ine

Process and refractory metal core for creating varying thickness microcircuits for turbine engine components

The present disclosure is directed to a refractory metal core for use in forming varying thickness microcircuits in turbine engine components, a process for forming the refractory metal core, and a process for forming the turbine engine components. The refractory metal core is used in the casting of a turbine engine component. The core is formed by a sheet of refractory metal material having a curved trailing edge portion integrally formed with a leading edge portion.




ine

Method for producing a trailing arm of a twist beam axle in which a drive unit of an electrical drive close to the wheel, comprising an electrical engine and a transmission, is integrated

A method of producing a trailing arm of a torsion beam axle in which an integrated drive unit of a wheel-adjacent electric drive has an electric machine and a transmission. By using the method, the trailing arm is produced in the form of a casting with a box profile. The contours for producing the area that accommodates the transmission, the connection point to the vehicle body, the bore that receives the cross-member which connects the two trailing arms to one another, the U-profile of the trailing arm, the box profile and the area that accommodates the electric machine, are modeled by cores such that the contours for producing the connection point of the trailing arm to the vehicle body, the bore that receives the cross-member and the U-profile of the trailing arm are modeled by one core.




ine

Bituminous froth inline steam injection processing

An inline bitumen froth steam heater system including steam injection and static mixing devices is provided. The system heats and de-aerates input bitumen froth without creating downstream processing problems with the bitumen froth such as emulsification or live steam entrainment. The system is a multistage unit that injects and thoroughly mixes steam with bitumen resulting in output bitumen material having temperature of about 190° F. The system conditions a superheated steam supply to obtain saturated steam at about 300° F. The saturated steam is contacted with bitumen froth flow and mixed in a static mixer stage. The static mixers provide surface area and rotating action that allows the injected steam to condense and transfer its heat to the bitumen froth. The mixing action and increase in temperature of the bitumen froth results in reduction in bitumen viscosity and allows the release of entrapped air from the bitumen froth.




ine

Refinery desalter improvement

The improved methods relate to desalting hydrocarbon feeds using a separator with a stacked disk centrifuge to separate an emulsified oil and water rag layer. This method is effective for desalting heavy, high ionic, and non-traditional crude oils.




ine

Intertwined tube coil arrangement for a delayed coker heater

A tube coil for a double fired coker heater wherein the tube coil has at least two independent flow passes in an intertwined serpentine pattern. The tubes are located in a common plane and plumbed in parallel with one another. These tube coils can be used in a number of configurations within the radiant section of a coker heater.




ine

In-line treatment of hydrocarbon fluids with ozone

A system for treating recovered fluids in-line that includes a thermal reactor for separating contaminated drill cuttings into drill cuttings and contaminants by applying heat to the contaminated drill cuttings so as to vaporize contaminants from the contaminated drill cuttings; a first condenser in fluid connection with the thermal reactor for condensing the vaporized contaminants; a separator in fluid connection with the first condenser for separating the condensed vapors into an oleaginous liquid and an aqueous liquid, wherein at least a portion of one of the aqueous liquid and oleaginous liquid is fed back into the first condenser via a feedback line; and an ozone generator operatively coupled to the feedback line, wherein at least the portion of the fed back liquid is ozonated by the ozone generator and fed into the condenser is disclosed.




ine

System and process for producing high quality gasoline by catalytic hydrocarbon recombination

A system and process for the preparation of high quality gasoline through recombination of catalytic hydrocarbon includes fractionator and extractor. The upper part of the fractionator is equipped with light petrol pipeline, the lower part of the fractionator is equipped with heavy petrol pipeline, the middle part of the fractionator is equipped with medium petrol pipeline. The medium petrol pipeline is connected with a medium petrol extractor, the upper part of the medium petrol extractor is connected with the medium petrol raffinate oil hydrogenation unit through the pipeline, the lower part of the medium petrol extractor is connected with the medium petrol aromatic hydrocarbon hydrogenation unit through the pipeline. The medium petrol aromatic hydrocarbon hydrogenation unit is then connected with the light petrol pipeline in the upper part of the fractionator through the pipeline, the lower part of the heavy petrol extractor is connected with the medium petrol aromatic hydrocarbon hydrogenation unit through the pipeline, the upper part of the heavy petrol extractor is connected with the medium petrol raffinate oil hydrogenation unit through the pipeline.




