2

Synthesis and crystal structure of poly[[μ-chlorido-μ-(2,3-di­methyl­pyrazine)-copper(I)] ethanol hemisolvate], which shows a new isomeric CuCl(2,3-di­methyl­pyrazine) network

Reaction of copper(I)chloride with 2,3-di­methyl­pyrazine in ethanol leads to the formation of the title compound, poly[[μ-chlorido-μ-(2,3-di­methyl­pyrazine)-copper(I)] ethanol hemisolvate], {[CuCl(C6H8N2)]·0.5C2H5OH}n or CuCl(2,3-di­methyl­pyrazine) ethanol hemisolvate. Its asymmetric unit consists of two crystallographically independent copper cations, two chloride anions and two 2,3-di­methyl­pyrazine ligands as well as one ethanol solvate mol­ecule in general positions. The ethanol mol­ecule is disordered and was refined using a split model. The methyl H atoms of the 2,3-di­methyl­pyrazine ligands are also disordered and were refined in two orientations rotated by 60° relative to each other. In the crystal structure, each copper cation is tetra­hedrally coordinated by two N atoms of two bridging 2,3-di­methyl­pyrazine ligands and two μ-1,1-bridg­ing chloride anions. Each of the two copper cations are linked by pairs of bridging chloride anions into dinuclear units that are further linked into layers via bridging 2,3-di­methyl­pyrazine coligands. These layers are stacked in such a way that channels are formed in which the disordered solvent mol­ecules are located. The topology of this network is completely different from that observed in the two polymorphic modifications of CuCl(2,3-di­methyl­pyrazine) reported in the literature [Jess & Näther (2006). Inorg. Chem. 45, 7446–7454]. Powder X-ray diffraction measurements reveal that the title compound is unstable and transforms immediately into an unknown crystalline phase.




2

8-Hy­droxy­quinolinium tri­chlorido­(pyridine-2,6-di­carb­oxy­lic acid-κ3O,N,O')copper(II) dihydrate

The title compound, (C9H8NO)[CuCl3(C7H5NO4)]·2H2O, was prepared by reacting CuII acetate dihydrate, solid 8-hy­droxy­quinoline (8-HQ), and solid pyridine-2,6-di­carb­oxy­lic acid (H2pydc), in a 1:1:1 molar ratio, in an aqueous solution of dilute hydro­chloric acid. The CuII atom exhibits a distorted CuO2NCl3 octa­hedral geometry, coordinating two oxygen atoms and one nitro­gen atom from the tridentate H2pydc ligand and three chloride atoms; the nitro­gen atom and one chloride atom occupy the axial positions with Cu—N and Cu—Cl bond lengths of 2.011 (2) Å and 2.2067 (9) Å, respectively. In the equatorial plane, the oxygen and chloride atoms are arranged in a cis configuration, with Cu—O bond lengths of 2.366 (2) and 2.424 (2) Å, and Cu—Cl bond lengths of 2.4190 (10) and 2.3688 (11) Å. The asymmetric unit contains 8-HQ+ as a counter-ion and two uncoordinated water mol­ecules. The crystal structure features strong O—H⋯O and O—H⋯Cl hydrogen bonds as well as weak inter­actions including C—H⋯O, C—H⋯Cl, Cu—Cl⋯π, and π–π, which result in a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing involving the main residues are from H⋯Cl/Cl⋯H inter­actions, contributing 40.3% for the anion. Weak H⋯H contacts contribute 13.2% for the cation and 28.6% for the anion.




2

Crystal structure and Hirshfeld surface analyses, crystal voids, inter­molecular inter­action energies and energy frameworks of 3-benzyl-1-(3-bromoprop­yl)-5,5-di­phenyl­imidazolidine-2,4-dione

The title mol­ecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions form helical chains of mol­ecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) inter­actions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy.




2

Crystal structure and supra­molecular features of a host–guest inclusion complex based on A1/A2-hetero-difunctionalized pillar[5]arene

A host–guest supra­molecular inclusion complex was obtained from the co-crystallization of A1/A2-bromo­but­oxy-hy­droxy difunctionalized pillar[5]arene (PilButBrOH) with adipo­nitrile (ADN), C47H53.18Br0.82O10·C6H8N2. The adipo­nitrile guest is stabilized within the electron-rich cavity of the pillar[5]arene host via multiple C—H⋯O and C—H⋯π inter­actions. Both functional groups on the macrocyclic rim are engaged in supra­molecular inter­actions with an adjacent inclusion complex via hydrogen-bonding (O—H⋯N or C—H⋯Br) inter­actions, resulting in the formation of a supra­molecular dimer in the crystal structure.




2

Synthesis and crystal structure of 1H-1,2,4-triazole-3,5-di­amine monohydrate

The title compound, a hydrate of 3,5-di­amino-1,2,4-triazole (DATA), C2H5N5·H2O, was synthesized in the presence of sodium perchlorate. The evaporation of H2O from its aqueous solution resulted in anhydrous DATA, suggesting that sodium perchlorate was required to precipitate the DATA hydrate. The DATA hydrate crystallizes in the P21/c space group in the form of needle-shaped crystals with one DATA and one water mol­ecule in the asymmetric unit. The water mol­ecules form a three-dimensional network in the crystal structure. Hirshfeld surface analysis revealed that 8.5% of the inter­molecular inter­actions originate from H⋯O contacts derived from the incorporation of the water mol­ecules.




