Heng Yin
Optimizing the production process of high value-added chemicals derived from renewable biomass holds immense promise for clean energy utilization and environmental sustainability.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




hydra

Flow chemistry enhances catalytic alcohol-to-alkene dehydration

Catal. Sci. Technol., 2024, 14,6641-6650
DOI: 10.1039/D4CY00913D, Paper
Open Access
D. J. Ward, D. J. Saccomando, F. Vilela, G. Walker, S. M. Mansell
Flow chemistry helped optimise the conversion of a branched primary alcohol to an alkene. Mass balance was achieved through the elimination of by-products, including alkene oligomers, and the setup could be optimised to give up to 98% alkene product.
The content of this RSS Feed (c) The Royal Society of Chemistry




hydra

Giant crystals in Mexican cave face dehydration

Water loss from the gypsum crystal surfaces is a primary degradation pathway




hydra

Giant crystals in Mexican cave face dehydration

Water loss from the gypsum crystal surfaces is a primary degradation pathway




hydra

Maintenance Incharge,Ludhiana (For Bicyle Parts Mfg, Mechanical utility,Hydraulic M/c CA/PM)

Company: P & I Management Consultants
Experience: 0 to 50
location: India
Ref: 24341069
Summary: Job Description: 1. Planning of all maintenance of the factory and delegating work to his team to get the activities done on time. 2. Analysing all breakdowns, finding root cause, take corrective and preventive actions and....




hydra

The competition between dehydrogenation and dehydration reactions for primary and secondary alcohols over gallia: unravelling the effects of molecular and electronic structure via a two-pronged theoretical/experimental approach

Catal. Sci. Technol., 2020, Advance Article
DOI: 10.1039/C9CY02603G, Paper
Lorella Izzo, Tommaso Tabanelli, Fabrizio Cavani, Paola Blair Vàsquez, Carlo Lucarelli, Massimo Mella
The relative dehydrogenation/dehydration reactivity imparted by nanostructured gallium(III) oxide on alcohols was investigated via electronic structure calculations, reactivity tests and DRIFT-IR spectroscopy.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




hydra

Structural basis of carbohydrate binding in domain C of a type I pullulanase from Paenibacillus barengoltzii




hydra

Polymeric poly[[decaaquabis(μ6-1,8-disulfonato-9H-carbazole-3,6-dicarboxylato)di-μ3-hydroxy-pentazinc] decahydrate]

The asymmetric unit of the title MOF, [Zn5(C14H5NO10S2)2(OH)2(H2O)10]n comprises three ZnII atoms, one of which is located on a centre of inversion, a tetra-negative carboxyl­ate ligand, one μ3-hydroxide and five water mol­ecules, each of which is coordinated. The ZnII atom, lying on a centre of inversion, is coordinated by trans sulfoxide-O atoms and four water mol­ecules in an octa­hedral geometry. Another ZnII atom is coordinated by two carboxyl­ate-O atoms, one hy­droxy-O, one sulfoxide-O and a water-O atom to define a distorted trigonal–bipyramidal geometry; a close Zn⋯O(carboxyl­ate) inter­action derived from an asymmetrically coordinating ligand (Zn—O = 1.95 and 3.07 Å) suggests a 5 + 1 coordination geometry. The third ZnII atom is coordinated in an octa­hedral fashion by two hy­droxy-O atoms, one carboxyl­ate-O, one sulfoxide-O and two water-O atoms, the latter being mutually cis. In all, the carboxyl­ate ligand binds six ZnII ions leading to a three-dimensional architecture. In the crystal, all acidic donors form hydrogen bonds to oxygen acceptors to contribute to the stability of the three-dimensional architecture.




hydra

6-Amino-2-iminiumyl-4-oxo-1,2,3,4-tetra­hydro­pyrimidin-5-aminium sulfate monohydrate

