pd Quantum arithmetic operations based on quantum Fourier transform on signed integers. (arXiv:2005.00443v2 [cs.IT] UPDATED) By arxiv.org Published On :: The quantum Fourier transform brings efficiency in many respects, especially usage of resource, for most operations on quantum computers. In this study, the existing QFT-based and non-QFT-based quantum arithmetic operations are examined. The capabilities of QFT-based addition and multiplication are improved with some modifications. The proposed operations are compared with the nearest quantum arithmetic operations. Furthermore, novel QFT-based subtraction and division operations are presented. The proposed arithmetic operations can perform non-modular operations on all signed numbers without any limitation by using less resources. In addition, novel quantum circuits of two's complement, absolute value and comparison operations are also presented by using the proposed QFT based addition and subtraction operations. Full Article
pd On-board Deep-learning-based Unmanned Aerial Vehicle Fault Cause Detection and Identification. (arXiv:2005.00336v2 [eess.SP] UPDATED) By arxiv.org Published On :: With the increase in use of Unmanned Aerial Vehicles (UAVs)/drones, it is important to detect and identify causes of failure in real time for proper recovery from a potential crash-like scenario or post incident forensics analysis. The cause of crash could be either a fault in the sensor/actuator system, a physical damage/attack, or a cyber attack on the drone's software. In this paper, we propose novel architectures based on deep Convolutional and Long Short-Term Memory Neural Networks (CNNs and LSTMs) to detect (via Autoencoder) and classify drone mis-operations based on sensor data. The proposed architectures are able to learn high-level features automatically from the raw sensor data and learn the spatial and temporal dynamics in the sensor data. We validate the proposed deep-learning architectures via simulations and experiments on a real drone. Empirical results show that our solution is able to detect with over 90% accuracy and classify various types of drone mis-operations (with about 99% accuracy (simulation data) and upto 88% accuracy (experimental data)). Full Article
pd Recurrent Neural Network Language Models Always Learn English-Like Relative Clause Attachment. (arXiv:2005.00165v3 [cs.CL] UPDATED) By arxiv.org Published On :: A standard approach to evaluating language models analyzes how models assign probabilities to valid versus invalid syntactic constructions (i.e. is a grammatical sentence more probable than an ungrammatical sentence). Our work uses ambiguous relative clause attachment to extend such evaluations to cases of multiple simultaneous valid interpretations, where stark grammaticality differences are absent. We compare model performance in English and Spanish to show that non-linguistic biases in RNN LMs advantageously overlap with syntactic structure in English but not Spanish. Thus, English models may appear to acquire human-like syntactic preferences, while models trained on Spanish fail to acquire comparable human-like preferences. We conclude by relating these results to broader concerns about the relationship between comprehension (i.e. typical language model use cases) and production (which generates the training data for language models), suggesting that necessary linguistic biases are not present in the training signal at all. Full Article
pd Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential. (arXiv:2004.14936v2 [eess.IV] UPDATED) By arxiv.org Published On :: Image analysis in the field of digital pathology has recently gained increased popularity. The use of high-quality whole slide scanners enables the fast acquisition of large amounts of image data, showing extensive context and microscopic detail at the same time. Simultaneously, novel machine learning algorithms have boosted the performance of image analysis approaches. In this paper, we focus on a particularly powerful class of architectures, called Generative Adversarial Networks (GANs), applied to histological image data. Besides improving performance, GANs also enable application scenarios in this field, which were previously intractable. However, GANs could exhibit a potential for introducing bias. Hereby, we summarize the recent state-of-the-art developments in a generalizing notation, present the main applications of GANs and give an outlook of some chosen promising approaches and their possible future applications. In addition, we identify currently unavailable methods with potential for future applications. Full Article
pd Towards Embodied Scene Description. (arXiv:2004.14638v2 [cs.RO] UPDATED) By arxiv.org Published On :: Embodiment is an important characteristic for all intelligent agents (creatures and robots), while existing scene description tasks mainly focus on analyzing images passively and the semantic understanding of the scenario is separated from the interaction between the agent and the environment. In this work, we propose the Embodied Scene Description, which exploits the embodiment ability of the agent to find an optimal viewpoint in its environment for scene description tasks. A learning framework with the paradigms of imitation learning and reinforcement learning is established to teach the intelligent agent to generate corresponding sensorimotor activities. The proposed framework is tested on both the AI2Thor dataset and a real world robotic platform demonstrating the effectiveness and extendability of the developed method. Full Article
pd Teaching Cameras to Feel: Estimating Tactile Physical Properties of Surfaces From Images. (arXiv:2004.14487v2 [cs.CV] UPDATED) By arxiv.org Published On :: The connection between visual input and tactile sensing is critical for object manipulation tasks such as grasping and pushing. In this work, we introduce the challenging task of estimating a set of tactile physical properties from visual information. We aim to build a model that learns the complex mapping between visual information and tactile physical properties. We construct a first of its kind image-tactile dataset with over 400 multiview image sequences and the corresponding tactile properties. A total of fifteen tactile physical properties across categories including friction, compliance, adhesion, texture, and thermal conductance are measured and then estimated by our models. We develop a cross-modal framework comprised of an adversarial objective and a novel visuo-tactile joint classification loss. Additionally, we develop a neural architecture search framework capable of selecting optimal combinations of viewing angles for estimating a given physical property. Full Article
pd When Hearing Defers to Touch. (arXiv:2004.13462v2 [q-bio.NC] UPDATED) By arxiv.org Published On :: Hearing is often believed to be more sensitive than touch. This assertion is based on a comparison of sensitivities to weak stimuli. The respective stimuli, however, are not easily comparable since hearing is gauged using acoustic pressure and touch using skin displacement. We show that under reasonable assumptions the auditory and tactile detection thresholds can be reconciled on a level playing field. The results indicate that the capacity of touch and hearing to detect weak stimuli varies according to the size of a sensed object as well as to the frequency of its oscillations. In particular, touch is found to be more effective than hearing at detecting small and slow objects. Full Article