2

Mercury(II) halide complex of cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)]

The mercury(II) halide complex [1,3-di-tert-butyl-2,4-bis­(tert-butyl­amino)-1,3,2λ5,4λ5-di­aza­diphosphetidine-2,4-diselone-κ2Se,Se']di­iodido­mercury(II) N,N-di­methyl­formamide monosolvate, [HgI2(C16H38N4P2Se2)]·C3H7NO or (1)HgI2, 2, containing cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)] (1) was synthesized and structurally characterized. The crystal structure of 2 confirms the chelation of chalcogen donors to HgI2 with a natural bite angle of 112.95 (2)°. The coordination geometry around mercury is distorted tetra­hedral as indicated by the τ4 geometry index parameter (τ4 = 0.90). In the mercury complex, the exocyclic tert-butyl­amido substituents are arranged in an (endo, endo) fashion, whereas in the free ligand (1), the exocyclic substituents are arranged in an (exo, endo) pattern. Compound 2 displays non-classical N—H⋯O hydrogen-bonding inter­actions with the solvent N,N-di­methyl­formamide. These inter­actions may introduce geometrical distortion and deviation from an ideal geometry. An isostructural HgBr2 analogue containing cis-[(tBuNH)(S)P(μ-NtBu)2P(S)(NHtBu)] was also synthesized and structurally characterized, CIF data for the compound being presented as supporting information.




2

Structure of 2,3,5-tri­phenyl­tetra­zol-3-ium chloride hemi­penta­hydrate

The title hydrated mol­ecular salt, C19H15N4+·Cl−·2.5H2O, has two tri­phenyl­tetra­zolium cations, two chloride anions and five water mol­ecules in the asymmetric unit. The cations differ in the conformations of the phenyl rings with respect to the heterocyclic core, most notably for the C-bonded phenyl ring, for which the N—C—C—C torsion angles differ by 36.4 (3)°. This is likely a result of one cation accepting an O—H⋯N hydrogen bond from a water mol­ecule [O⋯N = 3.1605 (15) Å], while the other cation accepts no hydrogen bonds. In the extended structure, the water mol­ecules are involved in centrosymmetric (H2O)2Cl2 rings as well as (H2O)4 chains. An unusual O—H⋯π inter­action and weak C—H⋯O and C—H⋯Cl hydrogen bonds are also observed.




2

Crystal structure and Hirshfeld surface analysis of (nitrato-κ2O,O')(1,4,7,10-tetra­aza­cyclo­dodecane-κ4N)nickel(II) nitrate

The crystal structure of the title compound, [Ni(C8H20N4)(NO3)]NO3, at room temperature, has monoclinic (P21/n) symmetry. The structure displays inter­molecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site. The 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) backbone has the [4,8] configuration, with three nitro­gen-bound H atoms directed above the plane of the nitro­gen atoms towards the offset nickel atom with the fourth nitro­gen-bound hydrogen directed below from the plane of the nitro­gen atoms. The nitrate anion O atoms are seen to hydrogen bond to the H atoms bound to the N atoms of the ligand.




2

Synthesis, structures and Hirshfeld surface analyses of 2-hy­droxy-N'-methyl­acetohydrazide and 2-hy­droxy-N-methyl­acetohydrazide

The structures of the title compounds 2-hy­droxy-N'-methyl­acetohydrazide, 1, and 2-hy­droxy-N-methyl­acetohydrazide, 2, both C3H8N2O2, as regioisomers differ in the position of the methyl group relative to the N atoms in 2-hy­droxy-acetohydrazide. In the structure of 1, the 2-hy­droxy-acetohydrazide core [OH—C—C(=O)—NH—NH] is almost planar and the methyl group is rotated relative to this plane. As opposed to 1, in the structure of 2 all non-hydrogen atoms lie in the same plane. The hydroxyl and carbonyl groups in structures 1 and 2 are in trans and cis positions, respectively. The methyl amino group and carbonyl group are in the cis position relative to the C—N bond in structure 1, while the amino group and carbonyl group are in the trans position relative to the C—N bond in stucture 2. In the crystal, mol­ecules of 1 are linked by N—H⋯O and O—H⋯N inter­molecular hydrogen bonds, forming layers parallel to the ab crystallographic plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 55.3%. The contribution of the H⋯O/O⋯H inter­action is somewhat smaller, amounting to 30.8%. In the crystal, as a result of the inter­molecular O—H⋯O hydrogen bonds, mol­ecules of 2 form dimers, which are linked by N—H⋯O hydrogen bonds and a three-dimensional supra­molecular network The major contributors to the Hirshfeld surface are H⋯H (58.5%) and H⋯O/O⋯H contacts (31.7%).




2

The crystal structures determination and Hirshfeld surface analysis of N-(4-bromo-3-meth­oxy­phen­yl)- and N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}- derivatives of N-{[3-bromo-1-(phenylsulfon­yl)-1H-indol-

Two new phenyl­sulfonyl­indole derivatives, namely, N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}-N-(4-bromo-3-meth­oxy­phen­yl)benzene­sulfonamide, C28H22Br2N2O5S2, (I), and N,N-bis­{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C36H27Br2N3O6S3, (II), reveal the impact of intra­molecular π–π inter­actions of the indole moieties as a factor not only governing the conformation of N,N-bis­(1H-indol-2-yl)meth­yl)amines, but also significantly influencing the crystal patterns. For I, the crystal packing is dominated by C—H⋯π and π–π bonding, with a particular significance of mutual indole–indole inter­actions. In the case of II, the mol­ecules adopt short intra­molecular π–π inter­actions between two nearly parallel indole ring systems [with the centroids of their pyrrole rings separated by 3.267 (2) Å] accompanied by a set of forced Br⋯O contacts. This provides suppression of similar inter­actions between the mol­ecules, while the importance of weak C—H⋯O hydrogen bonding to the packing naturally increases. Short contacts of the latter type [C⋯O = 3.389 (6) Å] assemble pairs of mol­ecules into centrosymmetric dimers with a cyclic R22(13) ring motif. These findings are consistent with the results of a Hirshfeld surface analysis and together they suggest a tool for modulating the supra­molecular behavior of phenyl­sulfonyl­ated indoles.