The title compound, C4H9N5O2+·SO42−·H2O, is the monohydrate of the commercially available compound `C4H7N5O·H2SO4·xH2O'. It is obtained by reprecipitation of C4H7N5O·H2SO4·xH2O from dilute sodium hydroxide solution with dilute sulfuric acid. The crystal structure of anhydrous 2,4,5-tri­amino-1,6-di­hydro­pyrimidin-6-one sulfate is known, although called by the authors 5-amminium-6-amino-isocytosinium sulfate [Bieri et al. (1993). Private communication (refcode HACDEU). CCDC, Cambridge, England]. In the structure, the sulfate group is deprotonated, whereas one of the amino groups is protonated (R2C—NH3+) and one is rearranged to a protonated imine group (R2C=NH2+). This arrangement is very similar to the known crystal structure of the anhydrate. Several tautomeric forms of the investigated mol­ecule are possible, which leads to questionable proton attributions. The measured data allowed the location of all hydrogen atoms from the residual electron density. In the crystal, ions and water mol­ecules are linked into a three-dimensional network by N—H⋯O and O—H⋯O hydrogen bonds.




hydra

Dodecan-1-aminium sulfate trihydrate

The asymmetric unit of the title salt, 2C12H28N+·SO42−·3H2O, contains two n-do­decyl­ammonium cations, one sulfate anion and three water mol­ecules. In the crystal, N—H⋯O hydrogen bonds link the cations and anions into layers parallel to (100). These layers are further connected through O—H⋯O hydrogen-bonding inter­actions involving the sulfate ions and the isolated water mol­ecules. The three-dimensional structure can also be considered as the superposition of thin inorganic layers of SO42− anions and thick layers of alkyl­ammonium cations perpendicular to the c axis.




hydra

Bis[benzyl 2-(heptan-4-yl­idene)hydrazine-1-carboxyl­ate]bis­(thio­cyanato)­cobalt(II)

The title compound, [Co(NCS)2(C15H22N2O2)2] or C32H44CoN6O4S2, was prepared from cobalt(II) nitrate, benzyl carbazate and ammonium thio­cyanate in the presence of 4-hepta­none. The compound crystallizes with two centrosymmetric complexes in which the cobalt(II) atoms have a trans-CoO2N4 octa­hedral coordination geometry. In the crystal, N—H⋯S, C—H⋯S and C—H⋯.π contacts stack the complex mol­ecules along the b-axis direction.




hydra

Bis(2-methyl­lactato)borate tetra­hydrate

The asymmetric unit of the title compound (systematic name: 3,3,8,8-tetra­methyl-1,4,6,9-tetra­oxa-λ4-bora­spiro­[4.4]nonane-2,7-dione tetra­hydrate), C8H12BO6·4H2O, consists of half a bis­(2-methyl­lactato)borate mol­ecule and two water mol­ecules of solvation. In the crystal, O—H⋯O hydrogen bonds link the components into a three-dimensional network.




hydra

(1Z,2Z)-1,2-Bis{2-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]hydrazinyl­idene}-1,2-bis­(4-meth­oxy­phen­yl)ethane including an unknown solvate

The complete mol­ecule of the title compound, C32H22F12N4O2, is generated by a crystallographic twofold axis aligned parallel to [010]. The F atoms of one of the CF3 groups are disordered over three orientations in a 0.6: 0.2: 0.2 ratio. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming zigzag chains propagating along the a-axis direction. In addition, weak C—H⋯O and C—H⋯F bonds are observed. The contribution of the disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] of PLATON. The solvent contribution is not included in the reported mol­ecular weight and density.




hydra

(1,4,8,11-Tetra­aza­cyclo­tetra­deca­ne)palladium(II) diiodide monohydrate

In the title compound, [Pd(C10H24N4)]I2·H2O, the PdII ion is four-coordinated in a slightly distorted square-planar coordination environment defined by four N atoms from a 1,4,8,11-tetra­aza­cyclo­tetra­decane ligand. The cationic complex, two I− anions and the solvent water mol­ecule are linked through inter­molecular hydrogen bonds into a three-dimensional network structure.




