hy Crystal structure and Hirshfeld surface analysis of 2-bromoethylammonium bromide – a possible side product upon synthesis of hybrid perovskites By journals.iucr.org Published On :: 2024-06-18 This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br−. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/c, featuring one organic cation and one bromide anion in its asymmetric unit, with a torsion angle of −64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H interactions, which constitute 62.6% of the overall close atom contacts. Full Article text
hy Synthesis, spectroscopic analysis and crystal structure of (N-{2-[(2-aminoethyl)amino]ethyl}-4'-methyl-[1,1'-biphenyl]-4-sulfonamidato)tricarbonylrhenium(I) By journals.iucr.org Published On :: 2024-06-18 The title compound, [Re(C17H22N3O2S)(CO)3] is a net neutral fac-Re(I)(CO)3 complex of the 4-methylbiphenyl sulfonamide derivatized diethylenetriamine ligand. The NNN-donor monoanionic ligand coordinates with the Re core in tridentate fashion, establishing an inner coordination sphere resulting in a net neutral complex. The complex possesses pseudo-octahedral geometry where one face of the octahedron is occupied by three carbonyl ligands and the other faces are occupied by one sp2 nitrogen atom of the sulfonamide group and two sp3 nitrogen atoms of the dien backbone. The Re—Nsp2 bond distance, 2.173 (4) Å, is shorter than the Re—Nsp3 bond distances, 2.217 (5) and 2.228 (6) Å, and is similar to the range reported for typical Re—Nsp2 bond lengths (2.14 to 2.18 Å). Full Article text
hy Crystal structure of 1,2,3,4-tetrahydroisoquinolin-2-ium (2S,3S)-3-carboxy-2,3-dihydroxypropanoate monohydrate By journals.iucr.org Published On :: 2024-06-21 The crystal structure of 1,2,3,4-tetrahydroisoquinolin-2-ium (2S,3S)-3-carboxy-2,3-dihydroxypropanoate monohydrate, C9H12N+·C4H5O6−·H2O, at 115 K shows orthorhombic symmetry (space group P212121). The hydrogen tartrate anions and solvent water molecules form an intricate diperiodic O—H⋯O hydrogen-bond network parallel to (001). The tetrahydroisoquinolinium cations are tethered to the anionic hydrogen-bonded layers through N—H⋯O hydrogen bonds. The crystal packing in the third direction is achieved through van der Waals contacts between the hydrocarbon tails of the tetrahydroisoquinolinium cations, resulting in hydrophobic and hydrophilic regions in the crystal structure. Full Article text
hy Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(4-fluorophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one By journals.iucr.org Published On :: 2024-06-25 In the title compound, C19H18BrFN2O, the pyrrolidine ring adopts an envelope conformation. In the crystal, molecules are linked by intermolecular N—H⋯O, C—H⋯O, C—H⋯F and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π interactions connect molecules into ribbons along the b-axis direction, consolidating the molecular packing. The intermolecular interactions in the crystal structure were quantified and analysed using Hirshfeld surface analysis. Full Article text
hy Synthesis, crystal structure and thermal properties of catena-poly[[bis(4-methylpyridine)nickel(II)]-di-μ-thiocyanato], which shows an alternating all-trans and cis–cis–trans-coordination of the NiS2Np2Nt2 octahedra (p = 4-me By journals.iucr.org Published On :: 2024-06-21 The title compound, [Ni(NCS)2(C6H7N)2]n, was prepared by the reaction of Ni(NCS)2 with 4-methylpyridine in water. Its asymmetric unit consists of two crystallographically independent NiII cations, of which one is located on a twofold rotational axis whereas the second occupies a center of inversion, two independent thiocyanate anions and two independent 4-methylpyridine coligands in general positions. Each NiII cation is octahedrally coordinated by two 4-methylpyridine coligands as well as two N- and two S-bonded thiocyanate anions. One of the cations shows an all-trans, the other a cis–cis–trans configuration. The metal centers are linked by pairs of μ-1,3-bridging thiocyanate anions into [101] chains. X-ray powder diffraction shows that a pure crystalline phase has been obtained and thermogravimetry coupled to differential thermoanalysis reveals that the title compound loses half of the 4-methylpyridine coligands and transforms into Ni(NCS)2(C6H7N). Nearly pure samples of this compound can be obtained by thermal annealing and a Rietveld refinement demonstrated that it is isotypic to its recently reported Cd analog [Neumann et al., (2020). CrystEngComm. 22, 184–194] In its crystal structure, the metal cations are linked by one μ-1,3(N,S)- and one μ-1,3,3(N,S,S)-bridging thiocyanate anion into single chains that condense via the μ-1,3,3(N,S,S)-bridging anionic ligands into double chains. Full Article text