pd Self-Attention with Cross-Lingual Position Representation. (arXiv:2004.13310v2 [cs.CL] UPDATED) By arxiv.org Published On :: Position encoding (PE), an essential part of self-attention networks (SANs), is used to preserve the word order information for natural language processing tasks, generating fixed position indices for input sequences. However, in cross-lingual scenarios, e.g. machine translation, the PEs of source and target sentences are modeled independently. Due to word order divergences in different languages, modeling the cross-lingual positional relationships might help SANs tackle this problem. In this paper, we augment SANs with emph{cross-lingual position representations} to model the bilingually aware latent structure for the input sentence. Specifically, we utilize bracketing transduction grammar (BTG)-based reordering information to encourage SANs to learn bilingual diagonal alignments. Experimental results on WMT'14 English$Rightarrow$German, WAT'17 Japanese$Rightarrow$English, and WMT'17 Chinese$Leftrightarrow$English translation tasks demonstrate that our approach significantly and consistently improves translation quality over strong baselines. Extensive analyses confirm that the performance gains come from the cross-lingual information. Full Article
pd Optimal Adjacent Vertex-Distinguishing Edge-Colorings of Circulant Graphs. (arXiv:2004.12822v2 [cs.DM] UPDATED) By arxiv.org Published On :: A k-proper edge-coloring of a graph G is called adjacent vertex-distinguishing if any two adjacent vertices are distinguished by the set of colors appearing in the edges incident to each vertex. The smallest value k for which G admits such coloring is denoted by $chi$'a (G). We prove that $chi$'a (G) = 2R + 1 for most circulant graphs Cn([[1, R]]). Full Article
pd Jealousy-freeness and other common properties in Fair Division of Mixed Manna. (arXiv:2004.11469v2 [cs.GT] UPDATED) By arxiv.org Published On :: We consider a fair division setting where indivisible items are allocated to agents. Each agent in the setting has strictly negative, zero or strictly positive utility for each item. We, thus, make a distinction between items that are good for some agents and bad for other agents (i.e. mixed), good for everyone (i.e. goods) or bad for everyone (i.e. bads). For this model, we study axiomatic concepts of allocations such as jealousy-freeness up to one item, envy-freeness up to one item and Pareto-optimality. We obtain many new possibility and impossibility results in regard to combinations of these properties. We also investigate new computational tasks related to such combinations. Thus, we advance the state-of-the-art in fair division of mixed manna. Full Article
pd Warwick Image Forensics Dataset for Device Fingerprinting In Multimedia Forensics. (arXiv:2004.10469v2 [cs.CV] UPDATED) By arxiv.org Published On :: Device fingerprints like sensor pattern noise (SPN) are widely used for provenance analysis and image authentication. Over the past few years, the rapid advancement in digital photography has greatly reshaped the pipeline of image capturing process on consumer-level mobile devices. The flexibility of camera parameter settings and the emergence of multi-frame photography algorithms, especially high dynamic range (HDR) imaging, bring new challenges to device fingerprinting. The subsequent study on these topics requires a new purposefully built image dataset. In this paper, we present the Warwick Image Forensics Dataset, an image dataset of more than 58,600 images captured using 14 digital cameras with various exposure settings. Special attention to the exposure settings allows the images to be adopted by different multi-frame computational photography algorithms and for subsequent device fingerprinting. The dataset is released as an open-source, free for use for the digital forensic community. Full Article
pd On the regularity of De Bruijn multigrids. (arXiv:2004.10128v2 [cs.DM] UPDATED) By arxiv.org Published On :: In this paper we prove that any odd multigrid with non-zero rational offsets is regular, which means that its dual is a rhombic tiling. To prove this result we use a result on trigonometric diophantine equations. Full Article
pd SPECTER: Document-level Representation Learning using Citation-informed Transformers. (arXiv:2004.07180v3 [cs.CL] UPDATED) By arxiv.org Published On :: Representation learning is a critical ingredient for natural language processing systems. Recent Transformer language models like BERT learn powerful textual representations, but these models are targeted towards token- and sentence-level training objectives and do not leverage information on inter-document relatedness, which limits their document-level representation power. For applications on scientific documents, such as classification and recommendation, the embeddings power strong performance on end tasks. We propose SPECTER, a new method to generate document-level embedding of scientific documents based on pretraining a Transformer language model on a powerful signal of document-level relatedness: the citation graph. Unlike existing pretrained language models, SPECTER can be easily applied to downstream applications without task-specific fine-tuning. Additionally, to encourage further research on document-level models, we introduce SciDocs, a new evaluation benchmark consisting of seven document-level tasks ranging from citation prediction, to document classification and recommendation. We show that SPECTER outperforms a variety of competitive baselines on the benchmark. Full Article
pd The growth rate over trees of any family of set defined by a monadic second order formula is semi-computable. (arXiv:2004.06508v3 [cs.DM] UPDATED) By arxiv.org Published On :: Monadic second order logic can be used to express many classical notions of sets of vertices of a graph as for instance: dominating sets, induced matchings, perfect codes, independent sets or irredundant sets. Bounds on the number of sets of any such family of sets are interesting from a combinatorial point of view and have algorithmic applications. Many such bounds on different families of sets over different classes of graphs are already provided in the literature. In particular, Rote recently showed that the number of minimal dominating sets in trees of order $n$ is at most $95^{frac{n}{13}}$ and that this bound is asymptotically sharp up to a multiplicative constant. We build on his work to show that what he did for minimal dominating sets can be done for any family of sets definable by a monadic second order formula. We first show that, for any monadic second order formula over graphs that characterizes a given kind of subset of its vertices, the maximal number of such sets in a tree can be expressed as the extit{growth rate of a bilinear system}. This mostly relies on well known links between monadic second order logic over trees and tree automata and basic tree automata manipulations. Then we show that this "growth rate" of a bilinear system can be approximated from above.We then use our implementation of this result to provide bounds on the number of independent dominating sets, total perfect dominating sets, induced matchings, maximal induced matchings, minimal perfect dominating sets, perfect codes and maximal irredundant sets on trees. We also solve a question from D. Y. Kang et al. regarding $r$-matchings and improve a bound from G'orska and Skupie'n on the number of maximal matchings on trees. Remark that this approach is easily generalizable to graphs of bounded tree width or clique width (or any similar class of graphs where tree automata are meaningful). Full Article