hydra

(Pyridine-2,6-di­carboxyl­ato-κ3O,N,O')(2,2':6',2''- terpyridine-κ3N,N',N'')nickel(II) di­methyl­formamide monosolvate monohydrate

In the title complex, [Ni(C7H3NO4)(C15H11N3)]·C3H7NO·H2O, the NiII ion is six-coordinated within an octa­hedral geometry defined by three N atoms of the 2,2':6',2''-terpyridine ligand, and two O atoms and the N atom of the pyridine-2,6-di­carboxyl­ate di-anion. In the crystal, the complex mol­ecules are stacked in columns parallel to the a axis being connected by π–π stacking [closest inter-centroid separation between pyridyl rings = 3.669 (3) Å]. The connections between columns and solvent mol­ecules to sustain a three-dimensional architecture are of the type water-O—H⋯O(carbon­yl) and pyridyl-, methyl-C—H⋯O(carbon­yl).




hydra

3,3'-[(1E,1'E)-Hydrazine-1,2-diylidenebis(ethan-1-yl-1-yl­idene)]bis­(4-hy­droxy-6-methyl-2H-pyran-2-one)

The title compound, C16H16N2O6, lies about an inversion centre at the mid-point of the N—N bond. The mol­ecule features two intra­molecular O—H⋯N and two C—H⋯O hydrogen bonds, each of which forms an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into infinite zigzag chains propagating along the c-axis direction. π–π stacking inter­actions between the pyrone rings [centroid–centroid distances = 3.975 (2) Å] stack the mol­ecules along b.




hydra

9α-Hy­droxy-4,8-dimethyl-3'-phenyl-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one-12-spiro-5'-isoxazole monohydrate

In the title compound, C22H25NO5·H2O, the ten-membered ring displays an approximate chair–chair conformation, whereas the five-membered furan ring has an envelope conformation, with the C atom of the methine group adjacent to the spiro C atom as the flap. The isoxazole ring is almost planar and its plane is slightly inclined to the plane of the attached phenyl ring. The mean plane of the furan ring is nearly perpendicular to that of the isoxazole ring, as indicated by the dihedral angle between them of 89.39 (12)°. In the crystal, the organic mol­ecules are linked into [010] chains by O—H⋯O hydrogen bonds. The water mol­ecule forms O—H⋯O and O—H⋯N hydrogen bonds and a weak C—H⋯O inter­action is also observed. Together, these lead to a three-dimensional network.




hydra

Bis(4-hy­droxy-N,N-di-n-propyl­tryptammonium) fumarate tetra­hydrate

The title compound (systematic name: bis­{[2-(4-hy­droxy-1H-indol-3-yl)eth­yl]bis­(propan-2-yl)aza­nium} but-2-enedioate tetra­hydrate), 2C16H25N2O+·C4H2O42−·4H2O, has a singly protonated DPT cation, one half of a fumarate dianion (completed by a crystallographic centre of symmetry) and two water mol­ecules of crystallization in the asymmetric unit. A series of N—H⋯O and O—H⋯O hydrogen bonds form a three-dimensional network in the solid state.




hydra

2-[1-(1,3-Dioxo-1,3-di­hydro-2H-inden-2-yl­idene)eth­yl]hydrazinecarbo­thio­amide

The title compound, C12H11N3O2S, was synthesized by a condensation reaction of 2-acetyl­indan-1,3-dione and thio­semicarbazide in ethanol in the presence of glacial acetic acid. The mol­ecule adopts a thio­ketone form. The dihedral angle between the mean planes of 1H-inden-1,3(2H)-dione and hydrazinecarbo­thio­amide units is 86.32 (7)°. Weak intra­molecular N—H⋯O and C—H⋯O hydrogen bonds are observed. In the crystal, mol­ecules are linked via pairs of weak inter­molecular N—H⋯O hydrogen bonds, forming inversion dimers. The dimers are further linked into a three-dimensional network through N—H⋯S and N—H⋯O hydrogen bonds, and π–π inter­actions [centroid–centroid distances = 3.5619 (10)–3.9712 (9) Å].




