pd

Multitype branching process with nonhomogeneous Poisson and generalized Polya immigration. (arXiv:1909.03684v2 [math.PR] UPDATED)

In a multitype branching process, it is assumed that immigrants arrive according to a nonhomogeneous Poisson or a generalized Polya process (both processes are formulated as a nonhomogeneous birth process with an appropriate choice of transition intensities). We show that the renormalized numbers of objects of the various types alive at time $t$ for supercritical, critical, and subcritical cases jointly converge in distribution under those two different arrival processes. Furthermore, some transient moment analysis when there are only two types of particles is provided. AMS 2000 subject classifications: Primary 60J80, 60J85; secondary 60K10, 60K25, 90B15.




pd

Convolutions on the complex torus. (arXiv:1908.11815v3 [math.RA] UPDATED)

"Quasi-elliptic" functions can be given a ring structure in two different ways, using either ordinary multiplication, or convolution. The map between the corresponding standard bases is calculated and given by Eisenstein series. A related structure has appeared recently in the computation of Feynman integrals. The two approaches are related by a sequence of polynomials with interlacing zeroes.




pd

Integrability of moduli and regularity of Denjoy counterexamples. (arXiv:1908.06568v4 [math.DS] UPDATED)

We study the regularity of exceptional actions of groups by $C^{1,alpha}$ diffeomorphisms on the circle, i.e. ones which admit exceptional minimal sets, and whose elements have first derivatives that are continuous with concave modulus of continuity $alpha$. Let $G$ be a finitely generated group admitting a $C^{1,alpha}$ action $ ho$ with a free orbit on the circle, and such that the logarithms of derivatives of group elements are uniformly bounded at some point of the circle. We prove that if $G$ has spherical growth bounded by $c n^{d-1}$ and if the function $1/alpha^d$ is integrable near zero, then under some mild technical assumptions on $alpha$, there is a sequence of exceptional $C^{1,alpha}$ actions of $G$ which converge to $ ho$ in the $C^1$ topology. As a consequence for a single diffeomorphism, we obtain that if the function $1/alpha$ is integrable near zero, then there exists a $C^{1,alpha}$ exceptional diffeomorphism of the circle. This corollary accounts for all previously known moduli of continuity for derivatives of exceptional diffeomorphisms. We also obtain a partial converse to our main result. For finitely generated free abelian groups, the existence of an exceptional action, together with some natural hypotheses on the derivatives of group elements, puts integrability restrictions on the modulus $alpha$. These results are related to a long-standing question of D. McDuff concerning the length spectrum of exceptional $C^1$ diffeomorphisms of the circle.




pd

Poisson Dixmier-Moeglin equivalence from a topological point of view. (arXiv:1908.06542v2 [math.RA] UPDATED)

In this paper, we provide some topological criteria for the Poisson Dixmier-Moeglin equivalence for $A$ in terms of the poset $({ m P. spec A}, subseteq)$ and the symplectic leaf or core stratification on its maximal spectrum. In particular, we prove that the Zariski topology of the Poisson prime spectrum and of each symplectic leaf or core can detect the Poisson Dixmier-Moeglin equivalence for any complex affine Poisson algebra. Moreover, we generalize the weaker version of the Poisson Dixmier-Moeglin equivalence for a complex affine Poisson algebra proved in [J. Bell, S. Launois, O.L. S'anchez, and B. Moosa, Poisson algebras via model theory and differential algebraic geometry, J. Eur. Math. Soc. (JEMS), 19(2017), no. 7, 2019-2049] to the general context of a commutative differential algebra.




pd

Infinite dimensional affine processes. (arXiv:1907.10337v3 [math.PR] UPDATED)

The goal of this article is to investigate infinite dimensional affine diffusion processes on the canonical state space. This includes a derivation of the corresponding system of Riccati differential equations and an existence proof for such processes, which has been missing in the literature so far. For the existence proof, we will regard affine processes as solutions to infinite dimensional stochastic differential equations with values in Hilbert spaces. This requires a suitable version of the Yamada-Watanabe theorem, which we will provide in this paper. Several examples of infinite dimensional affine processes accompany our results.




pd

Equivariant Batalin-Vilkovisky formalism. (arXiv:1907.07995v3 [hep-th] UPDATED)

We study an equivariant extension of the Batalin-Vilkovisky formalism for quantizing gauge theories. Namely, we introduce a general framework to encompass failures of the quantum master equation, and we apply it to the natural equivariant extension of AKSZ solutions of the classical master equation (CME). As examples of the construction, we recover the equivariant extension of supersymmetric Yang-Mills in 2d and of Donaldson-Witten theory.




pd

A stand-alone analysis of quasidensity. (arXiv:1907.07278v8 [math.FA] UPDATED)