pd Cross-Lingual Semantic Role Labeling with High-Quality Translated Training Corpus. (arXiv:2004.06295v2 [cs.CL] UPDATED) By arxiv.org Published On :: Many efforts of research are devoted to semantic role labeling (SRL) which is crucial for natural language understanding. Supervised approaches have achieved impressing performances when large-scale corpora are available for resource-rich languages such as English. While for the low-resource languages with no annotated SRL dataset, it is still challenging to obtain competitive performances. Cross-lingual SRL is one promising way to address the problem, which has achieved great advances with the help of model transferring and annotation projection. In this paper, we propose a novel alternative based on corpus translation, constructing high-quality training datasets for the target languages from the source gold-standard SRL annotations. Experimental results on Universal Proposition Bank show that the translation-based method is highly effective, and the automatic pseudo datasets can improve the target-language SRL performances significantly. Full Article
pd Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of Progress Made Since 2016. (arXiv:2004.06286v3 [cs.HC] UPDATED) By arxiv.org Published On :: A brain-computer interface (BCI) enables a user to communicate with a computer directly using brain signals. Electroencephalograms (EEGs) used in BCIs are weak, easily contaminated by interference and noise, non-stationary for the same subject, and varying across different subjects and sessions. Therefore, it is difficult to build a generic pattern recognition model in an EEG-based BCI system that is optimal for different subjects, during different sessions, for different devices and tasks. Usually, a calibration session is needed to collect some training data for a new subject, which is time consuming and user unfriendly. Transfer learning (TL), which utilizes data or knowledge from similar or relevant subjects/sessions/devices/tasks to facilitate learning for a new subject/session/device/task, is frequently used to reduce the amount of calibration effort. This paper reviews journal publications on TL approaches in EEG-based BCIs in the last few years, i.e., since 2016. Six paradigms and applications -- motor imagery, event-related potentials, steady-state visual evoked potentials, affective BCIs, regression problems, and adversarial attacks -- are considered. For each paradigm/application, we group the TL approaches into cross-subject/session, cross-device, and cross-task settings and review them separately. Observations and conclusions are made at the end of the paper, which may point to future research directions. Full Article
pd Decoding EEG Rhythms During Action Observation, Motor Imagery, and Execution for Standing and Sitting. (arXiv:2004.04107v2 [cs.HC] UPDATED) By arxiv.org Published On :: Event-related desynchronization and synchronization (ERD/S) and movement-related cortical potential (MRCP) play an important role in brain-computer interfaces (BCI) for lower limb rehabilitation, particularly in standing and sitting. However, little is known about the differences in the cortical activation between standing and sitting, especially how the brain's intention modulates the pre-movement sensorimotor rhythm as they do for switching movements. In this study, we aim to investigate the decoding of continuous EEG rhythms during action observation (AO), motor imagery (MI), and motor execution (ME) for standing and sitting. We developed a behavioral task in which participants were instructed to perform both AO and MI/ME in regard to the actions of sit-to-stand and stand-to-sit. Our results demonstrated that the ERD was prominent during AO, whereas ERS was typical during MI at the alpha band across the sensorimotor area. A combination of the filter bank common spatial pattern (FBCSP) and support vector machine (SVM) for classification was used for both offline and pseudo-online analyses. The offline analysis indicated the classification of AO and MI providing the highest mean accuracy at 82.73$pm$2.38\% in stand-to-sit transition. By applying the pseudo-online analysis, we demonstrated the higher performance of decoding neural intentions from the MI paradigm in comparison to the ME paradigm. These observations led us to the promising aspect of using our developed tasks based on the integration of both AO and MI to build future exoskeleton-based rehabilitation systems. Full Article
pd PACT: Privacy Sensitive Protocols and Mechanisms for Mobile Contact Tracing. (arXiv:2004.03544v4 [cs.CR] UPDATED) By arxiv.org Published On :: The global health threat from COVID-19 has been controlled in a number of instances by large-scale testing and contact tracing efforts. We created this document to suggest three functionalities on how we might best harness computing technologies to supporting the goals of public health organizations in minimizing morbidity and mortality associated with the spread of COVID-19, while protecting the civil liberties of individuals. In particular, this work advocates for a third-party free approach to assisted mobile contact tracing, because such an approach mitigates the security and privacy risks of requiring a trusted third party. We also explicitly consider the inferential risks involved in any contract tracing system, where any alert to a user could itself give rise to de-anonymizing information. More generally, we hope to participate in bringing together colleagues in industry, academia, and civil society to discuss and converge on ideas around a critical issue rising with attempts to mitigate the COVID-19 pandemic. Full Article
pd Deblurring by Realistic Blurring. (arXiv:2004.01860v2 [cs.CV] UPDATED) By arxiv.org Published On :: Existing deep learning methods for image deblurring typically train models using pairs of sharp images and their blurred counterparts. However, synthetically blurring images do not necessarily model the genuine blurring process in real-world scenarios with sufficient accuracy. To address this problem, we propose a new method which combines two GAN models, i.e., a learning-to-Blur GAN (BGAN) and learning-to-DeBlur GAN (DBGAN), in order to learn a better model for image deblurring by primarily learning how to blur images. The first model, BGAN, learns how to blur sharp images with unpaired sharp and blurry image sets, and then guides the second model, DBGAN, to learn how to correctly deblur such images. In order to reduce the discrepancy between real blur and synthesized blur, a relativistic blur loss is leveraged. As an additional contribution, this paper also introduces a Real-World Blurred Image (RWBI) dataset including diverse blurry images. Our experiments show that the proposed method achieves consistently superior quantitative performance as well as higher perceptual quality on both the newly proposed dataset and the public GOPRO dataset. Full Article
pd Improved RawNet with Feature Map Scaling for Text-independent Speaker Verification using Raw Waveforms. (arXiv:2004.00526v2 [eess.AS] UPDATED) By arxiv.org Published On :: Recent advances in deep learning have facilitated the design of speaker verification systems that directly input raw waveforms. For example, RawNet extracts speaker embeddings from raw waveforms, which simplifies the process pipeline and demonstrates competitive performance. In this study, we improve RawNet by scaling feature maps using various methods. The proposed mechanism utilizes a scale vector that adopts a sigmoid non-linear function. It refers to a vector with dimensionality equal to the number of filters in a given feature map. Using a scale vector, we propose to scale the feature map multiplicatively, additively, or both. In addition, we investigate replacing the first convolution layer with the sinc-convolution layer of SincNet. Experiments performed on the VoxCeleb1 evaluation dataset demonstrate the effectiveness of the proposed methods, and the best performing system reduces the equal error rate by half compared to the original RawNet. Expanded evaluation results obtained using the VoxCeleb1-E and VoxCeleb-H protocols marginally outperform existing state-of-the-art systems. Full Article