hydra

5-(3-Hy­droxy­phen­yl)-1,3,4-oxa­diazole-2(3H)-thione hemihydrate

The title 1,3,4-oxa­diazole derivative crystallizes as a hemihydrate, C8H6N2O2S·0.5H2O, with the water mol­ecule located on a twofold rotation axis. The 1,3,4-oxa­diazole mol­ecule is essentially planar, the r.m.s. deviation of the non-H atoms being 0.0443 Å. The dihedral angle between the mean planes of the phenyl and oxa­diazole rings is 6.101 (17)°. In the crystal, mol­ecules are linked via O—H⋯S and N—H⋯O hydrogen bonds involving the water mol­ecule, the N—H group and the thione S atom into undulating ribbons. Additional π–π inter­actions generate a two-dimensional supra­molecular framework extending parallel to (001).




hydra

Sodium [N,N'-ethyl­enebis(d-penicillaminato)]indate(III) tetra­hydrate

The asymmetric unit of the title compound {systematic name: sodium [2-({2-[(1-carboxyl­ato-2-methyl-2-sulfanidylprop­yl)amino]­eth­yl}amino)-3-methyl-3-sulf­an­idyl­butano­ato-κ4S,N,N',S']indate(III) tetra­hydrate}, Na[In(C12H20N2O4S2)]·4H2O, contains four indate(III) complex anions {[In(d-ebp)]−; d-H4ebp = N,N'-ethyelenebis(d-penicillamine)], four sodium(I) cations and sixteen water mol­ecules. The indate(III) anions and sodium cations are alternately connected through coordination bonds between Na+ ions and the carboxyl­ate groups of the complex anions, forming an infinite sixfold right-handed helix along the c-axis direction. In the crystal, the helices are linked by O—H⋯O hydrogen bonds between water mol­ecules bound to Na+ ions and carboxyl­ate groups. The crystal studied was twinned via a twofold axis about [001].




hydra

[Oxybis(ethane-1,2-di­yl)]bis­(di­methyl­ammonium) octa­molybdate dihydrate

The title compound, (C8H22N2O)2[Mo8O26]·H2O, (cis-H2L)2[β-Mo8O26]·H2O, where L = (bis­[2-N,N-di­methyl­amino)­eth­yl] ether), was synthesized from bis­[2-(di­methyl­amino)­eth­yl] ether and MoO3 under solvothermal conditions and characterized by multinuclear NMR and single-crystal X-ray diffraction techniques. The structure displays two [oxybis(ethane-1,2-di­yl)]bis­(di­methyl­ammonium), or [cis-H2L]2+, cations, a central [β-Mo8O26]4− anionic cluster consisting of eight distorted MoO6 octa­hedra, and two water mol­ecules in their deuterated form. The central anion lies across an inversion center. The [cis-H2L]2+ cations are hydrogen bonded to the central [β-Mo8O26]4− cluster via bridging water mol­ecules. In the crystal, O—H⋯O hydrogen bonds link the components into chains along [010]. Weak C—H⋯O hydrogen bonds link these chains into a three-dimensional network.




hydra

(2,2'-Bi­pyridine-κ2N,N')(pyridine-2,6-di­carboxyl­ato-κ2N,O)palladium(II) monohydrate

In the title compound, [Pd(C7H3NO4)(C10H8N2)]·H2O, the PdII cation is four-coordinated in a distorted square-planar coordination geometry defined by the two N atoms of the 2,2'-bi­pyridine ligand, one O atom and one N atom from the pyridine-2,6-di­carboxyl­ate anion. The complex and solvent water mol­ecule are linked by inter­molecular hydrogen bonds. In the crystal, the complex mol­ecules are stacked in columns along the a axis.