In this paper we consider the "quasidensity" of a subset of the product of a Banach space and its dual, and give a connection between quasidense sets and sets of "type (NI)". We discuss "coincidence sets" of certain convex functions and prove two sum theorems for coincidence sets. We obtain new results on the Fitzpatrick extension of a closed quasidense monotone multifunction. The analysis in this paper is self-contained, and independent of previous work on "Banach SN spaces". This version differs from the previous version because it is shown that the (well known) equivalence of quasidensity and "type (NI)" for maximally monotone sets is not true without the monotonicity assumption and that the appendix has been moved to the end of Section 10, where it rightfully belongs.




pd

Nonlinear stability of explicit self-similar solutions for the timelike extremal hypersurfaces in R^{1+3}. (arXiv:1907.01126v2 [math.AP] UPDATED)

This paper is devoted to the study of the singularity phenomenon of timelike extremal hypersurfaces in Minkowski spacetime $mathbb{R}^{1+3}$. We find that there are two explicit lightlike self-similar solutions to a graph representation of timelike extremal hypersurfaces in Minkowski spacetime $mathbb{R}^{1+3}$, the geometry of them are two spheres. The linear mode unstable of those lightlike self-similar solutions for the radially symmetric membranes equation is given. After that, we show those self-similar solutions of the radially symmetric membranes equation are nonlinearly stable inside a strictly proper subset of the backward lightcone. This means that the dynamical behavior of those two spheres is as attractors. Meanwhile, we overcome the double roots case (the theorem of Poincar'{e} can't be used) in solving the difference equation by construction of a Newton's polygon when we carry out the analysis of spectrum for the linear operator.




pd

Representations of the Infinite-Dimensional $p$-Adic Affine Group. (arXiv:1906.08964v2 [math.RT] UPDATED)

We introduce an infinite-dimensional $p$-adic affine group and construct its irreducible unitary representation. Our approach follows the one used by Vershik, Gelfand and Graev for the diffeomorphism group, but with modifications made necessary by the fact that the group does not act on the phase space. However it is possible to define its action on some classes of functions.




pd

Decentralized and Parallelized Primal and Dual Accelerated Methods for Stochastic Convex Programming Problems. (arXiv:1904.09015v10 [math.OC] UPDATED)

We introduce primal and dual stochastic gradient oracle methods for decentralized convex optimization problems. Both for primal and dual oracles the proposed methods are optimal in terms of the number of communication steps. However, for all classes of the objective, the optimality in terms of the number of oracle calls per node in the class of methods with optimal number of communication steps takes place only up to a logarithmic factor and the notion of smoothness. By using mini-batching technique we show that all proposed methods with stochastic oracle can be additionally parallelized at each node.




pd

Study of fractional Poincar'e inequalities on unbounded domains. (arXiv:1904.07170v2 [math.AP] UPDATED)

The central aim of this paper is to study (regional) fractional Poincar'e type inequalities on unbounded domains satisfying the finite ball condition. Both existence and non existence type results are established depending on various conditions on domains and on the range of $s in (0,1)$. The best constant in both regional fractional and fractional Poincar'e inequality is characterized for strip like domains $(omega imes mathbb{R}^{n-1})$, and the results obtained in this direction are analogous to those of the local case. This settles one of the natural questions raised by K. Yeressian in [ extit{Asymptotic behavior of elliptic nonlocal equations set in cylinders, Asymptot. Anal. 89, (2014), no 1-2}].




pd

Grothendieck's inequalities for JB$^*$-triples: Proof of the Barton-Friedman conjecture. (arXiv:1903.08931v3 [math.OA] UPDATED)

We prove that, given a constant $K> 2$ and a bounded linear operator $T$ from a JB$^*$-triple $E$ into a complex Hilbert space $H$, there exists a norm-one functional $psiin E^*$ satisfying $$|T(x)| leq K , |T| , |x|_{psi},$$ for all $xin E$. Applying this result we show that, given $G > 8 (1+2sqrt{3})$ and a bounded bilinear form $V$ on the Cartesian product of two JB$^*$-triples $E$ and $B$, there exist norm-one functionals $varphiin E^{*}$ and $psiin B^{*}$ satisfying $$|V(x,y)| leq G |V| , |x|_{varphi} , |y|_{psi}$$ for all $(x,y)in E imes B$. These results prove a conjecture pursued during almost twenty years.




pd

Gabriel-Roiter measure, representation dimension and rejective chains. (arXiv:1903.05555v2 [math.RT] UPDATED)

The Gabriel-Roiter measure is used to give an alternative proof of the finiteness of the representation dimension for Artin algebras, a result established by Iyama in 2002. The concept of Gabriel-Roiter measure can be extended to abelian length categories and every such category has multiple Gabriel-Roiter measures. Using this notion, we prove the following broader statement: given any object $X$ and any Gabriel-Roiter measure $mu$ in an abelian length category $mathcal{A}$, there exists an object $X'$ which depends on $X$ and $mu$, such that $Gamma = operatorname{End}_{mathcal{A}}(X oplus X')$ has finite global dimension. Analogously to Iyama's original results, our construction yields quasihereditary rings and fits into the theory of rejective chains.