2

Synthesis and crystal structure of sodium (ethane-1,2-di­yl)bis­[(3-meth­oxy­prop­yl)phosphinodi­thiol­ate] octa­hydrate

The title compound, catena-poly[[tri­aqua­sodium]-di-μ-aqua-[tri­aqua­sodium]-μ-(ethane-1,2-di­yl)bis­[(3-meth­oxy­prop­yl)phosphinodi­thiol­ato]], [Na2(C10H22O2P2S4)(H2O)8]n, crystallizes in the triclinic space group P1. The dianionic [CH3O(CH2)3P(=S)(S—)CH2CH2P(=S)(S—)(CH2)3OCH3]2− ligand fragments are joined by a dicationic [Na2(H2O)8]2+ cluster that includes the oxygen of the meth­oxy­propyl unit of the ligand to form infinite chains.




2

Triclinic polymorph of bis­[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetra­chloridocadmium(II)

The crystal structure of the title organic–inorganic hybrid salt, (C13H12N3)2[CdCl4], (I), has been reported with four mol­ecules in the asymmetric unit in a monoclinic cell [Vassilyeva et al. (2021). RSC Advances, 11, 7713–7722]. While using two different aldehydes in the oxidative cyclization–condensation involving CH3NH2·HCl to prepare a new monovalent cation with the imidazo[1,5-a]pyridinium skeleton, a new polymorph was obtained for (I) in space group P1 and a unit cell with approximately half the volume of the monoclinic form. The structural configurations of the two crystallographically non-equivalent organic cations as well as the geometry of the moderately distorted tetra­hedral CdCl42– dianion show minor changes. In the crystal, identically stacked cations and tetra­chloro­cadmate anions form separate columns parallel to the a axis. The loose packing of the anions leads to a minimal separation of approximately 9.53 Å between the metal atoms in the triclinic form versus 7.51 Å in the monoclinic one, indicating that the latter is packed slightly more densely. The two forms also differ by aromatic stacking motifs. Similar to the monoclinic polymorph, the triclinic one excited at 364 nm shows an intense unsymmetrical photoluminescent band with maximum at 403 nm and a full width at half maximum of 51 nm in the solid state.




2

Crystal structure of a hydrogen-bonded 2:1 co-crystal of 4-nitro­phenol and 4,4'-bi­pyridine

In the title compound, C10H8N2·2C6H5NO3, 4-nitro­phenol and 4,4'-bi­pyridine crystallized together in a 2:1 ratio in the space group P21/n. There is a hydrogen-bonding inter­action between the nitro­gen atoms on the 4,4'-bi­pyridine mol­ecule and the hydrogen atom on the hydroxyl group on the 4-nitro­phenol, resulting in trimolecular units. This structure is a polymorph of a previously reported structure [Nayak & Pedireddi (2016). Cryst. Growth Des. 16, 5966–5975], which differs mainly due to a twist in the 4,4'-bi­pyridine mol­ecule.




2

Synthesis, crystal structure and absolute configuration of (3aS,4R,5S,7aR)-7-(but-3-en-1-yn-1-yl)-2,2-dimethyl-3a,4,5,7a-tetra­hydro-2H-1,3-benzodioxole-4,5-diol

The absolute configuration of the title compound, C13H16O4, determined as 1S,2R,3S,4R based on the synthetic pathway, was confirmed by single-crystal X-ray diffraction. The mol­ecule is a relevant inter­mediary for the synthesis of speciosins, ep­oxy­quinoides or their analogues. The mol­ecule contains fused five- and six-membered rings with two free hydroxyl groups and two protected as an iso­propyl­idenedioxo ring. The packing is directed by hydrogen bonds that define double planes of mol­ecules laying along the ab plane and van der Waals inter­actions between aliphatic chains that point outwards of the planes.




2

Crystal structure of (μ2-7-{[bis­(pyridin-2-ylmeth­yl)amino-1κ3N,N',N'']meth­yl}-5-chloro­quinolin-8-olato-2κN;1:2κ2O)tri­chlorido-1κCl,2κ2Cl-dizinc(II)

The title compound, [Zn2(C22H18ClN4O)Cl3], is a dinuclear zinc(II) complex with three chlorido ligands and one penta­dentate ligand containing quinolin-8-olato and bis­(pyridin-2-ylmeth­yl)amine groups. One of the two ZnII atom adopts a tetra­hedral geometry and coordinates two chlorido ligands with chelate coord­ination of the N and O atoms of the quinolin-8-olato group in the ligand. The other ZnII atom adopts a distorted trigonal–bipyramidal geometry, and coordinates one chlorido-O atom of the quinolin-8-olato group and three N atoms of the bis­(pyridin-2-ylmeth­yl)amine unit. In the crystal, two mol­ecules are associated through a pair of inter­molecular C—H⋯Cl hydrogen bonds, forming a dimer with an R22(12) ring motif. Another inter­molecular C—H⋯Cl hydrogen bond forms a spiral C(8) chain running parallel to the [010] direction. The dimers are linked by these two inter­molecular C—H⋯Cl hydrogen bonds, generating a ribbon sheet structure in ac plane. Two other inter­molecular C—H⋯Cl hydrogen bonds form a C(7) chain along the c-axis direction and another C(7) chain generated by a d-glide plane. The mol­ecules are cross-linked through the four inter­molecular C—H⋯Cl hydrogen bonds to form a three-dimensional network.




2

Crystal structure of catena-poly[[di­aqua­di­imida­zole­cobalt(II)]-μ2-2,3,5,6-tetra­bromo­benzene-1,4-di­carboxyl­ato]

The asymmetric unit of the title compound, [Co(C8Br4O4)(C3H4N2)2(H2O)2]n or [Co(Br4bdc)(im)2(H2O)2]n, comprises half of CoII ion, tetra­bromo­benzene­dicarboxylate (Br4bdc2−), imidazole (im) and a water mol­ecule. The CoII ion exhibits a six-coordinated octa­hedral geometry with two oxygen atoms of the Br4bdc2− ligand, two oxygen atoms of the water mol­ecules, and two nitro­gen atoms of the im ligands. The carboxyl­ate group is nearly perpendicular to the benzene ring and shows monodentate coordination to the CoII ion. The CoII ions are bridged by the Br4bdc2− ligand, forming a one-dimensional chain. The carboxyl­ate group acts as an inter­molecular hydrogen-bond acceptor toward the im ligand and a coordinated water mol­ecule. The chains are connected by inter­chain N—H⋯O(carboxyl­ate) and O—H(water)⋯O(carboxyl­ate) hydrogen-bonding inter­actions and are not arranged in parallel but cross each other via inter­chain hydrogen bonding and π–π inter­actions, yielding a three-dimensional network.