hydra

Bis{2,6-bis­[(E)-(4-fluoro­benzyl­imino)­meth­yl]pyridine}­nickel(II) dinitrate dihydrate

In the title hydrated salt, [Ni(C21H17F2N3)2](NO3)2·2H2O, the central NiII ion is coordinated by six N atoms from two tridentate chelating 2,6-bis­[(E)-(4-fluoro­benzyl­imino)­meth­yl]pyridine ligands. While the central NiII ion is six-coordinate, its environment is distorted from an octa­hedral structure because of the unequal Ni—N distances. The Ni—N bond lengths vary from 1.8642 (14) to 2.2131 (15) Å, while the N—Ni—N angles range from 79.98 (6) to 104.44 (6)°. Three coordinating sites of each chelating agent are almost coplanar with respect to the pyridine ring, and two pyridine moieties are perpendicular to each other. Two non-coordinating nitrate anions within the asymmetric unit balance the charges of the central metal ion, and are linked with two crystal water mol­ecules, forming a water–nitrate cyclic tetra­meric unit [O⋯O = 2.813 (2) to 3.062 (2) Å]. In an isolated mol­ecule, the fluoro­phenyl rings of one ligand are stacked with the central ring of the other ligand via π–π inter­actions, with the closest centroid-to-plane distances being 3.359 (6), 3.408 (5), 3.757 (6) and 3.659 (5) Å.




hydra

N'-(2-Hy­droxy-3-meth­oxy­benzyl­idene)pyrazine-2-carbohydrazide monohydrate

In the title hydrated Schiff base, C13H12N4O3·H2O, the dihedral angle between the aromatic rings is 5.06 (11)° and an intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, Ow—H⋯O and Ow—H⋯N (w = water) hydrogen bonds link the components into centrosymmetric tetra­mers (two Schiff bases and two water mol­ecules). Longer N—H⋯O hydrogen bonds link the tetra­mers into [010] chains. A weak C—H⋯O hydrogen bond and aromatic π–π stacking between the pyrazine and phenyl rings [centroid–centroid separations = 3.604 (2) and 3.715 (2) Å] are also observed.




hydra

Di­chlorido­bis­[2-(pyridin-2-yl-κN)-1H-benzimidazole-κN3]nickel(II) monohydrate

In the title complex, [NiCl2(C12H9N3)2]·H2O, a divalent nickel atom is coordinated by two 2-(pyridin-2-yl)-1H-benzimidazole ligands in a slightly distorted octa­hedral environment defined by four N donors of two N,N'-chelating ligands, along with two cis-oriented anionic chloride donors. The title complex crystallized with a water mol­ecule disordered over two positions. In the crystal, a combination of O—H⋯Cl, O—H.·O and N—H⋯Cl hydrogen bonds, together with C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions, links the complex mol­ecules and the water mol­ecules to form a supra­molecular three-dimensional framework. The title complex is isostructural with the cobalt(II) dichloride complex reported previously [Das et al. (2011). Org. Biomol. Chem. 9, 7097–7107].




hydra

N-[(E)-Quinolin-2-yl­methyl­idene]-1,2,4-triazol-4-amine hemihydrate

The title hemihydrate, C12H9N5·0.5H2O, was isolated from the condensation reaction of quinoline-2-carbaldehyde with 4-amino-4H-1,2,4-triazole. The Schiff base mol­ecule adopts an E configuration about the C=N bond and is approximately planar, with a dihedral angle between the quinoline ring system and the 1,2,4-triazole ring of 12.2 (1)°. In the crystal, one water mol­ecule bridges two Schiff base mol­ecules via O—H⋯N hydrogen bonds. The Schiff base mol­ecules are inter­connected by π–π stacking inter­actions [centroid-centroid distances of 3.7486 (7) and 3.9003 (7) Å] into columns along [1overline{1}0].