ine

Methods and implants for treating urinary incontinence

Described are methods, implants, insertion tools, and related systems and kits, for placing an implant to treat urinary incontinence; the implants include soft tissue anchors that are capable of engaging needles of the insertion tools, and the implants are designed to place a central support portion at a location to support a urethra with extension portions and soft tissue anchors extending to tissue at regions of an obturator foramen.




ine

Dial of circular hosiery knitting machine of the type with cylinder and dial with yarn cutting device

A dial of a circular hosiery knitting machine of the type with a cylinder and dial with yarn cutting device. The dial comprises a dial body which is substantially disk-shaped. The dial is provided with a cutting device, which comprises a plurality of cutting sectors which are distributed around the axis of the dial body and have cutting edges. The cutting sectors are arranged at sectors of the dial body which are intended to be free from needles. The cutting device comprises a cutter which is adapted to abut against the cutting edges of the cutting sectors to cut at least one yarn engaged by one of the cutting sectors in its rotary motion about the axis of the dial body with respect to the cutter.




ine

Rotary sinker, knitting machine, and stitch forming method

A rotary sinker enabling stitch formation by a knitting machine using a rotor for forming a stitch, a knitting machine including the rotary sinker, and a stitch forming method are provided. The ring sinkers as rotating bodies are capable of rotating about a rotation axis independently of each other. The rotation times of the ring sinkers are set to be different from each other. Thus, the rotation times are adjusted to be different between the ring sinker that holds an old loop and the ring sinker that holds a new loop. Adjustment of the rotation times prevents application of a large tension to the knitting yarn made of low stretch fiber, and a stitch can be formed even with a knitting yarn made of non-stretch or low-stretch fiber.




ine

Double-cylinder circular machine, particularly for knitting hosiery items or the like, with simplified actuation mechanism

A double-cylinder circular machine, particularly for knitting hosiery items, with simplified actuation mechanism, comprising a supporting structure which comprises a footing, which supports a lower needle cylinder, and a column which extends substantially vertically, protrudes upwardly from the footing and supports an upper needle cylinder, which is arranged above and coaxially with respect to the lower needle cylinder, and further comprising elements for the actuation of the lower needle cylinder and of the upper needle cylinder with a rotary motion about a common axis, the actuation elements comprising an electric motor which is connected kinematically to the lower needle cylinder and to the upper needle cylinder and is accommodated inside the column.




ine

Knitting machine, particularly with a high gauge

A knitting machine comprising a needle holder, which supports a plurality of needles which can be actuated with an alternating motion along their axis and means for guiding the needles on the needle holder which comprise channels for forming knitting which are defined proximate to the end of the needle holder and sliding channels which are defined on the needle holder in a region that is spaced from the end of the needle holder, each one of the channels for forming knitting being engageable by a needle and defining with its inlet, which is directed toward the outside of the needle holder, resting contact regions for the knitting during the retracting motion of the needles, the number of the sliding channels being smaller than the number of the channels for forming knitting.




ine

Knitting head for knitting machines of flexible hoses and knitting machine comprising the head