pd

Diophantine Equations Involving the Euler Totient Function. (arXiv:1902.01638v4 [math.NT] UPDATED)

We deal with various Diophantine equations involving the Euler totient function and various sequences of numbers, including factorials, powers, and Fibonacci sequences.




pd

On the automorphic sheaves for GSp_4. (arXiv:1901.04447v6 [math.RT] UPDATED)

In this paper we first review the setting for the geometric Langlands functoriality and establish a result for the `backward' functoriality functor. We illustrate this by known examples of the geometric theta-lifting. We then apply the above result to obtain new Hecke eigen-sheaves. The most important application is a construction of the automorphic sheaf for G=GSp_4 attached to a G^L-local system on a curve X such that its standard representation is an irreducible local system of rank 4 on X.




pd

Mirror Symmetry for Non-Abelian Landau-Ginzburg Models. (arXiv:1812.06200v3 [math.AG] UPDATED)

We consider Landau-Ginzburg models stemming from groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit mirror map between the A-model and the B-model state spaces for two examples. Further, we prove that this mirror map is an isomorphism between the untwisted broad sectors and the narrow diagonal sectors for Fermat type polynomials.




pd

Bernoulli decomposition and arithmetical independence between sequences. (arXiv:1811.11545v2 [math.NT] UPDATED)

In this paper we study the following set[A={p(n)+2^nd mod 1: ngeq 1}subset [0.1],] where $p$ is a polynomial with at least one irrational coefficient on non constant terms, $d$ is any real number and for $ain [0,infty)$, $a mod 1$ is the fractional part of $a$. By a Bernoulli decomposition method, we show that the closure of $A$ must have full Hausdorff dimension.




pd

Optimal construction of Koopman eigenfunctions for prediction and control. (arXiv:1810.08733v3 [math.OC] UPDATED)

This work presents a novel data-driven framework for constructing eigenfunctions of the Koopman operator geared toward prediction and control. The method leverages the richness of the spectrum of the Koopman operator away from attractors to construct a rich set of eigenfunctions such that the state (or any other observable quantity of interest) is in the span of these eigenfunctions and hence predictable in a linear fashion. The eigenfunction construction is optimization-based with no dictionary selection required. Once a predictor for the uncontrolled part of the system is obtained in this way, the incorporation of control is done through a multi-step prediction error minimization, carried out by a simple linear least-squares regression. The predictor so obtained is in the form of a linear controlled dynamical system and can be readily applied within the Koopman model predictive control framework of [12] to control nonlinear dynamical systems using linear model predictive control tools. The method is entirely data-driven and based purely on convex optimization, with no reliance on neural networks or other non-convex machine learning tools. The novel eigenfunction construction method is also analyzed theoretically, proving rigorously that the family of eigenfunctions obtained is rich enough to span the space of all continuous functions. In addition, the method is extended to construct generalized eigenfunctions that also give rise Koopman invariant subspaces and hence can be used for linear prediction. Detailed numerical examples with code available online demonstrate the approach, both for prediction and feedback control.




pd

On $p$-groups with automorphism groups related to the exceptional Chevalley groups. (arXiv:1810.08365v3 [math.GR] UPDATED)

Let $hat G$ be the finite simply connected version of an exceptional Chevalley group, and let $V$ be a nontrivial irreducible module, of minimal dimension, for $hat G$ over its field of definition. We explore the overgroup structure of $hat G$ in $mathrm{GL}(V)$, and the submodule structure of the exterior square (and sometimes the third Lie power) of $V$. When $hat G$ is defined over a field of odd prime order $p$, this allows us to construct the smallest (with respect to certain properties) $p$-groups $P$ such that the group induced by $mathrm{Aut}(P)$ on $P/Phi(P)$ is either $hat G$ or its normaliser in $mathrm{GL}(V)$.




pd

Exotic Springer fibers for orbits corresponding to one-row bipartitions. (arXiv:1810.03731v2 [math.RT] UPDATED)

We study the geometry and topology of exotic Springer fibers for orbits corresponding to one-row bipartitions from an explicit, combinatorial point of view. This includes a detailed analysis of the structure of the irreducible components and their intersections as well as the construction of an explicit affine paving. Moreover, we compute the ring structure of cohomology by constructing a CW-complex homotopy equivalent to the exotic Springer fiber. This homotopy equivalent space admits an action of the type C Weyl group inducing Kato's original exotic Springer representation on cohomology. Our results are described in terms of the diagrammatics of the one-boundary Temperley-Lieb algebra (also known as the blob algebra). This provides a first step in generalizing the geometric versions of Khovanov's arc algebra to the exotic setting.