pd Personal Health Knowledge Graphs for Patients. (arXiv:2004.00071v2 [cs.AI] UPDATED) By arxiv.org Published On :: Existing patient data analytics platforms fail to incorporate information that has context, is personal, and topical to patients. For a recommendation system to give a suitable response to a query or to derive meaningful insights from patient data, it should consider personal information about the patient's health history, including but not limited to their preferences, locations, and life choices that are currently applicable to them. In this review paper, we critique existing literature in this space and also discuss the various research challenges that come with designing, building, and operationalizing a personal health knowledge graph (PHKG) for patients. Full Article
pd Subgraph densities in a surface. (arXiv:2003.13777v2 [math.CO] UPDATED) By arxiv.org Published On :: Given a fixed graph $H$ that embeds in a surface $Sigma$, what is the maximum number of copies of $H$ in an $n$-vertex graph $G$ that embeds in $Sigma$? We show that the answer is $Theta(n^{f(H)})$, where $f(H)$ is a graph invariant called the `flap-number' of $H$, which is independent of $Sigma$. This simultaneously answers two open problems posed by Eppstein (1993). When $H$ is a complete graph we give more precise answers. Full Article
pd Human Motion Transfer with 3D Constraints and Detail Enhancement. (arXiv:2003.13510v2 [cs.GR] UPDATED) By arxiv.org Published On :: We propose a new method for realistic human motion transfer using a generative adversarial network (GAN), which generates a motion video of a target character imitating actions of a source character, while maintaining high authenticity of the generated results. We tackle the problem by decoupling and recombining the posture information and appearance information of both the source and target characters. The innovation of our approach lies in the use of the projection of a reconstructed 3D human model as the condition of GAN to better maintain the structural integrity of transfer results in different poses. We further introduce a detail enhancement net to enhance the details of transfer results by exploiting the details in real source frames. Extensive experiments show that our approach yields better results both qualitatively and quantitatively than the state-of-the-art methods. Full Article
pd Mathematical Formulae in Wikimedia Projects 2020. (arXiv:2003.09417v2 [cs.DL] UPDATED) By arxiv.org Published On :: This poster summarizes our contributions to Wikimedia's processing pipeline for mathematical formulae. We describe how we have supported the transition from rendering formulae as course-grained PNG images in 2001 to providing modern semantically enriched language-independent MathML formulae in 2020. Additionally, we describe our plans to improve the accessibility and discoverability of mathematical knowledge in Wikimedia projects further. Full Article
pd Watching the World Go By: Representation Learning from Unlabeled Videos. (arXiv:2003.07990v2 [cs.CV] UPDATED) By arxiv.org Published On :: Recent single image unsupervised representation learning techniques show remarkable success on a variety of tasks. The basic principle in these works is instance discrimination: learning to differentiate between two augmented versions of the same image and a large batch of unrelated images. Networks learn to ignore the augmentation noise and extract semantically meaningful representations. Prior work uses artificial data augmentation techniques such as cropping, and color jitter which can only affect the image in superficial ways and are not aligned with how objects actually change e.g. occlusion, deformation, viewpoint change. In this paper, we argue that videos offer this natural augmentation for free. Videos can provide entirely new views of objects, show deformation, and even connect semantically similar but visually distinct concepts. We propose Video Noise Contrastive Estimation, a method for using unlabeled video to learn strong, transferable single image representations. We demonstrate improvements over recent unsupervised single image techniques, as well as over fully supervised ImageNet pretraining, across a variety of temporal and non-temporal tasks. Code and the Random Related Video Views dataset are available at https://www.github.com/danielgordon10/vince Full Article
pd Hierarchical Neural Architecture Search for Single Image Super-Resolution. (arXiv:2003.04619v2 [cs.CV] UPDATED) By arxiv.org Published On :: Deep neural networks have exhibited promising performance in image super-resolution (SR). Most SR models follow a hierarchical architecture that contains both the cell-level design of computational blocks and the network-level design of the positions of upsampling blocks. However, designing SR models heavily relies on human expertise and is very labor-intensive. More critically, these SR models often contain a huge number of parameters and may not meet the requirements of computation resources in real-world applications. To address the above issues, we propose a Hierarchical Neural Architecture Search (HNAS) method to automatically design promising architectures with different requirements of computation cost. To this end, we design a hierarchical SR search space and propose a hierarchical controller for architecture search. Such a hierarchical controller is able to simultaneously find promising cell-level blocks and network-level positions of upsampling layers. Moreover, to design compact architectures with promising performance, we build a joint reward by considering both the performance and computation cost to guide the search process. Extensive experiments on five benchmark datasets demonstrate the superiority of our method over existing methods. Full Article
pd Testing Scenario Library Generation for Connected and Automated Vehicles: An Adaptive Framework. (arXiv:2003.03712v2 [eess.SY] UPDATED) By arxiv.org Published On :: How to generate testing scenario libraries for connected and automated vehicles (CAVs) is a major challenge faced by the industry. In previous studies, to evaluate maneuver challenge of a scenario, surrogate models (SMs) are often used without explicit knowledge of the CAV under test. However, performance dissimilarities between the SM and the CAV under test usually exist, and it can lead to the generation of suboptimal scenario libraries. In this paper, an adaptive testing scenario library generation (ATSLG) method is proposed to solve this problem. A customized testing scenario library for a specific CAV model is generated through an adaptive process. To compensate the performance dissimilarities and leverage each test of the CAV, Bayesian optimization techniques are applied with classification-based Gaussian Process Regression and a new-designed acquisition function. Comparing with a pre-determined library, a CAV can be tested and evaluated in a more efficient manner with the customized library. To validate the proposed method, a cut-in case study was performed and the results demonstrate that the proposed method can further accelerate the evaluation process by a few orders of magnitude. Full Article