A knitting head of a knitting machine for manufacturing flexible hoses (1) with a knitted reinforcement layer, which comprises a guide body (14) with a central tubular conduit (15) for the passage of the bearing layer (2) and having a outlet end portion (16) with a first outer peripheral surface (17) having a first predetermined radius (r1), a plurality of knitting needles (18) arranged along the periphery of said end portion (16) of said conduit (15) and having first longitudinal end sections (18') arranged along the circumference of said outer peripheral surface (17) and second longitudinal end sections (18″) arranged over a second cylindrical surface (19) having a second radius (r2) greater than said first radius (r1), at least one disk-shaped cam element (22), which is adapted to rotate at a first rotation speed and has a third predetermined radius (r3). The third radius (r3) is greater than said second radius (r2), connection means (23) being provided for connecting said disk-shaped element (22) to said second end sections (18″) of said needles (18), said connection means (23) having at least one longitudinal portion (24) with a radial dimension decreasing from said third radius (r3) to said second radius (r2).




ine

Independently controlled rollers for take-down assembly of knitting machine

A knitting machine includes a take-down assembly that includes a first take-down roller and a second take-down roller. The first take-down roller is configured to rotatably contact and apply tension to a first portion of a knit component. The second take-down roller is configured to rotatably contact and apply tension to a second portion of the knit component. The knitting machine further includes a first actuator that actuates to selectively adjust tension applied by the first take-down roller on the first portion of the knit component. Furthermore, the knitting machine includes a second actuator that actuates to selectively adjust tension applied by the second take-down roller on the second portion of the knit component. Additionally, the knitting machine includes a controller that is operably coupled to the first actuator and the second actuator to selectively and independently control actuation of the first actuator and the second actuator.




ine

Circular knitting machine with mounting arrangement for sinker cams

Sinker cam segments in a circular knitting machine are located with respect to the generally radial direction by a generally radially inwardly facing location surface disposed radially outward of the segments. Each segment's radially outer end defines a contact region that abuts the locating surface. The contact region can be complementary surface contour to that of the locating surface, or a pair of discrete, spaced contact points protruding out from the radially outer end of the segment. The contact region is a reference for positioning the sinker cam segment with respect to the generally radial direction.




ine

Knitting machine

A knitting machine having needles which are mounted to be longitudinally moveable and having needle cams (14) with a needle control curve (13) for moving the needles, the needle control curves (13), at least in the latch closure region (Z), having a withdrawal angle (α)≦35°.




ine

Linear electronic transducer

An electronic transducer comprises a knitted structure extendible in two dimensions defined by its courses and wales. An electro-conductive yarn (4) defines at least one single course in the structure adjacent non-conductive yarns (2), and is to be part of a circuit providing an indication of an electrical characteristic of the yarn. When unextended in either direction, successive loops of the stitches including the electro-conductive yarn are in engagement. Extension of the structure in the course direction separate loops forming the stitches, and extension in the wale direction urges the loops together. The structure can be used in methods of registering extension of the structure in either or both of the course and wale directions.




ine

Independently controlled rollers for take-down assembly of knitting machine

A knitting machine includes a take-down assembly that includes a first take-down roller and a second take-down roller. The first take-down roller is configured to rotatably contact and apply tension to a first portion of a knit component. The second take-down roller is configured to rotatably contact and apply tension to a second portion of the knit component. The knitting machine further includes a first actuator that actuates to selectively adjust tension applied by the first take-down roller on the first portion of the knit component. Furthermore, the knitting machine includes a second actuator that actuates to selectively adjust tension applied by the second take-down roller on the second portion of the knit component. Additionally, the knitting machine includes a controller that is operably coupled to the first actuator and the second actuator to selectively and independently control actuation of the first actuator and the second actuator.




ine

Simplified single-knit circular knitting machine

In the case of a single circular knitting machine consisting of a central rotatable needle cylinder (Z), around which a sinker ring (PR) comprising sinkers (P) as well as stationary cam systems (S) are arranged, which act on the needles (1), which are in each case assigned to the sinkers (P) and which can be moved vertically up and down, so as to replace the pitches, which hit one another rigidly, with a sinker grid system, which is flexible per se, which is automatically oriented in the needle gaps, a rocker (44) comprising an upper and a lower control bump (45) being provided in each case on the end of the sinkers (P), which is spaced apart from the needle, the sinker ring (PR), at the end below the sinkers (P), which is spaced apart from the needle, is embodied as a pivot point projection (40) comprising pivot point slits (41), in which the sinkers (P) are accommodated with their pivot inlet (43) so that they are capable of being tilted and the sinkers (P) being are laterally fixed in the needle gaps with sliding noses (47) at the end, which is spaced apart from the needle, transport the last knitting loops to the needle shaft (1) behind the needle latches in response to the knitting loop formation.