hydra

Dicaesium tetra­magnesium penta­kis­(carbonate) deca­hydrate, Cs2Mg4(CO3)5·10H2O

The title carbonate hydrate, Cs2Mg4(CO3)5·10H2O, was crystallized at room temperature out of aqueous solutions containing caesium bicarbonate and magnesium nitrate. Its monoclinic crystal structure (P21/n) consists of double chains of composition 1∞[Mg(H2O)2/1(CO3)3/3], isolated [Mg(H2O)(CO3)2]2– units, two crystallographically distinct Cs+ ions and a free water mol­ecule. The crystal under investigation was twinned by reticular pseudomerohedry.




hydra

Crystal structure and DFT study of (E)-2-chloro-4-{[2-(2,4-di­nitro­phen­yl)hydrazin-1-yl­idene]meth­yl}phenol aceto­nitrile hemisolvate

The title Schiff base compound, C13H9ClN4O5·0.5CH3CN, crystallizes as an aceto­nitrile hemisolvate; the solvent mol­ecule being located on a twofold rotation axis. The mol­ecule is nearly planar, with a dihedral angle between the two benzene rings of 3.7 (2)°. The configuration about the C=N bond is E, and there is an intra­molecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming layers lying parallel to (10overline{1}). The layers are linked by C—H⋯Cl hydrogen bonds, forming a supra­molecular framework. Within the framework there are offset π–π stacking inter­actions [inter­centroid distance = 3.833 (2) Å] present involving inversion-related mol­ecules. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the phenol ring to the 2,4-di­nitro­benzene ring, and the HOMO–LUMO gap is found to be 0.13061 a.u.




hydra

Crystal structure, Hirshfeld surface analysis and HOMO–LUMO analysis of (E)-N'-(3-hy­droxy-4-meth­oxy­benzyl­idene)nicotinohydrazide monohydrate

The mol­ecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features inter­molecular N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen-bonding inter­actions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.0%), O⋯H/H⋯O (23.7%)), C⋯H/H⋯C (17.6%) and N⋯H/H⋯N (11.9%) inter­actions. The title compound has also been characterized by frontier mol­ecular orbital analysis.




hydra

Crystal structure of tetra­kis­[μ-3-carboxy-1-(1,2,4-triazol-4-yl)adamantane-κ2N1:N2]tetra­fluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V) tetra­hydrate

The crystal structure of the title mol­ecular complex, [Ag2{VO2F2}2(C13H17N3O2)4]·4H2O, supported by the heterofunctional ligand tr-ad-COOH [1-(1,2,4-triazol-4-yl)-3-carb­oxy­adamantane] is reported. Four 1,2,4-triazole groups of the ligand link two AgI atoms, as well as AgI and VV centres, forming the heterobimetallic coordination cluster {AgI2(VVO2F2)2(tr)4}. VV exists as a vanadium oxofluoride anion and possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N]. A carb­oxy­lic acid functional group of the ligand stays in a neutral form and is involved in hydrogen bonding with solvent water mol­ecules and VO2F2− ions of adjacent mol­ecules. The extended hydrogen-bonding network is responsible for the crystal packing in the structure.




hydra

Crystal structure and Hirshfeld surface analysis of tris­(2,2'-bi­pyridine)­nickel(II) bis­(1,1,3,3-tetra­cyano-2-eth­oxy­propenide) dihydrate

The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a racemic mixture in the monoclinic space group C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H⋯N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H⋯π(cation) inter­actions involving the CH3 group. The inter­molecular inter­actions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots.




hydra

Crystal structure of methyl α-l-rhamno­pyranosyl-(1→2)-α-l-rhamno­pyran­oside monohydrate