pd Trees and Forests in Nuclear Physics. (arXiv:2002.10290v2 [nucl-th] UPDATED) By arxiv.org Published On :: We present a simple introduction to the decision tree algorithm using some examples from nuclear physics. We show how to improve the accuracy of the classical liquid drop nuclear mass model by performing Feature Engineering with a decision tree. Finally, we apply the method to the Duflo-Zuker model showing that, despite their simplicity, decision trees are capable of improving the description of nuclear masses using a limited number of free parameters. Full Article
pd Eccentricity terrain of $delta$-hyperbolic graphs. (arXiv:2002.08495v2 [cs.DM] UPDATED) By arxiv.org Published On :: A graph $G=(V,E)$ is $delta$-hyperbolic if for any four vertices $u,v,w,x$, the two larger of the three distance sums $d(u,v)+d(w,x)$, $d(u,w)+d(v,x)$, and $d(u,x)+d(v,w)$ differ by at most $2delta geq 0$. Recent work shows that many real-world graphs have small hyperbolicity $delta$. This paper describes the eccentricity terrain of a $delta$-hyperbolic graph. The eccentricity function $e_G(v)=max{d(v,u) : u in V}$ partitions the vertex set of $G$ into eccentricity layers $C_{k}(G) = {v in V : e(v)=rad(G)+k}$, $k in mathbb{N}$, where $rad(G)=min{e_G(v): vin V}$ is the radius of $G$. The paper studies the eccentricity layers of vertices along shortest paths, identifying such terrain features as hills, plains, valleys, terraces, and plateaus. It introduces the notion of $eta$-pseudoconvexity, which implies Gromov's $epsilon$-quasiconvexity, and illustrates the abundance of pseudoconvex sets in $delta$-hyperbolic graphs. In particular, it shows that all sets $C_{leq k}(G)={vin V : e_G(v) leq rad(G) + k}$, $kin mathbb{N}$, are $(2delta-1)$-pseudoconvex. Additionally, several bounds on the eccentricity of a vertex are obtained which yield a few approaches to efficiently approximating all eccentricities. An $O(delta |E|)$ time eccentricity approximation $hat{e}(v)$, for all $vin V$, is presented that uses distances to two mutually distant vertices and satisfies $e_G(v)-2delta leq hat{e}(v) leq {e_G}(v)$. It also shows existence of two eccentricity approximating spanning trees $T$, one constructible in $O(delta |E|)$ time and the other in $O(|E|)$ time, which satisfy ${e}_G(v) leq e_T(v) leq {e}_G(v)+4delta+1$ and ${e}_G(v) leq e_T(v) leq {e}_G(v)+6delta$, respectively. Thus, the eccentricity terrain of a tree gives a good approximation (up-to an additive error $O(delta))$ of the eccentricity terrain of a $delta$-hyperbolic graph. Full Article
pd Lake Ice Detection from Sentinel-1 SAR with Deep Learning. (arXiv:2002.07040v2 [eess.IV] UPDATED) By arxiv.org Published On :: Lake ice, as part of the Essential Climate Variable (ECV) lakes, is an important indicator to monitor climate change and global warming. The spatio-temporal extent of lake ice cover, along with the timings of key phenological events such as freeze-up and break-up, provide important cues about the local and global climate. We present a lake ice monitoring system based on the automatic analysis of Sentinel-1 Synthetic Aperture Radar (SAR) data with a deep neural network. In previous studies that used optical satellite imagery for lake ice monitoring, frequent cloud cover was a main limiting factor, which we overcome thanks to the ability of microwave sensors to penetrate clouds and observe the lakes regardless of the weather and illumination conditions. We cast ice detection as a two class (frozen, non-frozen) semantic segmentation problem and solve it using a state-of-the-art deep convolutional network (CNN). We report results on two winters ( 2016 - 17 and 2017 - 18 ) and three alpine lakes in Switzerland. The proposed model reaches mean Intersection-over-Union (mIoU) scores >90% on average, and >84% even for the most difficult lake. Additionally, we perform cross-validation tests and show that our algorithm generalises well across unseen lakes and winters. Full Article
pd Recursed is not Recursive: A Jarring Result. (arXiv:2002.05131v2 [cs.AI] UPDATED) By arxiv.org Published On :: Recursed is a 2D puzzle platform video game featuring treasure chests that, when jumped into, instantiate a room that can later be exited (similar to function calls), optionally generating a jar that returns back to that room (similar to continuations). We prove that Recursed is RE-complete and thus undecidable (not recursive) by a reduction from the Post Correspondence Problem. Our reduction is "practical": the reduction from PCP results in fully playable levels that abide by all constraints governing levels (including the 15x20 room size) designed for the main game. Our reduction is also "efficient": a Turing machine can be simulated by a Recursed level whose size is linear in the encoding size of the Turing machine and whose solution length is polynomial in the running time of the Turing machine. Full Article
pd On Rearrangement of Items Stored in Stacks. (arXiv:2002.04979v2 [cs.RO] UPDATED) By arxiv.org Published On :: There are $n ge 2$ stacks, each filled with $d$ items, and one empty stack. Every stack has capacity $d > 0$. A robot arm, in one stack operation (step), may pop one item from the top of a non-empty stack and subsequently push it onto a stack not at capacity. In a {em labeled} problem, all $nd$ items are distinguishable and are initially randomly scattered in the $n$ stacks. The items must be rearranged using pop-and-pushs so that in the end, the $k^{ m th}$ stack holds items $(k-1)d +1, ldots, kd$, in that order, from the top to the bottom for all $1 le k le n$. In an {em unlabeled} problem, the $nd$ items are of $n$ types of $d$ each. The goal is to rearrange items so that items of type $k$ are located in the $k^{ m th}$ stack for all $1 le k le n$. In carrying out the rearrangement, a natural question is to find the least number of required pop-and-pushes. Our main contributions are: (1) an algorithm for restoring the order of $n^2$ items stored in an $n imes n$ table using only $2n$ column and row permutations, and its generalization, and (2) an algorithm with a guaranteed upper bound of $O(nd)$ steps for solving both versions of the stack rearrangement problem when $d le lceil cn ceil$ for arbitrary fixed positive number $c$. In terms of the required number of steps, the labeled and unlabeled version have lower bounds $Omega(nd + nd{frac{log d}{log n}})$ and $Omega(nd)$, respectively. Full Article
pd Toward Improving the Evaluation of Visual Attention Models: a Crowdsourcing Approach. (arXiv:2002.04407v2 [cs.CV] UPDATED) By arxiv.org Published On :: Human visual attention is a complex phenomenon. A computational modeling of this phenomenon must take into account where people look in order to evaluate which are the salient locations (spatial distribution of the fixations), when they look in those locations to understand the temporal development of the exploration (temporal order of the fixations), and how they move from one location to another with respect to the dynamics of the scene and the mechanics of the eyes (dynamics). State-of-the-art models focus on learning saliency maps from human data, a process that only takes into account the spatial component of the phenomenon and ignore its temporal and dynamical counterparts. In this work we focus on the evaluation methodology of models of human visual attention. We underline the limits of the current metrics for saliency prediction and scanpath similarity, and we introduce a statistical measure for the evaluation of the dynamics of the simulated eye movements. While deep learning models achieve astonishing performance in saliency prediction, our analysis shows their limitations in capturing the dynamics of the process. We find that unsupervised gravitational models, despite of their simplicity, outperform all competitors. Finally, exploiting a crowd-sourcing platform, we present a study aimed at evaluating how strongly the scanpaths generated with the unsupervised gravitational models appear plausible to naive and expert human observers. Full Article