ine

Methods and implants for treating urinary incontinence

Described are methods, implants, insertion tools, and related systems and kits, for placing an implant to treat urinary incontinence; the implants include soft tissue anchors that are capable of engaging needles of the insertion tools, and the implants are designed to place a central support portion at a location to support a urethra with extension portions and soft tissue anchors extending to tissue at regions of an obturator foramen.




ine

Machine for the homogenization and thermal treatment of liquid and semi-liquid food products

A machine for the homogenization and thermal treatment of liquid and semi-liquid food products, for example ice creams, whipped cream, creams, chocolate, yogurt and the like, comprises a containment tank for the mixture and a centrifugal pump put in fluid communication with the bottom of the containment tank for drawing mixture from the tank and putting it back into the tank, heating and cooling means acting at the pump for heating and cooling the mixture in transit in the pump. The heating and cooling means comprise a thermal machine with reversible thermodynamic cycle and using carbon dioxide as refrigerant.




ine

Beverage containers with detection capability

Methods and systems described herein include individual-use beverage containers including sensors and methods of their use. Beverage containers include: a vessel body configured to hold a beverage; and at least one sensor associated with the vessel body, the at least one sensor including a sensor configured to detect one or more substance in a fluid. Systems include: at least one beverage container including at least one sensor configured to detect one or more substance in fluid; and at least one external device including at least one port configured for communication with the at least one sensor. Methods include: detecting one or more substance within fluid with at least one sensor integral to a beverage container; and interfacing one or more of the at least one sensor with an external device.




ine

Machine having an improved blade structure, for extracting puree or juice

Machine (1) for extracting puree, or fruit juice starting from vegetable or animal food, such as a rough extractor or a fine extractor. The machine (1) comprises essentially a cylindrical body (2) having an inlet (3) for the product to treat, an outlet (4) for a part of the product that can be used and an outlet (5) for another part of product to dispose of. The rotor (6) is wheeled to a motor (80) by a shaft (15). The product that is put in the cylindrical body (2) of the machine (1) is pushed by centrifugal force by a plurality of blades (20) of the rotor (6) to pass through a sieve (7) having holes (8) and a cylindrical or conical shape. The blades (20) of the rotor (6) comprise, in particular a first portion (21) having a first concavity and a second portion (22) having a second concavity opposite to the first.




ine

Container assembly for aging a liquid

A container assembly (10) for retaining a liquid (16) during aging of the liquid (16) comprises a container (12) and an oxygenator (230). The container (12) includes a container body (14) that defines a chamber (14A) that receives and retains liquid (16). The oxygenator (230) is positioned substantially within the chamber (14A). The oxygenator (230) includes a fluid source (662), one or more diffusers (672), and a valve (670). The one or more diffusers (672) are in fluid communication with the fluid source (662). The valve (670) selectively controls the introduction of a fluid from the fluid source (662) into the liquid (16) through the one or more diffusers (672). The container assembly (10) further comprises an insert retainer assembly (338) and one or more flavor inserts (440) that are received and retained by the insert retainer assembly (338).




ine

Device for regulating the level of a liquid in a boiler of a coffee machine

The present invention relates to a device to regulate the level of a liquid inside a boiler of a coffee machine, having a transparent duct connected to the boiler and designed to visibly display the level of the liquid inside the boiler, a capacitive sensor that can be positioned outside the transparent duct in determined positions and designed to generate electric signals representing the presence or absence of liquid in correspondence to the position of the sensor along the transparent duct. The sensor of the device has first measuring elements and second measuring elements, both of capacitive type; the second measuring elements are positioned at a predetermined distance from the first measuring elements, and a measuring device designed to measure the impedance between the first and second measuring elements and to generate signals indicating the presence or absence of liquid in correspondence to the position of the sensor. The invention also relates to the machine that includes this device.