hy Crystal structure determination and analyses of Hirshfeld surface, crystal voids, intermolecular interaction energies and energy frameworks of 1-benzyl-4-(methylsulfanyl)-3a,7a-dihydro-1H-pyrazolo[3,4-d]pyrimidine By journals.iucr.org Published On :: 2024-06-25 The pyrazolopyrimidine moiety in the title molecule, C13H12N4S, is planar with the methylsulfanyl substituent lying essentially in the same plane. The benzyl group is rotated well out of this plane by 73.64 (6)°, giving the molecule an approximate L shape. In the crystal, C—H⋯π(ring) interactions and C—H⋯S hydrogen bonds form tubes extending along the a axis. Furthermore, there are π–π interactions between parallel phenyl rings with centroid-to-centroid distances of 3.8418 (12) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.0%), H⋯N/N⋯H (17.6%) and H⋯C/C⋯H (17.0%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 76.45 Å3 and 6.39%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the cohesion of the crystal structure is dominated by the dispersion energy contributions. Full Article text
hy Synthesis, crystal structure and photophysical properties of a dinuclear MnII complex with 6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline By journals.iucr.org Published On :: 2024-06-28 A new quinoline derivative, namely, 6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline, C24H23N3 (QP), and its MnII complex aqua-1κO-di-μ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II), [Mn2Cl4(C24H23N3)2(H2O)] (MnQP), were synthesized. Their compositions have been determined with ESI-MS, IR, and 1H NMR spectroscopy. The crystal-structure determination of MnQP revealed a dinuclear complex with a central four-membered Mn2Cl2 ring. Both MnII atoms bind to an additional Cl atom and to two N atoms of the QP ligand. One MnII atom expands its coordination sphere with an extra water molecule, resulting in a distorted octahedral shape. The second MnII atom shows a distorted trigonal–bipyramidal shape. The UV–vis absorption and emission spectra of the examined compounds were studied. Furthermore, when investigating the aggregation-induced emission (AIE) properties, it was found that the fluorescent color changes from blue to green and eventually becomes yellow as the fraction of water in the THF/water mixture increases from 0% to 99%. In particular, these color and intensity changes are most pronounced at a water fraction of 60%. The crystal structure contains disordered solvent molecules, which could not be modeled. The SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18] was used to obtain information on the type and quantity of solvent molecules, which resulted in 44 electrons in a void volume of 274 Å3, corresponding to approximately 1.7 molecules of ethanol in the unit cell. These ethanol molecules are not considered in the given chemical formula and other crystal data. Full Article text
hy Synthesis, structural studies and Hirshfeld surface analysis of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexakis(nitrato-κ2O,O')thorate(IV) By journals.iucr.org Published On :: 2024-07-05 Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4L2], which was detected in the mass spectrum of 1. In the structure, the [Th(NO3)6]2− anions display an icosahedral coordination geometry and are connected by LH+ cations through C—H⋯O hydrogen bonds. The LH+ cations interact via N—H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important interactions are O⋯H/H⋯O hydrogen-bonding interactions, which represent a 55.2% contribution. Full Article text
hy Crystal structure of the 1:1 co-crystal 4-(dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate–N,N-dimethylpyridin-4-amine By journals.iucr.org Published On :: 2024-07-09 The asymmetric unit of the title compound is composed of two independent ion pairs of 4-(dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate (HDMAP+·HqSA−, C7H11N2+·C9H6NO4S−) and neutral N,N-dimethylpyridin-4-amine molecules (DMAP, C7H10N2), co-crystallized as a 1:1:1 HDMAP+:HqSA−:DMAP adduct in the monoclinic system, space group Pc. The compound has a layered structure, including cation layers of HDMAP+ with DMAP and anion layers of HqSA− in the crystal. In the cation layer, there are intermolecular N—H⋯N hydrogen bonds between the protonated HDMAP+ molecule and the neutral DMAP molecule. In the anion layer, each HqSA− is surrounded by other six HqSA−, where the planar network structure is formed by intermolecular O—H⋯O and C—H⋯O hydrogen bonds. The cation and anion layers are linked by intermolecular C—H⋯O hydrogen bonds and C—H⋯π interactions. Full Article text