2

Crystal structure, Hirshfeld surface analysis, and DFT and mol­ecular docking studies of 6-cyanona­phthalen-2-yl 4-(benz­yloxy)benzoate

In the title compound, C25H17NO3, the torsion angle associated with the phenyl benzoate group is −173.7 (2)° and that for the benz­yloxy group is −174.8 (2)° establishing an anti-type conformation. The dihedral angles between the ten-membered cyanona­phthalene ring and the aromatic ring of the phenyl benzoate and the benz­yloxy fragments are 40.70 (10) and 87.51 (11)°, respectively, whereas the dihedral angle between the aromatic phenyl benzoate and the benz­yloxy fragments is 72.30 (13)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(4) chains propagating parallel to [010]. The packing is consolidated by three C—H⋯π inter­actions and two π–π stacking inter­actions between the aromatic rings of naphthalene and phenyl benzoate with centroid-to-centroid distances of 3.9698 (15) and 3.8568 (15) Å, respectively. Inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis. The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level, revealing that the energy gap between HOMO and LUMO is 3.17 eV. Mol­ecular docking studies were carried out for the title compound as a ligand and SARS-Covid-2(PDB ID:7QF0) protein as a receptor giving a binding affinity of −9.5 kcal mol−1.




2

Crystal structure of an aceto­nitrile solvate of 2-(3,4,5-triphen­ylphen­yl)acetic acid

Crystal growth of 2-(3,4,5-triphen­ylphen­yl)acetic acid (1) from aceto­nitrile yields a monosolvate, C26H20O2·CH3CN, of the space group P1. In the crystal, the title mol­ecule adopts a conformation in which the three phenyl rings are arranged in a paddlewheel-like fashion around the central arene ring and the carboxyl residue is oriented nearly perpendicular to the plane of this benzene ring. Inversion-symmetric dimers of O—H⋯O-bonded mol­ecules of 1 represent the basic supra­molecular entities of the crystal structure. These dimeric mol­ecular units are further linked by C—H⋯O=C bonds to form one-dimensional supra­molecular aggregates running along the crystallographic [111] direction. Weak Car­yl—H⋯N inter­actions occur between the mol­ecules of 1 and aceto­nitrile.




2

Synthesis and crystal structure of 1,3,5-tris­[(1H-benzotriazol-1-yl)meth­yl]-2,4,6-tri­ethyl­benzene

In the crystal structure of the title compound, C33H33N9, the tripodal mol­ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The three benzotriazolyl moieties are inclined at angles of 88.3 (1), 85.7 (1) and 82.1 (1)° with respect to the mean plane of the benzene ring. In the crystal, only weak mol­ecular cross-linking involving C—H⋯N hydrogen bonds is observed.




2

Crystal structure of [Ni(OH2)6]Cl2·(18-crown-6)2·2H2O

The crystal structure of the title compound, hexa­aqua­nickel(II) dichloride–1,4,7,10,13,16-hexa­oxa­cyclo­octa­deca­ne–water (1/2/2), [Ni(H2O)6]Cl2·2C12H24O6·2H2O, is reported. The asymmetric unit contains half of the Ni(OH2)6 moiety with a formula of C12H32ClNi0.50O10 at 105 K and triclinic (P1) symmetry. The [Ni(OH2)6]2+ cation has close to ideal octa­hedral geometry with O—Ni—O bond angles that are within 3° of idealized values. The supra­molecular structure includes hydrogen bonding between the water ligands, 18-crown-6 mol­ecules, Cl− anions, and co-crystallized water solvent. Two crown ether mol­ecules flank the [Ni(OH2)6]2+ mol­ecule at the axial positions in a sandwich-like structure. The relatively symmetric hydrogen-bonding network is enabled by small Cl− counter-ions and likely influences the more idealized octa­hedral geometry of [Ni(OH2)6]2+.




2

Synthesis and structure of trans-2,5-di­methyl­piperazine-1,4-diium di­hydrogen diphosphate

In the title salt, C6H16N22+ ·H2P2O72−, the complete dication is generated by a crystallographic centre of symmetry with the methyl groups in equatorial orientations. The complete dianion is generated by a crystallographic twofold axis with the central O atom lying on the axis: the P—O—P bond angle is 135.50 (12)°. In the crystal, the di­hydrogen diphosphate anions are linked by O—H⋯O hydrogen bonds, generating (001) layers. The organic cations bond to the inorganic layers by way of N—H⋯O and C—H⋯O hydrogen bonds. A Hirshfeld surface analysis shows that the most important contributions for the crystal packing are from O⋯H/H⋯O (60.5%) and H⋯H (39.4%) contacts.




2

Salts of 2-amino-5-iodo­pyridinium

Reaction of 2-amino-5-iodo­pyridine (5IAP) with concentrated HBr at room temperature yielded 2-amino-5-iodo­pyridinium bromide, C5H6IN2+·Br− or (5IAPH)Br. The complex formed pale-yellow crystals, which exhibit significant hydrogen bonding between the amino and pyridinium N—H donors and bromide ion acceptors. Halogen bonding is also observed. Similarly, reaction of 5IAP with cobalt(II) chloride in mixed HCl/HBr in 1-propanol yielded 2-amino-5-iodo­pyridinium (2-amino-5-iodo­pyridine-κN1)bromido/chlorido­(0.51/2.48)cobalt(II), (C5H6IN2)[CoBr0.51Cl2.48(C5H5IN2)] or (5-IAPH)[(5IAP)CoCl2.48Br0.51], as blue block-shaped crystals. Two of the three halide positions exhibit mixed occupancy [Cl/Br = 0.797 (5):0.203 (5) and 0.689 (6):0.311 (6)], while the third position is occupied solely by a chloride ion. Extensive hydrogen and halogen bonding is observed.