ine

Coffee machine comprising a frothing device and means for cleaning the frothing device and a milk suction line and process for rinsing the milk suction line

A coffee machine comprises a frothing device, wherein an internal milk channel leading to a frothing chamber is provided into which opens a bypass air inlet for operable air supply to the frothing device. A flexible milk suction line connects the frothing device with a milk supply container. Means are provided for cleaning the frothing device and the milk suction line with rinsing water from a continuous-flow water heater of the coffee machine. A controlled valve arrangement is provided which feeds rinsing water from the continuous-flow water heater to the bypass air inlet of the frothing device. A milk suction end of the milk suction line is directly or indirectly, fluid-conductively connectable with a residual water pan of the coffee machine prior to feeding rinsing water to the bypass air inlet.




ine

Cysteine engineered antibodies for site-specific conjugation

Cysteine engineered antibodies useful for the site-specific conjugation to a variety of agents are provided. Methods for the design, preparation, screening, selection and use of such antibodies are also provided.




ine

EFFECTIVE TARGETING OF PRIMARY HUMAN LEUKEMIA USING ANTI-CD123 CHIMERIC ANTIGEN RECEPTOR ENGINEERED T CELLS

The invention provides compositions and methods for treating leukemia, for example, acute myeloid leukemia (AML) and B-cell acute lymphoid leukemia (B-ALL). The invention also relates to at least one chimeric antigen receptor (CAR) specific to CD123, vectors comprising the same, and recombinant T cells comprising the CD123 CAR. The invention also includes methods of administering a genetically modified T cell expressing a CAR that comprises a CD123 binding domain. The invention also includes methods of bone marrow ablation for use in treatments necessitating bone marrow reconditioning or transplant.




ine

ENGINEERED TISSUE CONSTRUCTS

A modular engineered tissue construct includes a plurality of fused self-assembled, scaffold-free, high-density cell aggregates. At least one cell aggregate includes a plurality of cells and a plurality of biocompatible and biodegradable nanoparticles and/or microparticles that are incorporated within the cell aggregates. The nanoparticles and/or microparticles acting as a bulking agent within the cell aggregate to increase the cell aggregate size and/or thickness and improve the mechanical properties of the cell aggregate as well as to deliver bioactive agents.




ine

COMPOSITIONS AND METHODS FOR MODIFYING A PREDETERMINED TARGET NUCLEIC ACID SEQUENCE

Provided herein are compositions and methods for modifying a predetermined nucleic acid sequence. A programmable nucleoprotein molecular complex containing a polypeptide moiety and a specificity conferring nucleic acid (SCNA) which assembles in-vivo, in a target cell, and is capable of interacting with the predetermined target nucleic acid sequence is provided. The programmable nucleoprotein molecular complex is capable of specifically modifying and/or editing a target site within the target nucleic acid sequence and/or modifying the function of the target nucleic acid sequence.




ine

BUTTON ASSEMBLING MACHINE




ine

MACHINE FOR MAKING COVERED BUTTONS




ine

AUTOMATIC PIN FORMING AND INSERTING MACHINE

A button and pin assembly machine for producing badges and the like comprising buttons having rearwardly extending rims adapted to receive and retain respective pin structures therein, in which the buttons are sequentially supplied to a pin-forming head and supported thereat with the button rim encircling the end of such head, straight pin blanks being sequentially supplied to said head, with a portion of a pin blank being inserted into the head and rotated thereby with respect to a stationary abutment to curl an end of such blank sufficiently to enable its insertion in the rim of a button disposed thereat, said head having means for forming a bend in the portion of the pin blank inserted in such head to resiliently bias the pointed end of the pin blank toward the button.