The title compound, C13H24O9·H2O, a structural model for part of bacterial O-anti­gen polysaccharides from Shigella flexneri and Escherichia coli, crystallizes with four independent disaccharide mol­ecules and four water mol­ecules in the asymmetric unit. The conformation at the glycosidic linkage joining the two rhamnosyl residues is described by the torsion angles φH of 39, 30, 37 and 37°, and ψH of −32, −35, −31 and −32°, which are the major conformation region known to be populated in an aqueous solution. The hexo­pyran­ose rings have the 1C4 chair conformation. In the crystal, the disaccharide and water mol­ecules are associated through O—H⋯O hydrogen bonds, forming a layer parallel to the bc plane. The layers stack along the a axis via hydro­phobic inter­actions between the methyl groups.




hydra

Synthesis, crystal structure and Hirshfeld surface analysis of 2-chloro-3-[(E)-(2-phenyl­hydrazinyl­idene)meth­yl]quinoline

A new quinoline-based hydrazone, C16H12ClN3, was synthesized by a condensation reaction of 2-chloro-3-formyl­quinoline with phenyl­hydrazine. The quinoline ring system is essentially planar (r.m.s. deviation = 0.012 Å), and forms a dihedral angle of 8.46 (10)° with the phenyl ring. The mol­ecule adopts an E configuration with respect to the central C=N bond. In the crystal, mol­ecules are linked by a C—H⋯π-phenyl inter­action, forming zigzag chains propagating along the [10overline{3}] direction. The N—H hydrogen atom does not participate in hydrogen bonding but is directed towards the phenyl ring of an adjacent mol­ecule, so linking the chains via weak N—H⋯π inter­actions to form of a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (35.5%), C⋯H/H⋯C (33.7%), Cl⋯H/H⋯Cl (12.3%), N⋯H/H⋯N (9.5%) contacts.




hydra

Crystal structure of 3,14-diethyl-2,13-di­aza-6,17-diazo­niatri­cyclo­[16.4.0.07,12]docosane dinitrate dihydrate from synchrotron X-ray data

The crystal structure of title salt, C22H46N42+·2NO3−·2H2O, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms. The asymmetric unit contains half a centrosymmetric dication, one nitrate anion and one water mol­ecule. The mol­ecular dication, C22H46N42+, together with the nitrate anion and hydrate water mol­ecule are involved in an extensive range of hydrogen bonds. The mol­ecule is stabilized, as is the conformation of the dication, by forming inter­molecular N—H⋯O, O—H⋯O, together with intra­molecular N—H⋯N hydrogen bonds.




hydra

Synthesis, characterization, and crystal structure of aqua­bis­(4,4'-dimeth­oxy-2,2'-bi­pyridine)[μ-(2R,3R)-tartrato(4−)]dicopper(II) octa­hydrate

Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an l-(+)-tartrate as complexing agent, and a 2,2'-bi­pyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1κO-bis­(4,4'-dimeth­oxy-2,2'-bi­pyri­dine)-1κ2N,N';2κ2N,N'-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octa­hydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the Sohncke group P21 with one chiral dinuclear complex and eight mol­ecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex mol­ecules exhibit an ansa-like structure with two planar, nearly parallel bi­pyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water mol­ecules give rise to a layered supra­molecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs.




hydra

Crystal structures of trans-di­aqua­(3-R-1,3,5,8,12-penta­aza­cyclo­tetra­deca­ne)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl)

The asymmetric units of the title compounds, trans-di­aqua­(3-benzyl-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-di­aqua­[3-(pyridin-3-ylmeth­yl)-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12]copper(II) iso­phthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one di­aqua macrocyclic cation, one di­carboxyl­ate anion and uncoordinated water mol­ecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water mol­ecules in a tetra­gonally distorted octa­hedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding inter­actions between the N—H groups of the macrocycles and the O—H groups of coordinated water mol­ecules as the proton donors and the O atoms of the carboxyl­ate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water mol­ecules of crystallization, the isophthalate dianions form layers lying parallel to the (overline{1}01) and (100) planes in (I) and (II), respectively.




hydra

Crystal structure of two N'-(1-phenyl­benzyl­idene)-2-(thio­phen-3-yl)acetohydrazides