2

Synthesis, crystal structure and Hirshfeld surface analysis of 2-{4-[(2-chloro­phen­yl)meth­yl]-3-methyl-6-oxopyridazin-1-yl}-N-phenyl­acetamide

In the title mol­ecule, C20H18ClN3O2, the 2-chloro­phenyl group is disordered to a small extent [occupancies 0.875 (2)/0.125 (2)]. The phenyl­acetamide moiety is nearly planar due to a weak, intra­molecular C—H⋯O hydrogen bond. In the crystal, N—H⋯O hydrogen bonds and π-stacking inter­actions between pyridazine and phenyl rings form helical chains of mol­ecules in the b-axis direction, which are linked by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions to dominate the inter­molecular contacts in the crystal.




2

Crystal structure and Hirshfeld surface analysis of the salt 2-iodo­ethyl­ammonium iodide – a possible side product upon synthesis of hybrid perovskites

The title organic–inorganic hybrid salt, C2H7IN+·I−, is isotypic with its bromine analog, C2H7BrN+·Br− [Semenikhin et al. (2024). Acta Cryst. E80, 738–741]. Its asymmetric unit consists of one 2-iodo­ethyl­ammonium cation and one iodide anion. The NH3+ group of the organic cation forms weak hydrogen bonds with four neighboring iodide anions, leading to the formation of supra­molecular layers propagating parallel to the bc plane. Hirshfeld surface analysis reveals that the most important contribution to the crystal packing is from N—H⋯I inter­actions (63.8%). The crystal under investigation was twinned by a 180° rotation around [001].




2

Crystal structure of bis­{5-(4-chloro­phen­yl)-3-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-1H-1,2,4-triazol-1-ido}nickel(II) methanol disolvate

The unit cell of the title compound, [Ni(C16H10ClN6)2]·2CH3OH, consists of a neutral complex and two methanol mol­ecules. In the complex, the two tridentate 2-(3-(4-chloro­phen­yl)-1H-1,2,4-triazol-5-yl)-6-(1H-pyrazol-1-yl)pyridine ligands coordinate to the central NiII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo­octa­hedral coordination sphere. Neighbouring tapered mol­ecules are linked through weak C—H(pz)⋯π(ph) inter­actions into monoperiodic chains, which are further linked through weak C—H⋯N/C inter­actions into diperiodic layers. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 32.8%, C⋯H/H⋯C 27.5%, N⋯H/H⋯N 15.1%, and Cl⋯H/H⋯Cl 14.0%. The average Ni—N bond distance is 2.095 Å. Energy framework analysis at the HF/3–21 G theory level was performed to qu­antify the inter­action energies in the crystal structure.




2

The cadmium oxidotellurates(IV) Cd5(TeO3)4(NO3)2 and Cd4Te5O14

Monoclinic single crystals of Cd5(TeO3)4(NO3)2 (space group P21/c), penta­cadmium tetra­kis­[oxidotellurate(IV)] dinitrate, and of Cd4Te5O14 (space group C2/c), tetra­cadmium penta­oxidotellurate(IV), were obtained under the same hydro­thermal conditions. Whereas the crystal structure of Cd5(TeO3)4(NO3)2 is distinctively layered, that of Cd4Te5O14 exhibits a tri-periodic framework. In Cd5(TeO3)4(NO3)2, the three CdII atoms have coordination numbers (CN) of 7, 6 and 6. The two types of [CdO6] and the [CdO7] polyhedra [bond lengths range from 2.179 (3) to 2.658 (2) Å] share corners and edges, resulting in layers extending parallel to (100). Both TeIV atoms are coordinated by three oxygen atoms in a trigonal–pyramidal shape. The oxygen atoms of the isolated [TeO3] groups [bond lengths range from 1.847 (3) to 1.886 (3) Å] all are part of the cadmium–oxygen layer. The electron lone pairs ψ of the TeIV atoms are directed away from the layer on both sides. The available inter­layer space is co-occupied by the nitrate group, which is directly connected with two of its O atoms to the layer whereas the third O atom is solely bonded to the N atom and points towards the adjacent layer. In Cd4Te5O14, all three unique CdII atoms are coordinated by six oxygen atoms, considering Cd—O distances from 2.235 (2) to 2.539 (2) Å. By edge- and corner-sharing, the distorted [CdO6] polyhedra form an open framework that is partially filled with three different stereochemically active TeIV atoms. All of them exhibit a CN of 4, with Te—O bonds in a range from 1.859 (2) to 2.476 (2) Å. The corresponding [TeO4] units are linked to each other by corner- and edge-sharing, forming infinite helical 1∞[Te10O28] chains extending parallel to [203]. The connectivity in the chains can be described as (⋯–⋄–⋄=⋄–⋄–⋄–⋄–⋄=⋄–⋄–⋄–⋯)n where ‘⋄’ denotes a [TeO4] unit, ‘–’ a linkage via corners and ‘=’ a linkage via edges. Such a structural motif is unprecedented in the crystal chemistry of oxidotellurate(IV) compounds.




2

Synthesis and structure of penta­kis­(2-aminopyridinium) nona­vanado(V)tellurate(VI)

In the title compound, (C5H7N2)5[TeV9O28], the tellurium and vanadium atoms are statistically disordered over two of the ten metal-atom sites in the [TeV9O28]5– heteropolyanion. The anions stack along [100] and are extended into a three-dimensional supra­molecular network through N—H⋯O and weak C—H⋯O hydrogen bonds involving the self-assembled 2-amino­pyridinium penta­mers, which are linked by C—H⋯π and π–π stacking inter­actions. The most important contributions to the Hirshfeld surface arise from O⋯H/H⋯O (54.8%), H⋯H (17.8%) and C⋯H/H⋯C (13.4%) contacts.