hy Crystal structure of 4-bromo-5,7-dimethoxy-2,3-dihydro-1H-inden-1-one By journals.iucr.org Published On :: 2024-07-19 In the title molecule, C11H11BrO3, the dihydroindene moiety is essentially planar but with a slight twist in the saturated portion of the five-membered ring. The methoxy groups lie close to the above plane. In the crystal, π-stacking interactions between six-membered rings form stacks of molecules extending along the a-axis direction, which are linked by weak C—H⋯O and C—H⋯Br hydrogen bonds. A Hirshfeld surface analysis was performed showing H⋯H, O⋯H/H⋯O and Br⋯H/H⋯Br contacts make the largest contributions to intermolecular interactions in the crystal. Full Article text
hy Crystal and molecular structure of 2-methyl-1,4-phenylene bis(3,5-dibromobenzoate) By journals.iucr.org Published On :: 2024-07-15 The aryl diester compound, 2-methyl-1,4-phenylene bis(3,5-dibromobenzoate), C21H12Br4O4, was synthesized by esterification of methyl hydroquinone with 3,5-dibromobenzoic acid. A crystalline sample was obtained by cooling a sample of the melt (m.p. = 502 K/DSC) to room temperature. The molecular structure consists of a central benzene ring with anti-3,5-dibromobenzoate groups symmetrically attached at the 1 and 4 positions and a methyl group attached at the 2 position of the central ring. In the crystal structure (space group Poverline{1}), molecules of the title aryl diester are located on inversion centers imposing disorder of the methyl group and H atom across the central benzene ring. The crystal structure is consolidated by a network of C—H⋯Br hydrogen bonds in addition to weaker and offset π–π interactions involving the central benzene rings as well as the rings of the attached 3,5-dibromobenzoate groups. Full Article text
hy Synthesis, molecular and crystal structures of 4-amino-3,5-difluorobenzonitrile, ethyl 4-amino-3,5-difluorobenzoate, and diethyl 4,4'-(diazene-1,2-diyl)bis(3,5-difluorobenzoate) By journals.iucr.org Published On :: 2024-07-19 The crystal structures of two intermediates, 4-amino-3,5-difluorobenzonitrile, C7H4F2N2 (I), and ethyl 4-amino-3,5-difluorobenzoate, C9H9F2NO2 (II), along with a visible-light-responsive azobenzene derivative, diethyl 4,4'-(diazene-1,2-diyl)bis(3,5-difluorobenzoate), C18H14F4N2O4 (III), obtained by four-step synthetic procedure, were studied using single-crystal X-ray diffraction. The molecules of I and II demonstrate the quinoid character of phenyl rings accompanied by the distortion of bond angles related to the presence of fluorine substituents in the 3 and 5 (ortho) positions. In the crystals of I and II, the molecules are connected by N—H⋯N, N—H⋯F and N—H⋯O hydrogen bonds, C—H⋯F short contacts, and π-stacking interactions. In crystal of III, only stacking interactions between the molecules are found. Full Article text
hy Synthesis, crystal structure and Hirshfeld surface of ethyl 2-[2-(methylsulfanyl)-5-oxo-4,4-diphenyl-4,5-dihydro-1H-imidazol-1-yl]acetate (thiophenytoin derivative) By journals.iucr.org Published On :: 2024-08-09 The dihydroimidazole ring in the title molecule, C20H20N2O3S, is slightly distorted and the lone pair on the tri-coordinate nitrogen atom is involved in intra-ring π bonding. The methylsulfanyl substituent lies nearly in the plane of the five-membered ring while the ester substituent is rotated well out of that plane. In the crystal, C—H⋯O hydrogen bonds form inversion dimers, which are connected along the a- and c-axis directions by additional C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The major contributors to the Hirshfeld surface are C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively. Full Article text
hy Synthesis, crystal structure and Hirshfeld surface analysis of [1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl]methyl 2-(4-nitrophenoxy)acetate By journals.iucr.org Published On :: 2024-07-31 The title compound, C17H13BrN4O5, was synthesized by a Cu2Br2-catalysed Meldal–Sharpless reaction between 4-nitrophenoxyacetic acid propargyl ether and para-bromophenylazide, and characterized by X-ray structure determination and 1H NMR spectroscopy. The molecules, with a near-perpendicular orientation of the bromophenyl-triazole and nitrophenoxyacetate fragments, are connected into a three-dimensional network by intermolecular C—H⋯O and C—H⋯N hydrogen bonds (confirmed by Hirshfeld surface analysis), π–π and Br–π interactions. Full Article text