The synthesis, spectroscopic data, crystal and mol­ecular structures of two N'-(1-phenyl­benzyl­idene)-2-(thio­phen-3-yl)acetohydrazides, namely N'-[1-(4-hy­droxy­phen­yl)benzyl­idene]-2-(thio­phen-3-yl)acetohydrazide, C13H10N2O2S, (3a), and N'-[1-(4-meth­oxy­phen­yl)benzyl­idene]-2-(thio­phen-3-yl)acetohydrazide, C14H14N2O2S, (3b), are described. Both compounds differ in the substituent at the para position of the phenyl ring: –OH for (3a) and –OCH3 for (3b). In (3a), the thio­phene ring is disordered over two orientations with occupancies of 0.762 (3) and 0.238 (3). The configuration about the C=N bond is E. The thio­phene and phenyl rings are inclined by 84.0 (3) and 87.0 (9)° for the major- and minor-occupancy disorder components in (3a), and by 85.89 (12)° in (3b). Although these dihedral angles are similar, the conformation of the linker between the two rings is different [the C—C—C—N torsion angle is −ac for (3a) and −sc for (3b), while the C6—C7—N9—N10 torsion angle is +ap for (3a) and −sp for (3b)]. A common feature in the crystal packing of (3a) and (3b) is the presence of N—H⋯O hydrogen bonds, resulting in the formation of chains of mol­ecules running along the b-axis direction in the case of (3a), or inversion dimers for (3b). The most prominent contributions to the surface contacts are those in which H atoms are involved, as confirmed by an analysis of the Hirshfeld surface.




hydra

Crystal structures of two CuII compounds: catena-poly[[chlorido­copper(II)]-μ-N-[eth­oxy(pyridin-2-yl)methyl­idene]-N'-[oxido(pyridin-3-yl)methyl­idene]hydrazine-κ4N,N',O:N''] and di-μ-chlorido-1:4κ2Cl:Cl-2:3κ2Cl:Cl-di­chlorido-2κ

Two CuII complexes [Cu(C14H13N4O2)Cl]n, I, and [Cu4(C8H10NO2)4Cl4]n, II, have been synthesized. In the structure of the mononuclear complex I, each ligand is coordinated to two metal centers. The basal plane around the CuII cation is formed by one chloride anion, one oxygen atom, one imino and one pyridine nitro­gen atom. The apical position of the distorted square-pyramidal geometry is occupied by a pyridine nitro­gen atom from a neighbouring unit, leading to infinite one-dimensional polymeric chains along the b-axis direction. Each chain is connected to adjacent chains by inter­molecular C—H⋯O and C—H⋯Cl inter­actions, leading to a three-dimensional network structure. The tetra­nuclear complex II lies about a crystallographic inversion centre and has one core in which two CuII metal centers are mutually inter­connected via two enolato oxygen atoms while the other two CuII cations are linked by a chloride anion and an enolato oxygen. An open-cube structure is generated in which the two open-cube units, with seven vertices each, share a side composed of two CuII ions bridged by two enolato oxygen atoms acting in a μ3-mode. The CuII atoms in each of the two CuO3NCl units are connected by one μ2-O and two μ3-O atoms from deprotonated hydroxyl groups and one chloride anion to the three other CuII centres. Each of the penta­coordinated CuII cations has a distorted NO3Cl square-pyramidal environment. The CuII atoms in each of the two CuO2NCl2 units are connected by μ2-O and μ3-O atoms from deprotonated alcohol hy­droxy groups and one chloride anion to two other CuII ions. Each of the penta­coordinated CuII cations has a distorted NO2Cl2 square-pyramidal environment. In the crystal, a series of intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds are observed in each tetra­nuclear monomeric unit, which is connected to four tetra­nuclear monomeric units by inter­molecular C—H⋯O hydrogen bonds, thus forming a planar two-dimensional structure in the (overline{1}01) plane.