pd A memory of motion for visual predictive control tasks. (arXiv:2001.11759v3 [cs.RO] UPDATED) By arxiv.org Published On :: This paper addresses the problem of efficiently achieving visual predictive control tasks. To this end, a memory of motion, containing a set of trajectories built off-line, is used for leveraging precomputation and dealing with difficult visual tasks. Standard regression techniques, such as k-nearest neighbors and Gaussian process regression, are used to query the memory and provide on-line a warm-start and a way point to the control optimization process. The proposed technique allows the control scheme to achieve high performance and, at the same time, keep the computational time limited. Simulation and experimental results, carried out with a 7-axis manipulator, show the effectiveness of the approach. Full Article
pd Continuous speech separation: dataset and analysis. (arXiv:2001.11482v3 [cs.SD] UPDATED) By arxiv.org Published On :: This paper describes a dataset and protocols for evaluating continuous speech separation algorithms. Most prior studies on speech separation use pre-segmented signals of artificially mixed speech utterances which are mostly emph{fully} overlapped, and the algorithms are evaluated based on signal-to-distortion ratio or similar performance metrics. However, in natural conversations, a speech signal is continuous, containing both overlapped and overlap-free components. In addition, the signal-based metrics have very weak correlations with automatic speech recognition (ASR) accuracy. We think that not only does this make it hard to assess the practical relevance of the tested algorithms, it also hinders researchers from developing systems that can be readily applied to real scenarios. In this paper, we define continuous speech separation (CSS) as a task of generating a set of non-overlapped speech signals from a extit{continuous} audio stream that contains multiple utterances that are emph{partially} overlapped by a varying degree. A new real recorded dataset, called LibriCSS, is derived from LibriSpeech by concatenating the corpus utterances to simulate a conversation and capturing the audio replays with far-field microphones. A Kaldi-based ASR evaluation protocol is also established by using a well-trained multi-conditional acoustic model. By using this dataset, several aspects of a recently proposed speaker-independent CSS algorithm are investigated. The dataset and evaluation scripts are available to facilitate the research in this direction. Full Article
pd Evolutionary Dynamics of Higher-Order Interactions. (arXiv:2001.10313v2 [physics.soc-ph] UPDATED) By arxiv.org Published On :: We live and cooperate in networks. However, links in networks only allow for pairwise interactions, thus making the framework suitable for dyadic games, but not for games that are played in groups of more than two players. To remedy this, we introduce higher-order interactions, where a link can connect more than two individuals, and study their evolutionary dynamics. We first consider a public goods game on a uniform hypergraph, showing that it corresponds to the replicator dynamics in the well-mixed limit, and providing an exact theoretical foundation to study cooperation in networked groups. We also extend the analysis to heterogeneous hypergraphs that describe interactions of groups of different sizes and characterize the evolution of cooperation in such cases. Finally, we apply our new formulation to study the nature of group dynamics in real systems, showing how to extract the actual dependence of the synergy factor on the size of a group from real-world collaboration data in science and technology. Our work is a first step towards the implementation of new actions to boost cooperation in social groups. Full Article
pd A Real-Time Approach for Chance-Constrained Motion Planning with Dynamic Obstacles. (arXiv:2001.08012v2 [cs.RO] UPDATED) By arxiv.org Published On :: Uncertain dynamic obstacles, such as pedestrians or vehicles, pose a major challenge for optimal robot navigation with safety guarantees. Previous work on motion planning has followed two main strategies to provide a safe bound on an obstacle's space: a polyhedron, such as a cuboid, or a nonlinear differentiable surface, such as an ellipsoid. The former approach relies on disjunctive programming, which has a relatively high computational cost that grows exponentially with the number of obstacles. The latter approach needs to be linearized locally to find a tractable evaluation of the chance constraints, which dramatically reduces the remaining free space and leads to over-conservative trajectories or even unfeasibility. In this work, we present a hybrid approach that eludes the pitfalls of both strategies while maintaining the original safety guarantees. The key idea consists in obtaining a safe differentiable approximation for the disjunctive chance constraints bounding the obstacles. The resulting nonlinear optimization problem is free of chance constraint linearization and disjunctive programming, and therefore, it can be efficiently solved to meet fast real-time requirements with multiple obstacles. We validate our approach through mathematical proof, simulation and real experiments with an aerial robot using nonlinear model predictive control to avoid pedestrians. Full Article
pd Provenance for the Description Logic ELHr. (arXiv:2001.07541v2 [cs.LO] UPDATED) By arxiv.org Published On :: We address the problem of handling provenance information in ELHr ontologies. We consider a setting recently introduced for ontology-based data access, based on semirings and extending classical data provenance, in which ontology axioms are annotated with provenance tokens. A consequence inherits the provenance of the axioms involved in deriving it, yielding a provenance polynomial as an annotation. We analyse the semantics for the ELHr case and show that the presence of conjunctions poses various difficulties for handling provenance, some of which are mitigated by assuming multiplicative idempotency of the semiring. Under this assumption, we study three problems: ontology completion with provenance, computing the set of relevant axioms for a consequence, and query answering. Full Article
pd Hardware Implementation of Neural Self-Interference Cancellation. (arXiv:2001.04543v2 [eess.SP] UPDATED) By arxiv.org Published On :: In-band full-duplex systems can transmit and receive information simultaneously on the same frequency band. However, due to the strong self-interference caused by the transmitter to its own receiver, the use of non-linear digital self-interference cancellation is essential. In this work, we describe a hardware architecture for a neural network-based non-linear self-interference (SI) canceller and we compare it with our own hardware implementation of a conventional polynomial based SI canceller. In particular, we present implementation results for a shallow and a deep neural network SI canceller as well as for a polynomial SI canceller. Our results show that the deep neural network canceller achieves a hardware efficiency of up to $312.8$ Msamples/s/mm$^2$ and an energy efficiency of up to $0.9$ nJ/sample, which is $2.1 imes$ and $2 imes$ better than the polynomial SI canceller, respectively. These results show that NN-based methods applied to communications are not only useful from a performance perspective, but can also be a very effective means to reduce the implementation complexity. Full Article