pd

On the rationality of cycle integrals of meromorphic modular forms. (arXiv:1810.00612v3 [math.NT] UPDATED)

We derive finite rational formulas for the traces of cycle integrals of certain meromorphic modular forms. Moreover, we prove the modularity of a completion of the generating function of such traces. The theoretical framework for these results is an extension of the Shintani theta lift to meromorphic modular forms of positive even weight.




pd

Twisted Sequences of Extensions. (arXiv:1808.07936v3 [math.RT] UPDATED)

Gabber and Joseph introduced a ladder diagram between two natural sequences of extensions. Their diagram is used to produce a 'twisted' sequence that is applied to old and new results on extension groups in category $mathcal{O}$.




pd

A Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity. (arXiv:1808.04162v4 [math.OC] UPDATED)

In this work, we propose a simple modification of the forward-backward splitting method for finding a zero in the sum of two monotone operators. Our method converges under the same assumptions as Tseng's forward-backward-forward method, namely, it does not require cocoercivity of the single-valued operator. Moreover, each iteration only requires one forward evaluation rather than two as is the case for Tseng's method. Variants of the method incorporating a linesearch, relaxation and inertia, or a structured three operator inclusion are also discussed.




pd

On the Total Curvature and Betti Numbers of Complex Projective Manifolds. (arXiv:1807.11625v2 [math.DG] UPDATED)

We prove an inequality between the sum of the Betti numbers of a complex projective manifold and its total curvature, and we characterize the complex projective manifolds whose total curvature is minimal. These results extend the classical theorems of Chern and Lashof to complex projective space.




pd

The 2d-directed spanning forest converges to the Brownian web. (arXiv:1805.09399v3 [math.PR] UPDATED)

The two-dimensional directed spanning forest (DSF) introduced by Baccelli and Bordenave is a planar directed forest whose vertex set is given by a homogeneous Poisson point process $mathcal{N}$ on $mathbb{R}^2$. If the DSF has direction $-e_y$, the ancestor $h(u)$ of a vertex $u in mathcal{N}$ is the nearest Poisson point (in the $L_2$ distance) having strictly larger $y$-coordinate. This construction induces complex geometrical dependencies. In this paper we show that the collection of DSF paths, properly scaled, converges in distribution to the Brownian web (BW). This verifies a conjecture made by Baccelli and Bordenave in 2007.




pd

Effective divisors on Hurwitz spaces. (arXiv:1804.01898v3 [math.AG] UPDATED)

We prove the effectiveness of the canonical bundle of several Hurwitz spaces of degree k covers of the projective line from curves of genus 13<g<20.




pd

Conservative stochastic 2-dimensional Cahn-Hilliard equation. (arXiv:1802.04141v2 [math.PR] UPDATED)

We consider the stochastic 2-dimensional Cahn-Hilliard equation which is driven by the derivative in space of a space-time white noise. We use two different approaches to study this equation. First we prove that there exists a unique solution $Y$ to the shifted equation (see (1.4) below), then $X:=Y+{Z}$ is the unique solution to stochastic Cahn-Hilliard equaiton, where ${Z}$ is the corresponding O-U process. Moreover, we use Dirichlet form approach in cite{Albeverio:1991hk} to construct the probabilistically weak solution the the original equation (1.1) below. By clarifying the precise relation between the solutions obtained by the Dirichlet forms aprroach and $X$, we can also get the restricted Markov uniquness of the generator and the uniqueness of martingale solutions to the equation (1.1).




pd

Extremal values of the Sackin balance index for rooted binary trees. (arXiv:1801.10418v5 [q-bio.PE] UPDATED)

Tree balance plays an important role in different research areas like theoretical computer science and mathematical phylogenetics. For example, it has long been known that under the Yule model, a pure birth process, imbalanced trees are more likely than balanced ones. Therefore, different methods to measure the balance of trees were introduced. The Sackin index is one of the most frequently used measures for this purpose. In many contexts, statements about the minimal and maximal values of this index have been discussed, but formal proofs have never been provided. Moreover, while the number of trees with maximal Sackin index as well as the number of trees with minimal Sackin index when the number of leaves is a power of 2 are relatively easy to understand, the number of trees with minimal Sackin index for all other numbers of leaves was completely unknown. In this manuscript, we fully characterize trees with minimal and maximal Sackin index and also provide formulas to explicitly calculate the number of such trees.




pd

Expansion of Iterated Stratonovich Stochastic Integrals of Arbitrary Multiplicity Based on Generalized Iterated Fourier Series Converging Pointwise. (arXiv:1801.00784v9 [math.PR] UPDATED)