ine

MACHINE FOR PRODUCING OF BUCKLES, BUTTONS OR THE LIKE

A machine for the manufacture of buckles, buttons or the like which comprises an upper tool and a lower tool. The lower tool has an outer, spring-mounted frame and an inner core piece displaceable vertically with respect to the surrounding frame. The lower tool is adapted to support the assembled button after the opening stroke of the upper tool. A device is provided for lifting the core piece of the lower tool relative to the surrounding frame up to about the height of a transversely directed stream of blast air serving for discharging the product from the lower tool.




ine

Automated button closing machine

A machine for automatically joining front and back parts of buttons employs a turntable with nests that are rotated through a series of stations at which the parts are placed in the nests in a desired orientation, joined, and checked for defects. Orientation of the parts is achieved by video imaging of a first part as it is randomly placed in a nest, and computer-controlled placement of the second part based on the ascertained position of the first part.




ine

Semi-automated button closing machine

A method and apparatus for substantially automatically joining front and back parts of buttons employs a turntable with retaining means that are rotated through a series of stations at which the parts are placed in the retaining means in a desired orientation, joined, and checked for defects. A human operator places button front parts at a first station, and the remaining stations carry out the assembly and quality control steps automatically. Placement at the first station determines the alignment and orientation of the two buttons.




ine

Buttons and a universal assembly machine for manufacturing same

A universal assembly machine manufactures conventional buttons with formed backs. The machine comprises a rotatably indexable die table to which are mounted pickup and crimp dies. The die table indexes about a center column of the machine frame. A ram die is advancable and retractable in a pickup stroke and a crimp stroke by means of a handle. The ram die includes a ram outer ring that is rotatable by means of a shifter post joined to the die table. Indexing the die table causes the shifter post to rotate the ram outer ring into a pickup mode or a crimp mode to suit the ram pickup and crimp strokes, respectively. The universal assembly machine also manufactures buttons with flat backs by using a different crimp die pedestal than is used with the formed backs. An adapter on the crimp die pedestal used with formed backs allows that crimp die pedestal to also be used for manufacturing buttons with flat backs. The invention also embraces button medallions. A flat back button is loaded into the pickup die, and the die table is indexed. The ram die is advanced in a third press stroke to bend the shell frusto-conical wall of the flat back button inwardly to be flat and parallel to the flat back.




ine

Adapter for machine for manufacturing buttons and method

An adapter enables a universal assembly machine to manufacture buttons with either flat backs or formed backs. The machine comprises a rotatably indexable die table to which are mounted pickup and crimp dies. A ram die is advancable and retractable in a pickup stroke and a crimp stroke. Indexing the die table causes a shifter post to rotate a ram outer ring into a pickup mode or a crimp mode to suit the ram pickup and crimp strokes, respectively. The universal assembly machine manufactures buttons with flat backs by using the adapter on the same crimp die pedestal as is used for manufacturing buttons with formed backs. The adapter has a top surface that is in the location relative to the ram die that suits flat back buttons. The adapter enables the same crimp die pedestal to be used for manufacturing both flat back and formed back buttons.




ine

Two-stroke machine for making buttons having coplanar shell flanges

A machine manufactures buttons having coplanar shell flanges in a two-stroke operation. The machine comprises a crimp die having different resistances to advancement of a ram. The first resistance enables a metal shell margin to partially bend under a flat back that is placed on a first surface of the crimp die. The second resistance enables the shell wall to completely bend against a second surface of the crimp die so as to form flanges that lie in a single plane. Both round and rectangular buttons are manufacturable using the same basic machine. The rectangular machine uses a shifter cage on the ram that rotates in response to indexing a die table on which the crimp die and a pickup die are attached. The round machine uses a rotatable frame on the ram. With the rectangular machine, the shell is initially bent during a pickup stroke of the ram.




ine

Method for producing buttons, ornamental and instrument panels with fine symbols, and a button produced with the method