pd Maximal Closed Set and Half-Space Separations in Finite Closure Systems. (arXiv:2001.04417v2 [cs.AI] UPDATED) By arxiv.org Published On :: Several problems of artificial intelligence, such as predictive learning, formal concept analysis or inductive logic programming, can be viewed as a special case of half-space separation in abstract closure systems over finite ground sets. For the typical scenario that the closure system is given via a closure operator, we show that the half-space separation problem is NP-complete. As a first approach to overcome this negative result, we relax the problem to maximal closed set separation, give a greedy algorithm solving this problem with a linear number of closure operator calls, and show that this bound is sharp. For a second direction, we consider Kakutani closure systems and prove that they are algorithmically characterized by the greedy algorithm. As a first special case of the general problem setting, we consider Kakutani closure systems over graphs, generalize a fundamental characterization result based on the Pasch axiom to graph structured partitioning of finite sets, and give a sufficient condition for this kind of closures systems in terms of graph minors. For a second case, we then focus on closure systems over finite lattices, give an improved adaptation of the greedy algorithm for this special case, and present two applications concerning formal concept and subsumption lattices. We also report some experimental results to demonstrate the practical usefulness of our algorithm. Full Article
pd Games Where You Can Play Optimally with Arena-Independent Finite Memory. (arXiv:2001.03894v2 [cs.GT] UPDATED) By arxiv.org Published On :: For decades, two-player (antagonistic) games on graphs have been a framework of choice for many important problems in theoretical computer science. A notorious one is controller synthesis, which can be rephrased through the game-theoretic metaphor as the quest for a winning strategy of the system in a game against its antagonistic environment. Depending on the specification, optimal strategies might be simple or quite complex, for example having to use (possibly infinite) memory. Hence, research strives to understand which settings allow for simple strategies. In 2005, Gimbert and Zielonka provided a complete characterization of preference relations (a formal framework to model specifications and game objectives) that admit memoryless optimal strategies for both players. In the last fifteen years however, practical applications have driven the community toward games with complex or multiple objectives, where memory -- finite or infinite -- is almost always required. Despite much effort, the exact frontiers of the class of preference relations that admit finite-memory optimal strategies still elude us. In this work, we establish a complete characterization of preference relations that admit optimal strategies using arena-independent finite memory, generalizing the work of Gimbert and Zielonka to the finite-memory case. We also prove an equivalent to their celebrated corollary of great practical interest: if both players have optimal (arena-independent-)finite-memory strategies in all one-player games, then it is also the case in all two-player games. Finally, we pinpoint the boundaries of our results with regard to the literature: our work completely covers the case of arena-independent memory (e.g., multiple parity objectives, lower- and upper-bounded energy objectives), and paves the way to the arena-dependent case (e.g., multiple lower-bounded energy objectives). Full Article
pd Intra-Variable Handwriting Inspection Reinforced with Idiosyncrasy Analysis. (arXiv:1912.12168v2 [cs.CV] UPDATED) By arxiv.org Published On :: In this paper, we work on intra-variable handwriting, where the writing samples of an individual can vary significantly. Such within-writer variation throws a challenge for automatic writer inspection, where the state-of-the-art methods do not perform well. To deal with intra-variability, we analyze the idiosyncrasy in individual handwriting. We identify/verify the writer from highly idiosyncratic text-patches. Such patches are detected using a deep recurrent reinforcement learning-based architecture. An idiosyncratic score is assigned to every patch, which is predicted by employing deep regression analysis. For writer identification, we propose a deep neural architecture, which makes the final decision by the idiosyncratic score-induced weighted average of patch-based decisions. For writer verification, we propose two algorithms for patch-fed deep feature aggregation, which assist in authentication using a triplet network. The experiments were performed on two databases, where we obtained encouraging results. Full Article
pd Safe non-smooth black-box optimization with application to policy search. (arXiv:1912.09466v3 [math.OC] UPDATED) By arxiv.org Published On :: For safety-critical black-box optimization tasks, observations of the constraints and the objective are often noisy and available only for the feasible points. We propose an approach based on log barriers to find a local solution of a non-convex non-smooth black-box optimization problem $min f^0(x)$ subject to $f^i(x)leq 0,~ i = 1,ldots, m$, at the same time, guaranteeing constraint satisfaction while learning an optimal solution with high probability. Our proposed algorithm exploits noisy observations to iteratively improve on an initial safe point until convergence. We derive the convergence rate and prove safety of our algorithm. We demonstrate its performance in an application to an iterative control design problem. Full Article
pd SCAttNet: Semantic Segmentation Network with Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images. (arXiv:1912.09121v2 [cs.CV] UPDATED) By arxiv.org Published On :: High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing mass HRRSIs. However, HRRSIs often exhibit large intraclass variance and small interclass variance due to the diversity and complexity of ground objects, thereby bringing great challenges to a semantic segmentation task. In this paper, we propose a new end-to-end semantic segmentation network, which integrates lightweight spatial and channel attention modules that can refine features adaptively. We compare our method with several classic methods on the ISPRS Vaihingen and Potsdam datasets. Experimental results show that our method can achieve better semantic segmentation results. The source codes are available at https://github.com/lehaifeng/SCAttNet. Full Article
pd A predictive path-following controller for multi-steered articulated vehicles. (arXiv:1912.06259v5 [math.OC] UPDATED) By arxiv.org Published On :: Stabilizing multi-steered articulated vehicles in backward motion is a complex task for any human driver. Unless the vehicle is accurately steered, its structurally unstable joint-angle kinematics during reverse maneuvers can cause the vehicle segments to fold and enter a jack-knife state. In this work, a model predictive path-following controller is proposed enabling automatic low-speed steering control of multi-steered articulated vehicles, comprising a car-like tractor and an arbitrary number of trailers with passive or active steering. The proposed path-following controller is tailored to follow nominal paths that contains full state and control-input information, and is designed to satisfy various physical constraints on the vehicle states as well as saturations and rate limitations on the tractor's curvature and the trailer steering angles. The performance of the proposed model predictive path-following controller is evaluated in a set of simulations for a multi-steered 2-trailer with a car-like tractor where the last trailer has steerable wheels. Full Article