hy Synthesis and crystal structure of 1,3-bis(acetoxymethyl)-5-{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylbenzene By journals.iucr.org Published On :: 2024-08-13 In the crystal structure of the title compound, C26H36N2O4, the tripodal molecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The heterocyclic unit is inclined at an angle of 79.6 (1)° with respect to the plane of the benzene ring. In the crystal, the molecules are connected via N—H⋯O bonds, forming infinite supramolecular strands. Interstrand association involves weak C—H⋯O and C—H⋯π interactions, with the pyridine ring acting as an acceptor in the latter case. Full Article text
hy Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-dihydroquinoxalin-2(1H)-one By journals.iucr.org Published On :: 2024-08-09 In the title molecule, C25H29N5O, the dihydroquinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the molecule adopts a hairpin conformation. In the crystal, the polar portions of the molecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) interactions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces. Full Article text
hy Puckering effects of 4-hydroxy-l-proline isomers on the conformation of ornithine-free Gramicidin S By journals.iucr.org Published On :: 2024-08-09 The cyclic peptide cyclo(Val-Leu-Leu-d-Phe-Pro)2 (peptide 1) was specifically designed for structural chemistry investigations, drawing inspiration from Gramicidin S (GS). Previous studies have shown that Pro residues within 1 adopt a down-puckering conformation of the pyrrolidine ring. By incorporating fluoride-Pro with 4-trans/cis-isomers into 1, an up-puckering conformation was successfully induced. In the current investigation, introducing hydroxyprolines with 4-trans/cis-isomer configurations (tHyp/cHyp) into 1 gave cyclo(Val-Leu-Leu-d-Phe-tHyp)2 methanol disolvate monohydrate, C62H94N10O12·2CH4O·H2O (4), and cyclo(Val-Leu-Leu-d-Phe-cHyp)2 monohydrate, C62H94N10O12·H2O (5), respectively. However, the puckering of 4 and 5 remained in the down conformation, regardless of the geometric position of the hydroxyl group. Although the backbone structure of 4 with trans-substitution was asymmetric, the asymmetric backbone of 5 with cis-substitution was unexpected. It is speculated that the anticipated influence of stress from the geometric positioning, which was expected to affect the puckering, may have been mitigated by interactions between the hydroxyl groups of hydroxyproline, the solvent molecules, and peptides. Full Article text
hy Crystal structure and Hirshfeld surface analysis of dichlorido[2-(3-cyclopentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) dimethylformamide monosolvate By journals.iucr.org Published On :: 2024-08-16 This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclopentyl-1,2,4-triazol-5-yl)pyridine] and one molecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, molecules are linked by intermolecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H interactions is somewhat smaller, amounting to 12.4% and 5%, respectively. Full Article text
hy Synthesis, crystal structure and Hirshfeld surface analysis of [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hydroxy-N'-(propan-2-ylidene)benzohydrazide] By journals.iucr.org Published On :: 2024-08-20 The present study focuses on the synthesis and structural characterization of a novel dinuclear CuII complex, [trichloridocopper(II)]-μ-chlorido-{bis[2-hydroxy-N'-(propan-2-ylidene)benzohydrazide]copper(II)} monohydrate, [Cu2Cl4(C10H12N2O2)2]·H2O or [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hydroxy-N'-(propan-2-ylidene)benzohydrazide]. The complex crystallizes in the monoclinic space group P21/n with one molecule of water, which forms interactions with the ligands. The first copper ion is penta-coordinated to two benzohydrazine-derived ligands via two nitrogen and two oxygen atoms, and one bridging chloride, which is also coordinated by the second copper ion alongside three terminal chlorines in a distorted tetrahedral geometry. The arrangement around the first copper ion exhibits a distorted geometry intermediate between trigonal bipyramidal and square pyramidal. In the crystal, chains are formed via intermolecular interactions along the a-axis direction, with subsequent layers constructed through hydrogen-bonding interactions parallel to the ac plane, and through slipped π–π stacking interactions parallel to the ab plane, resulting in a three-dimensional network. The intermolecular interactions in the crystal structure were quantified and analysed using Hirshfeld surface analysis. Residual electron density from disordered methanol molecules in the void space could not be reasonably modelled, thus a solvent mask was applied. Full Article text