A button, knob or control key with an etchable support plate which is engraved on the backside with a fine symbol by laser, erosion or mechanical engraving, which only cuts into the material of the support plate, but not through the support plate. The backside of the support plate is optionally coated. A foil is applied on the laminated layer and affixed thereto. The front side of the support plate is treated with a material-removing substance. The material removal with the material-removing substance is performed until the engraving extending into the support plate is at least partially or completely exposed on the front side. Application of a protective layer to the front side of the support plate from which the material was removed. A function symbol is provided on the button such that it can be backlit. It is engraved in a fine line width providing a sharp optical definition erosion, mechanical engraving.




ine

CONTAINER FOR FOOD ITEMS

A combination of a container and a plurality of food items nested within the container may include base and a first cavity in the base. A first food item may be nested in the first cavity. The first food item may include a decorated section. The first food item may include a disposable wrapper having an exposed upper wrapper edge. The container may include a lid moveable between a closed position and an open position. A first retainer may be on the lid. When the lid is in the closed position the first retainer may overlie a first portion of the upper wrapper edge. When the container is inverted with the lid in the closed position relative axial movement between the first food item and the first cavity may be limited by contact between the first retainer and the upper wrapper edge.




ine

METHOD TO PRODUCE A MODULAR, EASILY CUSTOMIZABLE, EASILY AERATE-ABLE ICE, NO ICE CREAM MACHINE NEEDED ICE CREAM AND FROZEN DAIRY AND NON-DAIRY DESSERT DRY MIX WITH ENHANCED SOLUBILITY AND HYDRATION PROPERTIES, AND PRODUCTS MADE BY THAT METHOD.

This disclosure describes a simple, low cost method to produce a modular dry mix that can easily be modified and customized to produce a wide range of easy to aerate, no ice cream machine needed, ice cream and frozen dairy and non-dairy desserts and products made by this process. The method relies on successive simultaneous particle size reduction and blending steps without the use of traditional mix drying operations. The formulations produced by this process are modular and allow quick and simple ingredient substitutions to create distinct finished products. The process yields mixes that produce stronger, more stable foams that don't leave an oily mouth feel. The disclosure also includes a formulation and process used to make ice cream, and related frozen dairy and non-dairy desserts at room temperature in one step where the ingredients do not need to be aged, or homogenized, and aeration occurs without the need for simultaneous cooling or freezing. The process allows the end-user to control and vary the texture, freezing rate, melting point and eating qualities of the product without the use of traditional, home or industrial ice cream machines and a product made by this process. A product produced from this mix consists of a (protein-concentrate and emulsifier)—stabilized, protein-based foam created by combining a powder mix with one or a combination of a large range of above freezing temp liquids then immediately whisking the mixture at room temp to a target overrun without pre-aging, and then freezing that product statically till desired hardness is achieved. The main execution of this process involves the use of dry powders that are transported and sold dry and then reconstituted by the end user before they are combined without pre-treatment, freezing homogenization or aging. The manufacturing process offers significant advantages over current dry mix production methods which require significant upfront investment and produce hard to customize mixes. The formulation and finished product making portions of the invention offer significant improvement over existing manufacturing methods for frozen desserts and dessert mixes that require simultaneous freezing and aeration in terms of cost, convenience, customizability, shelf-stability and environmental impact.




ine

Machine tool, in particular handheld machine tool

A power tool, in particular a hand-held power tool, preferably embodied as a cordless screwdriver, is equipped with a torque limiting unit in which the release torque is settable by way of a locking brace that is equipped with a spring brace for locking elements that abut axially against parts of a planetary drive, in particular the ring gear thereof or the planet carrier thereof as a last gear stage, the spring elements of the spring brace and the locking elements being located with a radial offset from one another.