The article is devoted to the expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity $k$ $(kinmathbb{N})$ based on the generalized iterated Fourier series. The case of Fourier-Legendre series as well as the case of trigonotemric Fourier series are considered in details. The obtained expansion provides a possibility to represent the iterated Stratonovich stochastic integral in the form of iterated series of products of standard Gaussian random variables. Convergence in the mean of degree $2n$ $(nin mathbb{N})$ of the expansion is proved. Some modifications of the mentioned expansion were derived for the case $k=2$. One of them is based of multiple trigonomentric Fourier series converging almost everywhere in the square $[t, T]^2$. The results of the article can be applied to the numerical solution of Ito stochastic differential equations.




pd

Local Moduli of Semisimple Frobenius Coalescent Structures. (arXiv:1712.08575v3 [math.DG] UPDATED)

We extend the analytic theory of Frobenius manifolds to semisimple points with coalescing eigenvalues of the operator of multiplication by the Euler vector field. We clarify which freedoms, ambiguities and mutual constraints are allowed in the definition of monodromy data, in view of their importance for conjectural relationships between Frobenius manifolds and derived categories. Detailed examples and applications are taken from singularity and quantum cohomology theories. We explicitly compute the monodromy data at points of the Maxwell Stratum of the A3-Frobenius manifold, as well as at the small quantum cohomology of the Grassmannian G(2,4). In the latter case, we analyse in details the action of the braid group on the monodromy data. This proves that these data can be expressed in terms of characteristic classes of mutations of Kapranov's exceptional 5-block collection, as conjectured by one of the authors.




pd

High dimensional expanders and coset geometries. (arXiv:1710.05304v3 [math.CO] UPDATED)

High dimensional expanders is a vibrant emerging field of study. Nevertheless, the only known construction of bounded degree high dimensional expanders is based on Ramanujan complexes, whereas one dimensional bounded degree expanders are abundant.

In this work, we construct new families of bounded degree high dimensional expanders obeying the local spectral expansion property. This property has a number of important consequences, including geometric overlapping, fast mixing of high dimensional random walks, agreement testing and agreement expansion. Our construction also yields new families of expander graphs which are close to the Ramanujan bound, i.e., their spectral gap is close to optimal.

The construction is quite elementary and it is presented in a self contained manner; This is in contrary to the highly involved previously known construction of the Ramanujan complexes. The construction is also very symmetric (such symmetry properties are not known for Ramanujan complexes) ; The symmetry of the construction could be used, for example, in order to obtain good symmetric LDPC codes that were previously based on Ramanujan graphs.

The main tool that we use for is the theory of coset geometries. Coset geometries arose as a tool for studying finite simple groups. Here, we show that coset geometries arise in a very natural manner for groups of elementary matrices over any finitely generated algebra over a commutative unital ring. In other words, we show that such groups act simply transitively on the top dimensional face of a pure, partite, clique complex.




pd

Simulation of Integro-Differential Equation and Application in Estimation of Ruin Probability with Mixed Fractional Brownian Motion. (arXiv:1709.03418v6 [math.PR] UPDATED)

In this paper, we are concerned with the numerical solution of one type integro-differential equation by a probability method based on the fundamental martingale of mixed Gaussian processes. As an application, we will try to simulate the estimation of ruin probability with an unknown parameter driven not by the classical L'evy process but by the mixed fractional Brownian motion.




pd

Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces. (arXiv:1706.09490v2 [math.DG] UPDATED)

We use Ricci flow to obtain a local bi-Holder correspondence between Ricci limit spaces in three dimensions and smooth manifolds. This is more than a complete resolution of the three-dimensional case of the conjecture of Anderson-Cheeger-Colding-Tian, describing how Ricci limit spaces in three dimensions must be homeomorphic to manifolds, and we obtain this in the most general, locally non-collapsed case. The proofs build on results and ideas from recent papers of Hochard and the current authors.




pd

The classification of Rokhlin flows on C*-algebras. (arXiv:1706.09276v6 [math.OA] UPDATED)

We study flows on C*-algebras with the Rokhlin property. We show that every Kirchberg algebra carries a unique Rokhlin flow up to cocycle conjugacy, which confirms a long-standing conjecture of Kishimoto. We moreover present a classification theory for Rokhlin flows on C*-algebras satisfying certain technical properties, which hold for many C*-algebras covered by the Elliott program. As a consequence, we obtain the following further classification theorems for Rokhlin flows. Firstly, we extend the statement of Kishimoto's conjecture to the non-simple case: Up to cocycle conjugacy, a Rokhlin flow on a separable, nuclear, strongly purely infinite C*-algebra is uniquely determined by its induced action on the prime ideal space. Secondly, we give a complete classification of Rokhlin flows on simple classifiable $KK$-contractible C*-algebras: Two Rokhlin flows on such a C*-algebra are cocycle conjugate if and only if their induced actions on the cone of lower-semicontinuous traces are affinely conjugate.