pd SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval. (arXiv:1912.05891v2 [cs.IR] UPDATED) By arxiv.org Published On :: In learning-to-rank for information retrieval, a ranking model is automatically learned from the data and then utilized to rank the sets of retrieved documents. Therefore, an ideal ranking model would be a mapping from a document set to a permutation on the set, and should satisfy two critical requirements: (1)~it should have the ability to model cross-document interactions so as to capture local context information in a query; (2)~it should be permutation-invariant, which means that any permutation of the inputted documents would not change the output ranking. Previous studies on learning-to-rank either design uni-variate scoring functions that score each document separately, and thus failed to model the cross-document interactions; or construct multivariate scoring functions that score documents sequentially, which inevitably sacrifice the permutation invariance requirement. In this paper, we propose a neural learning-to-rank model called SetRank which directly learns a permutation-invariant ranking model defined on document sets of any size. SetRank employs a stack of (induced) multi-head self attention blocks as its key component for learning the embeddings for all of the retrieved documents jointly. The self-attention mechanism not only helps SetRank to capture the local context information from cross-document interactions, but also to learn permutation-equivariant representations for the inputted documents, which therefore achieving a permutation-invariant ranking model. Experimental results on three large scale benchmarks showed that the SetRank significantly outperformed the baselines include the traditional learning-to-rank models and state-of-the-art Neural IR models. Full Article
pd Novel Deep Learning Framework for Wideband Spectrum Characterization at Sub-Nyquist Rate. (arXiv:1912.05255v2 [eess.SP] UPDATED) By arxiv.org Published On :: Introduction of spectrum-sharing in 5G and subsequent generation networks demand base-station(s) with the capability to characterize the wideband spectrum spanned over licensed, shared and unlicensed non-contiguous frequency bands. Spectrum characterization involves the identification of vacant bands along with center frequency and parameters (energy, modulation, etc.) of occupied bands. Such characterization at Nyquist sampling is area and power-hungry due to the need for high-speed digitization. Though sub-Nyquist sampling (SNS) offers an excellent alternative when the spectrum is sparse, it suffers from poor performance at low signal to noise ratio (SNR) and demands careful design and integration of digital reconstruction, tunable channelizer and characterization algorithms. In this paper, we propose a novel deep-learning framework via a single unified pipeline to accomplish two tasks: 1)~Reconstruct the signal directly from sub-Nyquist samples, and 2)~Wideband spectrum characterization. The proposed approach eliminates the need for complex signal conditioning between reconstruction and characterization and does not need complex tunable channelizers. We extensively compare the performance of our framework for a wide range of modulation schemes, SNR and channel conditions. We show that the proposed framework outperforms existing SNS based approaches and characterization performance approaches to Nyquist sampling-based framework with an increase in SNR. Easy to design and integrate along with a single unified deep learning framework make the proposed architecture a good candidate for reconfigurable platforms. Full Article
pd Measuring Social Bias in Knowledge Graph Embeddings. (arXiv:1912.02761v2 [cs.CL] UPDATED) By arxiv.org Published On :: It has recently been shown that word embeddings encode social biases, with a harmful impact on downstream tasks. However, to this point there has been no similar work done in the field of graph embeddings. We present the first study on social bias in knowledge graph embeddings, and propose a new metric suitable for measuring such bias. We conduct experiments on Wikidata and Freebase, and show that, as with word embeddings, harmful social biases related to professions are encoded in the embeddings with respect to gender, religion, ethnicity and nationality. For example, graph embeddings encode the information that men are more likely to be bankers, and women more likely to be homekeepers. As graph embeddings become increasingly utilized, we suggest that it is important the existence of such biases are understood and steps taken to mitigate their impact. Full Article
pd IPG-Net: Image Pyramid Guidance Network for Small Object Detection. (arXiv:1912.00632v3 [cs.CV] UPDATED) By arxiv.org Published On :: For Convolutional Neural Network-based object detection, there is a typical dilemma: the spatial information is well kept in the shallow layers which unfortunately do not have enough semantic information, while the deep layers have a high semantic concept but lost a lot of spatial information, resulting in serious information imbalance. To acquire enough semantic information for shallow layers, Feature Pyramid Networks (FPN) is used to build a top-down propagated path. In this paper, except for top-down combining of information for shallow layers, we propose a novel network called Image Pyramid Guidance Network (IPG-Net) to make sure both the spatial information and semantic information are abundant for each layer. Our IPG-Net has two main parts: the image pyramid guidance transformation module and the image pyramid guidance fusion module. Our main idea is to introduce the image pyramid guidance into the backbone stream to solve the information imbalance problem, which alleviates the vanishment of the small object features. This IPG transformation module promises even in the deepest stage of the backbone, there is enough spatial information for bounding box regression and classification. Furthermore, we designed an effective fusion module to fuse the features from the image pyramid and features from the backbone stream. We have tried to apply this novel network to both one-stage and two-stage detection models, state of the art results are obtained on the most popular benchmark data sets, i.e. MS COCO and Pascal VOC. Full Article
pd Robustly Clustering a Mixture of Gaussians. (arXiv:1911.11838v5 [cs.DS] UPDATED) By arxiv.org Published On :: We give an efficient algorithm for robustly clustering of a mixture of two arbitrary Gaussians, a central open problem in the theory of computationally efficient robust estimation, assuming only that the the means of the component Gaussians are well-separated or their covariances are well-separated. Our algorithm and analysis extend naturally to robustly clustering mixtures of well-separated strongly logconcave distributions. The mean separation required is close to the smallest possible to guarantee that most of the measure of each component can be separated by some hyperplane (for covariances, it is the same condition in the second degree polynomial kernel). We also show that for Gaussian mixtures, separation in total variation distance suffices to achieve robust clustering. Our main tools are a new identifiability criterion based on isotropic position and the Fisher discriminant, and a corresponding Sum-of-Squares convex programming relaxation, of fixed degree. Full Article