hy Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one By journals.iucr.org Published On :: 2024-08-30 This study presents the synthesis, characterization and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one, C19H18Br2N2O. In the title compound, the pyrrolidine ring adopts a distorted envelope configuration. In the crystal, molecules are linked by intermolecular N—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, pairs of molecules along the c axis are connected by C—H⋯π interactions. According to a Hirshfeld surface study, H⋯H (36.9%), Br⋯H/H⋯Br (28.2%) and C⋯H/H⋯C (24.3%) interactions are the most significant contributors to the crystal packing. Full Article text
hy Crystal structure of propane-1,3-diaminium squarate dihydrate By journals.iucr.org Published On :: 2024-08-30 Propane-1,3-diaminium squarate dihydrate, C3H12N22+·C4O42−·2H2O, results from the proton-transfer reaction of propane-1,3-diamine with squaric acid and subsequent crystallization from aqueous medium. The title compound crystallizes in the tetragonal crystal system (space group P4bm) with Z = 2. The squarate dianion belongs to the point group D4h and contains a crystallographic fourfold axis. The propane-1,3-diaminium dication exhibits a C2v-symmetric all-anti conformation and resides on a special position with mm2 site symmetry. The orientation of the propane-1,3-diaminium ions makes the crystal structure polar in the c-axis direction. The solid-state supramolecular structure features a triperiodic network of strong hydrogen bonds of the N—H⋯O and O—H⋯O types. Full Article text
hy Synthesis, crystal structure and Hirshfeld surface analysis of a new copper(II) complex based on diethyl 2,2'-(4H-1,2,4-triazole-3,5-diyl)diacetate By journals.iucr.org Published On :: 2024-08-30 The title compound, bis[μ-2,2'-(4H-1,2,4-triazole-3,5-diyl)diacetato]bis[diaquacopper(II)] dihydrate, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, is a dinuclear octahedral CuII triazole-based complex. The central copper atoms are hexa-coordinated by two nitrogen atoms in the equatorial positions, two equatorial oxygen atoms of two carboxylate substituents in position 3 and 5 of the 1,2,4-triazole ring, and two axial oxygen atoms of two water molecules. Two additional solvent water molecules are linked to the title molecule by O—H⋯N and O⋯H—O hydrogen bonds. The crystal structure is built up from the parallel packing of discrete supramolecular chains running along the a-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) interactions. The crystal studied was twinned by a twofold rotation around [100]. Full Article text
hy Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aquabis(μ3-carbamoylcyanonitrosomethanido)barium] monohydrate] and its thermal decomposition By journals.iucr.org Published On :: 2024-08-30 In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water molecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water molecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coordination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water molecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoylcyanonitrosomethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyanonitroso anions can be utilized as bridging ligands for the supramolecular synthesis of MOF solids. Such an outcome may be anticipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K. Full Article text
hy Crystal structure of a tris(2-aminoethyl)methane capped carbamoylmethylphosphine oxide compound By journals.iucr.org Published On :: 2024-08-30 The molecular structure of the tripodal carbamoylmethylphosphine oxide compound diethyl {[(5-[2-(diethoxyphosphoryl)acetamido]-3-{2-[2-(diethoxyphosphoryl)acetamido]ethyl}pentyl)carbamoyl]methyl}phosphonate, C25H52N3O12P3, features six intramolecular hydrogen-bonding interactions. The phosphonate groups have key bond lengths ranging from 1.4696 (12) to 1.4729 (12) Å (P=O), 1.5681 (11) to 1.5811 (12) Å (P—O) and 1.7881 (16) to 1.7936 (16) Å (P—C). Each amide group adopts a nearly perfect trans geometry, and the geometry around each phophorus atom resembles a slightly distorted tetrahedron. Full Article text