pd

Categorification via blocks of modular representations for sl(n). (arXiv:1612.06941v3 [math.RT] UPDATED)

Bernstein, Frenkel, and Khovanov have constructed a categorification of tensor products of the standard representation of $mathfrak{sl}_2$, where they use singular blocks of category $mathcal{O}$ for $mathfrak{sl}_n$ and translation functors. Here we construct a positive characteristic analogue using blocks of representations of $mathfrak{sl}_n$ over a field $ extbf{k}$ of characteristic $p$ with zero Frobenius character, and singular Harish-Chandra character. We show that the aforementioned categorification admits a Koszul graded lift, which is equivalent to a geometric categorification constructed by Cautis, Kamnitzer, and Licata using coherent sheaves on cotangent bundles to Grassmanians. In particular, the latter admits an abelian refinement. With respect to this abelian refinement, the stratified Mukai flop induces a perverse equivalence on the derived categories for complementary Grassmanians. This is part of a larger project to give a combinatorial approach to Lusztig's conjectures for representations of Lie algebras in positive characteristic.




pd

A Class of Functional Inequalities and their Applications to Fourth-Order Nonlinear Parabolic Equations. (arXiv:1612.03508v3 [math.AP] UPDATED)

We study a class of fourth order nonlinear parabolic equations which include the thin-film equation and the quantum drift-diffusion model as special cases. We investigate these equations by first developing functional inequalities of the type $ int_Omega u^{2gamma-alpha-eta}Delta u^alphaDelta u^eta dx geq cint_Omega|Delta u^gamma |^2dx $, which seem to be of interest on their own right.




pd

On the zeros of the Riemann zeta function, twelve years later. (arXiv:0806.2361v7 [math.GM] UPDATED)

The paper proves the Riemann Hypothesis.




pd

Asymptotics of PDE in random environment by paracontrolled calculus. (arXiv:2005.03326v1 [math.PR])

We apply the paracontrolled calculus to study the asymptotic behavior of a certain quasilinear PDE with smeared mild noise, which originally appears as the space-time scaling limit of a particle system in random environment on one dimensional discrete lattice. We establish the convergence result and show a local in time well-posedness of the limit stochastic PDE with spatial white noise. It turns out that our limit stochastic PDE does not require any renormalization. We also show a comparison theorem for the limit equation.




pd

GraCIAS: Grassmannian of Corrupted Images for Adversarial Security. (arXiv:2005.02936v2 [cs.CV] UPDATED)

Input transformation based defense strategies fall short in defending against strong adversarial attacks. Some successful defenses adopt approaches that either increase the randomness within the applied transformations, or make the defense computationally intensive, making it substantially more challenging for the attacker. However, it limits the applicability of such defenses as a pre-processing step, similar to computationally heavy approaches that use retraining and network modifications to achieve robustness to perturbations. In this work, we propose a defense strategy that applies random image corruptions to the input image alone, constructs a self-correlation based subspace followed by a projection operation to suppress the adversarial perturbation. Due to its simplicity, the proposed defense is computationally efficient as compared to the state-of-the-art, and yet can withstand huge perturbations. Further, we develop proximity relationships between the projection operator of a clean image and of its adversarially perturbed version, via bounds relating geodesic distance on the Grassmannian to matrix Frobenius norms. We empirically show that our strategy is complementary to other weak defenses like JPEG compression and can be seamlessly integrated with them to create a stronger defense. We present extensive experiments on the ImageNet dataset across four different models namely InceptionV3, ResNet50, VGG16 and MobileNet models with perturbation magnitude set to {epsilon} = 16. Unlike state-of-the-art approaches, even without any retraining, the proposed strategy achieves an absolute improvement of ~ 4.5% in defense accuracy on ImageNet.




pd

A Quantum Algorithm To Locate Unknown Hashes For Known N-Grams Within A Large Malware Corpus. (arXiv:2005.02911v2 [quant-ph] UPDATED)

Quantum computing has evolved quickly in recent years and is showing significant benefits in a variety of fields. Malware analysis is one of those fields that could also take advantage of quantum computing. The combination of software used to locate the most frequent hashes and $n$-grams between benign and malicious software (KiloGram) and a quantum search algorithm could be beneficial, by loading the table of hashes and $n$-grams into a quantum computer, and thereby speeding up the process of mapping $n$-grams to their hashes. The first phase will be to use KiloGram to find the top-$k$ hashes and $n$-grams for a large malware corpus. From here, the resulting hash table is then loaded into a quantum machine. A quantum search algorithm is then used search among every permutation of the entangled key and value pairs to find the desired hash value. This prevents one from having to re-compute hashes for a set of $n$-grams, which can take on average $O(MN)$ time, whereas the quantum algorithm could take $O(sqrt{N})$ in the number of table lookups to find the desired hash values.