ine

Gas carrying threading device of sewing machine

Pressurized gas for carrying looper thread by gas is generated by gas supply pump operated by changing over a sewing-machine motor, which drives stitch forming device, looper threading is performed through loopers by one-touch operation. Gas carrying threading device of sewing machine, comprising: looper thread introduction mechanism inserts looper thread guided to loopers; hollow looper thread guide extends from looper thread introduction mechanism to looper thread inlets and has looper thread guide outlets; gas supply pump for performing looper threading by carrying looper thread by gas from looper thread introduction area through hollow looper thread guide to looper thread loop-taker point outlets; clutch for transmitting power from sewing machine motor M to drive shaft which drives stitch forming device including loopers at time of stitch formation or to gas supply pump at time of looper threading.




ine

Thread cut with variable thread consumption in a sewing machine

A method and a device for cutting at least an upper thread of a sewing machine provided with a fabric clamping member (20), wherein a length of the thread consumed for a cut can be set within a predetermined interval. The method for cutting at least the upper thread (4) of a sewing machine (1) includes the steps: feeding a predetermined length x of said upper thread (4) utilizing a thread feeder (15), pulling out the upper thread (4) said predetermined length utilizing a displacement of said fabric clamping member (20) from a current position to a second position executing by means of a sewing machine processor (C) program sequences stored in a memory (M) for controlling a thread cutter (10) to perform a cut of at least said upper thread (4).




ine

Machine and method for sewing, embroidering, quilting and/or the like

One embodiment of the present invention relates to a machine for sewing, embroidering, quilting and/or the like. Another embodiment of the present invention relates to a method for sewing, embroidering, quilting and/or the like. In one example, the present invention may be applied (e.g., as a machine and/or method) to a multi-needle machine or method. In another example, the present invention may provide for automatic lower (or bottom) thread cutting. In another example, the present invention may provide for automatic lower (or bottom) thread cutting by utilizing the phase (that is, movement phase) of a return of a looper (or hook) to cut the lower (or bottom) thread.




ine

Apparatus, sewing machine, and non-transitory computer-readable medium

An apparatus includes a processor and a memory. The memory is configured to store computer-readable instructions that, when executed by the processor, instruct the processor to perform processes including acquiring pattern data, specifying an outline of the embroidery pattern based on the pattern data, creating hole data for causing the sewing machine to form a plurality of holes including one or more first holes and one or more second holes, creating first stitch data for causing the sewing machine to sew one or more stitches for the one or more first holes, and creating embroidery data for causing the sewing machine to form one or more first holes, and sew the one or more stitches for the one or more first holes, and causing the sewing machine to form the one or more second holes, before causing the sewing machine to sew an outline pattern.




ine

Threading device for sewing machine lower looper

A threading device for a sewing machine lower looper is disclosed that can thread a lower looper safely and reliably by reliably preventing a main shaft from rotating when an operation of threading the lower looper is carried out.




ine

Sewing machine accessory for circular sewing

A sewing machine accessory includes a plate for attaching to a sewing machine workbed and to be located below a needle, the plate includes an opening and a guiding track, and a positioning device includes a sliding member slidably engaged with the guiding track of the accessory plate, and a pointed member extended from the sliding member for engaging with a cloth material to be stitched and for forming of an arced stitch on the cloth material, and the pointed member is movable close to the needle for stitching or forming a circular or arced stitch that includes a relatively decreased or smaller outer diameter.




ine

Sewing machine

A sewing machine includes an imaging device, a processor, and a memory configured to store sewing data and computer-readable instructions. The sewing data includes at least first stitch data to form first stitches that indicate a contour of a pattern on a first work cloth, and second stitch data to form second stitches that attach the pattern cut out along the first stitches onto a second work cloth. The computer-readable instructions cause the processor to perform processes comprising causing the imaging device to capture a first image, identifying a position and an angle of a marker in relation to the contour, causing the imaging device to capture a second image, identifying a position and an angle of the contour in relation to the second work cloth, and correcting the second stitch data in accordance with the identified position and angle of the contour in relation to the second work cloth.