hy Crystal structure, Hirshfeld surface analysis, DFT optimized molecular structure and the molecular docking studies of 1-[2-(cyanosulfanyl)acetyl]-3-methyl-2,6-bis(4-methylphenyl)piperidin-4-one By journals.iucr.org Published On :: 2024-09-12 The two molecules in the asymmetric unit of the title compound, C23H24N2O2S, have a structural overlap with an r.m.s. deviation of 0.82 Å. The piperidine rings adopt a distorted boat conformation. Intra- and intermolecular C—H⋯O hydrogen bonds are responsible for the cohesion of the crystal packing. The intermolecular interactions were quantified and analysed using Hirshfeld surface analysis. The molecular structure optimized by density functional theory (DFT) at the B3LYP/6–311++G(d,p)level is compared with the experimentally determined molecular structure in the solid state. Full Article text
hy Synthesis, crystal structure, and Hirshfeld surface analysis of 1,3-dihydro-2H-benzimidazol-2-iminium 3-carboxy-4-hydroxybenzenesulfonate By journals.iucr.org Published On :: 2024-09-06 The asymmetric unit of the title salt, C7H8N3+·C7H5O6S−, comprises two 1,3-dihydro-2H-benzimidazol-2-iminium cations and two 2-hydroxy-5-sulfobenzoate anions (Z' = 2). In the crystal, the molecules interact through N—H⋯O, O—H⋯O hydrogen bonds and C—O⋯π contacts. The hydrogen-bonding interactions lead to the formation of layers parallel to (overline{1}01). Hirshfeld surface analysis revealed that H⋯H contacts contribute to most of the crystal packing with 38.9%, followed by H⋯O contacts with 36.2%. Full Article text
hy Crystal structure, Hirshfeld surface analysis, and calculations of intermolecular interaction energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)methyl]-3-(1-methylethenyl)-benzimidazol-2-one By journals.iucr.org Published On :: 2024-09-30 The benzimidazole moiety in the title molecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the molecules into a network structure. There are no π–π interactions present but two weak C—H⋯π(ring) interactions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) interactions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound. Full Article text
hy Synthesis, characterization, and crystal structure of hexakis(1-methyl-1H-imidazole-κN3)zinc(II) dinitrate By journals.iucr.org Published On :: 2024-09-24 The synthesis of the title compound, [Zn(C4H6N2)6](NO3)2, is described. This complex consists of a central zinc metal ion surrounded by six 1-methylimidazole ligands, charge balanced by two nitrate anions. The complex crystallizes in the space group Poverline{3}. In the crystal, the nitrate ions are situated within the cavities created by the [Zn(N-Melm)6]2+ cations, serving as counter-ions. The three oxygen atoms of the nitrate ion engage in weak C—H⋯O interactions. In addition to single-crystal X-ray diffraction analysis, the complex was characterized using elemental analysis, 1H NMR, 13C NMR, and FTIR spectroscopy. Full Article text
hy Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methylbenzimidazole-κN3)aquabis(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate By journals.iucr.org Published On :: 2024-10-22 The molecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of interest for its antimicrobial properties. The asymmetric unit comprises two independent complex molecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of intermolecular interactions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts. Full Article text
hy Synthesis and crystal structure of poly[ethanol(μ-4-methylpyridine N-oxide)di-μ-thiocyanato-cobalt(II)] By journals.iucr.org Published On :: 2024-09-20 Reaction of 4-methylpyridine N-oxide and Co(NCS)2 in ethanol as solvent accidentally leads to the formation of single crystals of Co(NCS)2(4-methylpyridine N-oxide)(ethanol) or [Co(NCS)2(C6H7NO)(C2H6O)]n. The asymmetric unit of the title compound consists of one CoII cation, two crystallographically independent thiocyanate anions, one 4-methylpyridine N-oxide coligand and one ethanol molecule on general positions. The cobalt cations are sixfold coordinated by one terminal and two bridging thiocyanate anions, two bridging 4-methylpyridine N-oxide coligands and one ethanol molecule, with a slightly distorted octahedral geometry. The cobalt cations are linked by single μ-1,3(N,S)-bridging thiocyanate anions into corrugated chains, that are further connected into layers by pairs of μ-1,1(O,O)-bridging 4-methylpyridine N-oxide coligands. The layers are parallel to the bc plane and are separated by the methyl groups of the 4-methylpyridine N-oxide coligands. Within the layers, intralayer hydrogen bonding is observed. Full Article text