2

John W. White (1937–2023)




2

Fast nanoscale imaging of strain in a multi-segment heterostructured nanowire with 2D Bragg ptychography

Developing semiconductor devices requires a fast and reliable source of strain information with high spatial resolution and strain sensitivity. This work investigates the strain in an axially heterostructured 180 nm-diameter GaInP nanowire with InP segments of varying lengths down to 9 nm, simultaneously probing both materials. Scanning X-ray diffraction (XRD) is compared with Bragg projection ptychography (BPP), a fast single-projection method. BPP offers a sufficient spatial resolution to reveal fine details within the largest segments, unlike scanning XRD. The spatial resolution affects the quantitative accuracy of the strain maps, where BPP shows much-improved agreement with an elastic 3D finite element model compared with scanning XRD. The sensitivity of BPP to small deviations from the Bragg condition is systematically investigated. The experimental confirmation of the model suggests that the large lattice mismatch of 1.52% is accommodated without defects.




2

BioXTAS RAW 2: new developments for a free open-source program for small-angle scattering data reduction and analysis

BioXTAS RAW is a free open-source program for reduction, analysis and modelling of biological small-angle scattering data. Here, the new developments in RAW version 2 are described. These include improved data reduction using pyFAI; updated automated Guinier fitting and Dmax finding algorithms; automated series (e.g. size-exclusion chromatography coupled small-angle X-ray scattering or SEC-SAXS) buffer- and sample-region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using regularized alternating least squares (REGALS); creation of electron-density reconstructions using electron density via solution scattering (DENSS); a comparison window showing residuals, ratios and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. Furthermore, there is now a RAW API, which can be used without the graphical user interface (GUI), providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program.




2

Refinement of X-ray and electron diffraction crystal structures using analytical Fourier transforms of Slater-type atomic wavefunctions in Olex2

An implementation of Slater-type spherical scattering factors for X-ray and electron diffraction for elements in the range Z = 1–103 is presented within the software Olex2. Both high- and low-angle Fourier behaviour of atomic electron density and electrostatic potential can thus be addressed, in contrast to the limited flexibility of the four Gaussian plus constant descriptions which are currently the most widely used method for calculating atomic scattering factors during refinement. The implementation presented here accommodates the increasing complexity of the electronic structure of heavier elements by using complete atomic wavefunctions without any interpolation between precalculated tables or intermediate fitting functions. Atomic wavefunctions for singly charged ions are implemented and made accessible, and these show drastic changes in electron diffraction scattering factors compared with the neutral atom. A comparison between the two different spherical models of neutral atoms is presented as an example for four different kinds of X-ray and two electron diffraction structures, and comparisons of refinement results using the existing diffraction data are discussed. A systematic but slight improvement in R values and residual densities can be observed when using the new scattering factors, and this is discussed relative to effects on the atomic displacement parameters and atomic positions, which are prominent near the heavier elements in a structure.




2

Time-resolved AUSAXS at BL28XU at SPring-8

An anomalous ultra-small-angle X-ray scattering (AUSAXS) system has been constructed at BL28XU at SPring-8 for time-resolved AUSAXS experiments. The path length was extended to 9.1 m and a minimum of q = 0.0069 nm−1 was attained. Scattering profiles at 0.0069 to 0.3 nm−1 were successfully obtained at 17 different X-ray energies in 30 s using the BL28XU optical setup, which enables adjustment of the energy of the incident X-rays quickly without the beam position drifting. Time-resolved measurements were conducted to investigate changes in the structure of zinc compounds in poly(styrene-ran-butadiene) rubber during vulcanization. A change in energy dependence of the scattered intensity with time was found during vulcanization, suggesting the transformation of zinc in the reaction.




2

Visualizing the fibre texture of satin spar using laboratory 2D X-ray diffraction

The suitability of point focus X-ray beam and area detector techniques for the determination of the uniaxial symmetry axis (fibre texture) of the natural mineral satin spar is demonstrated. Among the various diffraction techniques used in this report, including powder diffraction, 2D pole figures, rocking curves looped on φ and 2D X-ray diffraction, a single simple symmetric 2D scan collecting the reciprocal plane perpendicular to the apparent fibre axis provided sufficient information to determine the crystallographic orientation of the fibre axis. A geometrical explanation of the `wing' feature formed by diffraction spots from the fibre-textured satin spar in 2D scans is provided. The technique of wide-range reciprocal space mapping restores the `wing' featured diffraction spots on the 2D detector back to reciprocal space layers, revealing the nature of the fibre-textured samples.




2

Novel high-efficiency 2D position-sensitive ZnS:Ag/6LiF scintillator detector for neutron diffraction

Scintillator-based ZnS:Ag/6LiF neutron detectors have been under development at ISIS for more than three decades. Continuous research and development aim to improve detector capabilities, achieve better performance and meet the increasingly demanding requirements set by neutron instruments. As part of this program, a high-efficiency 2D position-sensitive scintillator detector with wavelength-shifting fibres has been developed for neutron-diffraction applications. The detector consists of a double scintillator-fibre layer to improve detection efficiency. Each layer is made up of two orthogonal fibre planes placed between two ZnS:Ag/6LiF scintillator screens. Thin reflective foils are attached to the front and back scintillators of each layer to minimize light cross-talk between layers. The detector has an active area of 192 × 192 mm with a square pixel size of 3 × 3 mm. As part of the development process of the double-layer detector, a single-layer detector was built, together with a prototype detector in which the two layers of the detector could be read out separately. Efficiency calculations and measurements of all three detectors are discussed. The novel double-layer detector has been installed and tested on the SXD diffractometer at ISIS. The detector performance is compared with the current scintillator detectors employed on SXD by studying reference crystal samples. More than a factor of 3 improvement in efficiency is achieved with the double-layer wavelength-shifting-fibre detector. Software routines for further optimizations in spatial resolution and uniformity of response have been implemented and tested for 2D detectors. The methods and results are discussed in this manuscript.