pd

Multi-Resolution POMDP Planning for Multi-Object Search in 3D. (arXiv:2005.02878v2 [cs.RO] UPDATED)

Robots operating in household environments must find objects on shelves, under tables, and in cupboards. Previous work often formulate the object search problem as a POMDP (Partially Observable Markov Decision Process), yet constrain the search space in 2D. We propose a new approach that enables the robot to efficiently search for objects in 3D, taking occlusions into account. We model the problem as an object-oriented POMDP, where the robot receives a volumetric observation from a viewing frustum and must produce a policy to efficiently search for objects. To address the challenge of large state and observation spaces, we first propose a per-voxel observation model which drastically reduces the observation size necessary for planning. Then, we present a novel octree-based belief representation which captures beliefs at different resolutions and supports efficient exact belief update. Finally, we design an online multi-resolution planning algorithm that leverages the resolution layers in the octree structure as levels of abstractions to the original POMDP problem. Our evaluation in a simulated 3D domain shows that, as the problem scales, our approach significantly outperforms baselines without resolution hierarchy by 25%-35% in cumulative reward. We demonstrate the practicality of our approach on a torso-actuated mobile robot searching for objects in areas of a cluttered lab environment where objects appear on surfaces at different heights.




pd

Modeling nanoconfinement effects using active learning. (arXiv:2005.02587v2 [physics.app-ph] UPDATED)

Predicting the spatial configuration of gas molecules in nanopores of shale formations is crucial for fluid flow forecasting and hydrocarbon reserves estimation. The key challenge in these tight formations is that the majority of the pore sizes are less than 50 nm. At this scale, the fluid properties are affected by nanoconfinement effects due to the increased fluid-solid interactions. For instance, gas adsorption to the pore walls could account for up to 85% of the total hydrocarbon volume in a tight reservoir. Although there are analytical solutions that describe this phenomenon for simple geometries, they are not suitable for describing realistic pores, where surface roughness and geometric anisotropy play important roles. To describe these, molecular dynamics (MD) simulations are used since they consider fluid-solid and fluid-fluid interactions at the molecular level. However, MD simulations are computationally expensive, and are not able to simulate scales larger than a few connected nanopores. We present a method for building and training physics-based deep learning surrogate models to carry out fast and accurate predictions of molecular configurations of gas inside nanopores. Since training deep learning models requires extensive databases that are computationally expensive to create, we employ active learning (AL). AL reduces the overhead of creating comprehensive sets of high-fidelity data by determining where the model uncertainty is greatest, and running simulations on the fly to minimize it. The proposed workflow enables nanoconfinement effects to be rigorously considered at the mesoscale where complex connected sets of nanopores control key applications such as hydrocarbon recovery and CO2 sequestration.




pd

Multi-task pre-training of deep neural networks for digital pathology. (arXiv:2005.02561v2 [eess.IV] UPDATED)

In this work, we investigate multi-task learning as a way of pre-training models for classification tasks in digital pathology. It is motivated by the fact that many small and medium-size datasets have been released by the community over the years whereas there is no large scale dataset similar to ImageNet in the domain. We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images. Then, we propose a simple architecture and training scheme for creating a transferable model and a robust evaluation and selection protocol in order to evaluate our method. Depending on the target task, we show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance. Fine-tuning improves performance over feature extraction and is able to recover the lack of specificity of ImageNet features, as both pre-training sources yield comparable performance.




pd

The Cascade Transformer: an Application for Efficient Answer Sentence Selection. (arXiv:2005.02534v2 [cs.CL] UPDATED)

Large transformer-based language models have been shown to be very effective in many classification tasks. However, their computational complexity prevents their use in applications requiring the classification of a large set of candidates. While previous works have investigated approaches to reduce model size, relatively little attention has been paid to techniques to improve batch throughput during inference. In this paper, we introduce the Cascade Transformer, a simple yet effective technique to adapt transformer-based models into a cascade of rankers. Each ranker is used to prune a subset of candidates in a batch, thus dramatically increasing throughput at inference time. Partial encodings from the transformer model are shared among rerankers, providing further speed-up. When compared to a state-of-the-art transformer model, our approach reduces computation by 37% with almost no impact on accuracy, as measured on two English Question Answering datasets.




pd

On the list recoverability of randomly punctured codes. (arXiv:2005.02478v2 [math.CO] UPDATED)

We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound. In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound. It was previously known that there are Reed-Solomon codes that do not have this property. As an immediate corollary to our main theorem, we obtain better degree bounds on unbalanced expanders that come from Reed-Solomon codes.




pd

Temporal Event Segmentation using Attention-based Perceptual Prediction Model for Continual Learning. (arXiv:2005.02463v2 [cs.CV] UPDATED)

Temporal event segmentation of a long video into coherent events requires a high level understanding of activities' temporal features. The event segmentation problem has been tackled by researchers in an offline training scheme, either by providing full, or weak, supervision through manually annotated labels or by self-supervised epoch based training. In this work, we present a continual learning perceptual prediction framework (influenced by cognitive psychology) capable of temporal event segmentation through understanding of the underlying representation of objects within individual frames. Our framework also outputs attention maps which effectively localize and track events-causing objects in each frame. The model is tested on a wildlife monitoring dataset in a continual training manner resulting in $80\%$ recall rate at $20\%$ false positive rate for frame level segmentation. Activity level testing has yielded $80\%$ activity recall rate for one false activity detection every 50 minutes.




pd

Differential Machine Learning. (arXiv:2005.02347v2 [q-fin.CP] UPDATED)

Differential machine learning (ML) extends supervised learning, with models trained on examples of not only inputs and labels, but also differentials of labels to inputs.

Differential ML is applicable in all situations where high quality first order derivatives wrt training inputs are available. In the context of financial Derivatives risk management, pathwise differentials are efficiently computed with automatic adjoint differentiation (AAD). Differential ML, combined with AAD, provides extremely effective pricing and risk approximations. We can produce fast pricing analytics in models too complex for closed form solutions, extract the risk factors of complex transactions and trading books, and effectively compute risk management metrics like reports across a large number of scenarios, backtesting and simulation of hedge strategies, or capital regulations.

The article focuses on differential deep learning (DL), arguably the strongest application. Standard DL trains neural networks (NN) on punctual examples, whereas differential DL teaches them the shape of the target function, resulting in vastly improved performance, illustrated with a number of numerical examples, both idealized and real world. In the online appendices, we apply differential learning to other ML models, like classic regression or principal component analysis (PCA), with equally remarkable results.

This paper is meant to be read in conjunction with its companion GitHub repo https://github.com/differential-machine-learning, where we posted a TensorFlow implementation, tested on Google Colab, along with examples from the article and additional ones. We also posted appendices covering many practical implementation details not covered in the paper, mathematical proofs, application to ML models besides neural networks and extensions necessary for a reliable implementation in production.




pd

Automata Tutor v3. (arXiv:2005.01419v2 [cs.FL] UPDATED)

Computer science class enrollments have rapidly risen in the past decade. With current class sizes, standard approaches to grading and providing personalized feedback are no longer possible and new techniques become both feasible and necessary. In this paper, we present the third version of Automata Tutor, a tool for helping teachers and students in large courses on automata and formal languages. The second version of Automata Tutor supported automatic grading and feedback for finite-automata constructions and has already been used by thousands of users in dozens of countries. This new version of Automata Tutor supports automated grading and feedback generation for a greatly extended variety of new problems, including problems that ask students to create regular expressions, context-free grammars, pushdown automata and Turing machines corresponding to a given description, and problems about converting between equivalent models - e.g., from regular expressions to nondeterministic finite automata. Moreover, for several problems, this new version also enables teachers and students to automatically generate new problem instances. We also present the results of a survey run on a class of 950 students, which shows very positive results about the usability and usefulness of the tool.




pd

The Sensitivity of Language Models and Humans to Winograd Schema Perturbations. (arXiv:2005.01348v2 [cs.CL] UPDATED)

Large-scale pretrained language models are the major driving force behind recent improvements in performance on the Winograd Schema Challenge, a widely employed test of common sense reasoning ability. We show, however, with a new diagnostic dataset, that these models are sensitive to linguistic perturbations of the Winograd examples that minimally affect human understanding. Our results highlight interesting differences between humans and language models: language models are more sensitive to number or gender alternations and synonym replacements than humans, and humans are more stable and consistent in their predictions, maintain a much higher absolute performance, and perform better on non-associative instances than associative ones. Overall, humans are correct more often than out-of-the-box models, and the models are sometimes right for the wrong reasons. Finally, we show that fine-tuning on a large, task-specific dataset can offer a solution to these issues.




pd

Prediction of Event Related Potential Speller Performance Using Resting-State EEG. (arXiv:2005.01325v3 [cs.HC] UPDATED)

Event-related potential (ERP) speller can be utilized in device control and communication for locked-in or severely injured patients. However, problems such as inter-subject performance instability and ERP-illiteracy are still unresolved. Therefore, it is necessary to predict classification performance before performing an ERP speller in order to use it efficiently. In this study, we investigated the correlations with ERP speller performance using a resting-state before an ERP speller. In specific, we used spectral power and functional connectivity according to four brain regions and five frequency bands. As a result, the delta power in the frontal region and functional connectivity in the delta, alpha, gamma bands are significantly correlated with the ERP speller performance. Also, we predicted the ERP speller performance using EEG features in the resting-state. These findings may contribute to investigating the ERP-illiteracy and considering the appropriate alternatives for each user.