2

Implications of size dispersion on X-ray scattering of crystalline nanoparticles: CeO2 as a case study

Controlling the shape and size dispersivity and crystallinity of nanoparticles (NPs) has been a challenge in identifying these parameters' role in the physical and chemical properties of NPs. The need for reliable quantitative tools for analyzing the dispersivity and crystallinity of NPs is a considerable problem in optimizing scalable synthesis routes capable of controlling NP properties. The most common tools are electron microscopy (EM) and X-ray scattering techniques. However, each technique has different susceptibility to these parameters, implying that more than one technique is necessary to characterize NP systems with maximum reliability. Wide-angle X-ray scattering (WAXS) is mandatory to access information on crystallinity. In contrast, EM or small-angle X-ray scattering (SAXS) is required to access information on whole NP sizes. EM provides average values on relatively small ensembles in contrast to the bulk values accessed by X-ray techniques. Besides the fact that the SAXS and WAXS techniques have different susceptibilities to size distributions, SAXS is easily affected by NP–NP interaction distances. Because of all the variables involved, there have yet to be proposed methodologies for cross-analyzing data from two techniques that can provide reliable quantitative results of dispersivity and crystallinity. In this work, a SAXS/WAXS-based methodology is proposed for simultaneously quantifying size distribution and degree of crystallinity of NPs. The most reliable easy-to-access size result for each technique is demonstrated by computer simulation. Strategies on how to compare these results and how to identify NP–NP interaction effects underneath the SAXS intensity curve are presented. Experimental results are shown for cubic-like CeO2 NPs. WAXS size results from two analytical procedures are compared, line-profile fitting of individual diffraction peaks in opposition to whole pattern fitting. The impact of shape dispersivity is also evaluated. Extension of the proposed methodology for cross-analyzing EM and WAXS data is possible.




2

Quality assessment of the wide-angle detection option planned at the high-intensity/extended Q-range SANS diffractometer KWS-2 combining experiments and McStas simulations

For a reliable characterization of materials and systems featuring multiple structural levels, a broad length scale from a few ångström to hundreds of nanometres must be analyzed and an extended Q range must be covered in X-ray and neutron scattering experiments. For certain samples or effects, it is advantageous to perform such characterization with a single instrument. Neutrons offer the unique advantage of contrast variation and matching by D-labeling, which is of great value in the characterization of natural or synthetic polymers. Some time-of-flight small-angle neutron scattering (TOF-SANS) instruments at neutron spallation sources can cover an extended Q range by using a broad wavelength band and a multitude of detectors. The detectors are arranged to cover a wide range of scattering angles with a resolution that allows both large-scale morphology and crystalline structure to be resolved simultaneously. However, for such analyses, the SANS instruments at steady-state sources operating in conventional monochromatic pinhole mode rely on additional wide-angle neutron scattering (WANS) detectors. The resolution must be tuned via a system of choppers and a TOF data acquisition option to reliably measure the atomic to mesoscale structures. The KWS-2 SANS diffractometer at Jülich Centre for Neutron Science allows the exploration of a wide Q range using conventional pinhole and lens focusing modes and an adjustable resolution Δλ/λ between 2 and 20%. This is achieved through the use of a versatile mechanical velocity selector combined with a variable slit opening and rotation frequency chopper. The installation of WANS detectors planned on the instrument required a detailed analysis of the quality of the data measured over a wide angular range with variable resolution. This article presents an assessment of the WANS performance by comparison with a McStas [Willendrup, Farhi & Lefmann (2004). Physica B, 350, E735–E737] simulation of ideal experimental conditions at the instrument.




2

DFT2FEFFIT: a density-functional-theory-based structural toolkit to analyze EXAFS spectra

This article presents a Python-based program, DFT2FEFFIT, to regress theoretical extended X-ray absorption fine structure (EXAFS) spectra calculated from density functional theory structure models against experimental EXAFS spectra. To showcase its application, Ce-doped fluorapatite [Ca10(PO4)6F2] is revisited as a representative of a material difficult to analyze by conventional multi-shell least-squares fitting of EXAFS spectra. The software is open source and publicly available.




2

Operando pair distribution function analysis of nanocrystalline functional materials: the case of TiO2-bronze nanocrystals in Li-ion battery electrodes

Structural modelling of operando pair distribution function (PDF) data of complex functional materials can be highly challenging. To aid the understanding of complex operando PDF data, this article demonstrates a toolbox for PDF analysis. The tools include denoising using principal component analysis together with the structureMining, similarityMapping and nmfMapping apps available through the online service `PDF in the cloud' (PDFitc, https://pdfitc.org/). The toolbox is used for both ex situ and operando PDF data for 3 nm TiO2-bronze nanocrystals, which function as the active electrode material in a Li-ion battery. The tools enable structural modelling of the ex situ and operando PDF data, revealing two pristine TiO2 phases (bronze and anatase) and two lithiated LixTiO2 phases (lithiated versions of bronze and anatase), and the phase evolution during galvanostatic cycling is characterized.




2

Practical courses on advanced methods in macromolecular crystallization: 20 years of history and future perspectives

The first Federation of European Biochemical Societies Advanced Course on macromolecular crystallization was launched in the Czech Republic in October 2004. Over the past two decades, the course has developed into a distinguished event, attracting students, early career postdoctoral researchers and lecturers. The course topics include protein purification, characterization and crystallization, covering the latest advances in the field of structural biology. The many hands-on practical exercises enable a close interaction between students and teachers and offer the opportunity for students to crystallize their own proteins. The course has a broad and lasting impact on the scientific community as participants return to their home laboratories and act as nuclei by communicating and implementing their newly acquired knowledge and skills.




2

The promise of GaAs 200 in small-angle neutron scattering for higher resolution

The Q resolution in Bonse–Hart double-crystal diffractometers is determined for a given Bragg angle by the value of the crystallographic structure factor. To date, the reflections Si 220 or Si 111 have been used exclusively in neutron scattering, which provide resolutions for triple-bounce crystals of about 2 × 10−5 Å−1 (FWHM). The Darwin width of the GaAs 200 reflection is about a factor of 10 smaller, offering the possibility of a Q resolution of 2 × 10−6 Å−1 provided crystals of sufficient quality are available. This article reports a feasibility study with single-bounce GaAs 200, yielding a Q resolution of 4.6 × 10−6 Å−1, six times superior in comparison with a Si 220 setup.




2

A miniature X-ray diffraction setup on ID20 at the European Synchrotron Radiation Facility

We describe an ultra-compact setup for in situ X-ray diffraction on the inelastic X-ray scattering beamline ID20 at the European Synchrotron Radiation Facility. The main motivation for the design and construction of this setup is the increasing demand for on-the-fly sample characterization, as well as ease of navigation through a sample's phase diagram, for example subjected to high-pressure and/or high-temperature conditions. We provide technical details and demonstrate the performance of the setup.




2

Upgraded front ends for SLS 2.0 with next-generation high-power diaphragms and slits

The upgrade of the Swiss Light Source, called SLS 2.0, necessitates comprehensive updates to all 18 user front ends. This upgrade is driven by the increased power of the synchrotron beam, reduced floor space, changing source points, new safety regulations and enhanced beam properties, including a brightness increase by up to a factor of 40. While some existing front-end components are being thoroughly refurbished and upgraded for safety reasons, other components, especially those designed to tailor the new synchrotron beam, are being completely rebuilt. These new designs feature innovative and enhanced cooling systems to manage the high-power load and meet new requirements such as mechanical stability and compact footprints.




2

Coprecipitation of Ce(III) oxide with UO2

The neutralization of acidic solutions containing U (IV) and Ce (III) at room temperature in glove box atmosphere and in the presence of dithionite results in coprecipitation of these elements as amorphous solid solutions CexU1–xO2±y. The solubilities of the precipitates with different mole fractions (x) of Ce(OH)3 (x = 0.01 or 0.1) were determined in 1 M NaClO4 solutions between pH 2.2 and 12.8 under reducing conditions. The solids were investigated by a variety of methods (chemical analysis, SEM-EDX, XRD, XPS, XAS) to determine the nature of the solid solutions formed, their composition and the valence state of Ce and U. X-ray photoelectron spectroscopy confirmed the oxidation states of the solids both before and after the equilibration as Ce (III) and U (IV). The amorphous coprecipitates reached equilibrium relatively fast (∼1 week). The release of Ce from the coprecipitates was totally dominated by the release of uranium over the whole pH range. The Ce concentrations decrease slightly with the decrease of Ce content in the solid, suggesting that CexU1–xO2±y solids behave thermodynamically as solid solutions. The concentrations of U in equilibrium with the coprecipitate were in excellent agreement with the solubility of UO2(s) under reducing conditions reported in the literature. The conditional solubility product of Ce(OH)3 from the coprecipitate was several orders of magnitude (∼4 in the near neutral pH range and ∼18 in the acidic range) lower than that of pure Ce(OH)3(s). The activities and activity coefficients of Ce(OH)3(s) in the coprecipitate were also estimated. Activity coefficients are much less than 1, indicating that the mixing of Ce(OH)3 with UO2 is highly favorable.




2

A study of structural effects on the focusing and imaging performance of hard X-rays with 20–30 nm zone plates

Hard X-ray microscopes with 20–30 nm spatial resolution ranges are an advanced tool for the inspection of materials at the nanoscale. However, the limited efficiency of the focusing optics, for example, a Fresnel zone plate (ZP) lens, can significantly reduce the power of a nanoprobe. Despite several reports on ZP lenses that focus hard X-rays with 20 nm resolution – mainly constructed by zone-doubling techniques – a systematic investigation into the limiting factors has not been reported. We report the structural effects on the focusing and imaging efficiency of 20–30 nm-resolution ZPs, employing a modified beam-propagation method. The zone width and the duty cycle (zone width/ring pitch) were optimized to achieve maximum efficiency, and a comparative analysis of the zone materials was conducted. The optimized zone structures were used in the fabrication of Pt-hydrogen silsesquioxane (HSQ) ZPs. The highest focusing efficiency of the Pt-HSQ-ZP with a resolution of 30 nm was 10% at 7 keV and >5% in the range 6–10 keV, whereas the highest efficiency of the Pt-HSQ-ZP with a resolution of 20 nm was realized at 7 keV with an efficiency of 7.6%. Optical characterization conducted at X-ray beamlines demonstrated significant enhancement of the focusing and imaging efficiency in a broader range of hard X-rays from 5 keV to 10 keV, demonstrating the potential application in hard X-ray focusing and imaging.




2

Foreword to the special virtual issue dedicated to the proceedings of the PhotonMEADOW2023 Joint Workshop




2

Lufthansa Group partners with FinMont to improve B2B payments

The Lufthansa Group has teamed up with



2

The Global Payments and Fintech Trends Report 2024

The inaugural edition of the Global Payments and Fintech Trends Report offers a comprehensive overview of the key trends in fintech and payments for the year 2024 and beyond.




2

Global Overview of Payment Providers 2024

The Global Overview of Payment Providers Report provides insights into the leading companies and trends in the field of payments.




2

Emerging Technologies and Trends in Identity Verification, KYC, and KYB Report 2024

The inaugural edition of the Emerging Technologies and Trends in Identity Verification (IDV), KYC, and KYB Report 2024 offers a comprehensive overview of the key technology trends and best practices in digital onboarding for consumers and businesses in 2024.




2

Fintech for Marketplaces and Platforms Report 2024

The 1st edition of the Fintech for Marketplaces and Platforms Report covers essential ecommerce trends and future perspectives.