hy Synthesis and crystal structure of poly[[μ-chlorido-μ-(2,3-dimethylpyrazine)-copper(I)] ethanol hemisolvate], which shows a new isomeric CuCl(2,3-dimethylpyrazine) network By journals.iucr.org Published On :: 2024-09-24 Reaction of copper(I)chloride with 2,3-dimethylpyrazine in ethanol leads to the formation of the title compound, poly[[μ-chlorido-μ-(2,3-dimethylpyrazine)-copper(I)] ethanol hemisolvate], {[CuCl(C6H8N2)]·0.5C2H5OH}n or CuCl(2,3-dimethylpyrazine) ethanol hemisolvate. Its asymmetric unit consists of two crystallographically independent copper cations, two chloride anions and two 2,3-dimethylpyrazine ligands as well as one ethanol solvate molecule in general positions. The ethanol molecule is disordered and was refined using a split model. The methyl H atoms of the 2,3-dimethylpyrazine ligands are also disordered and were refined in two orientations rotated by 60° relative to each other. In the crystal structure, each copper cation is tetrahedrally coordinated by two N atoms of two bridging 2,3-dimethylpyrazine ligands and two μ-1,1-bridging chloride anions. Each of the two copper cations are linked by pairs of bridging chloride anions into dinuclear units that are further linked into layers via bridging 2,3-dimethylpyrazine coligands. These layers are stacked in such a way that channels are formed in which the disordered solvent molecules are located. The topology of this network is completely different from that observed in the two polymorphic modifications of CuCl(2,3-dimethylpyrazine) reported in the literature [Jess & Näther (2006). Inorg. Chem. 45, 7446–7454]. Powder X-ray diffraction measurements reveal that the title compound is unstable and transforms immediately into an unknown crystalline phase. Full Article text
hy Synthesis, crystal structure and Hirshfeld surface analysis of sulfamethoxazolium methylsulfate monohydrate By journals.iucr.org Published On :: 2024-09-24 The molecular salt sulfamethoxazolium {or 4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]anilinium methyl sulfate monohydrate}, C10H12N3O3S+·CH3O4S−·H2O, was prepared by the reaction of sulfamethoxazole and H2SO4 in methanol and crystallized from methanol–ether–water. Protonation takes place at the nitrogen atom of the primary amino group. In the crystal, N—H⋯O hydrogen bonds (water and methylsulfate anion) and intermolecular N—H⋯N interactions involving the sulfonamide and isoxazole nitrogen atoms, link the components into a tri-dimensional network, additional cohesion being provided by face-to-face π–π interactions between the phenyl rings of adjacent molecules. A Hirshfeld surface analysis was used to verify the contributions of the different intermolecular interactions, showing that the three most important contributions for the crystal packing are from H⋯O (54.1%), H⋯H (29.2%) and H⋯N (5.0%) interactions. Full Article text
hy 8-Hydroxyquinolinium trichlorido(pyridine-2,6-dicarboxylic acid-κ3O,N,O')copper(II) dihydrate By journals.iucr.org Published On :: 2024-09-24 The title compound, (C9H8NO)[CuCl3(C7H5NO4)]·2H2O, was prepared by reacting CuII acetate dihydrate, solid 8-hydroxyquinoline (8-HQ), and solid pyridine-2,6-dicarboxylic acid (H2pydc), in a 1:1:1 molar ratio, in an aqueous solution of dilute hydrochloric acid. The CuII atom exhibits a distorted CuO2NCl3 octahedral geometry, coordinating two oxygen atoms and one nitrogen atom from the tridentate H2pydc ligand and three chloride atoms; the nitrogen atom and one chloride atom occupy the axial positions with Cu—N and Cu—Cl bond lengths of 2.011 (2) Å and 2.2067 (9) Å, respectively. In the equatorial plane, the oxygen and chloride atoms are arranged in a cis configuration, with Cu—O bond lengths of 2.366 (2) and 2.424 (2) Å, and Cu—Cl bond lengths of 2.4190 (10) and 2.3688 (11) Å. The asymmetric unit contains 8-HQ+ as a counter-ion and two uncoordinated water molecules. The crystal structure features strong O—H⋯O and O—H⋯Cl hydrogen bonds as well as weak interactions including C—H⋯O, C—H⋯Cl, Cu—Cl⋯π, and π–π, which result in a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing involving the main residues are from H⋯Cl/Cl⋯H interactions, contributing 40.3% for the anion. Weak H⋯H contacts contribute 13.2% for the cation and 28.6% for the anion. Full Article text
hy Synthesis and crystal structure of 1H-1,2,4-triazole-3,5-diamine monohydrate By journals.iucr.org Published On :: 2024-10-11 The title compound, a hydrate of 3,5-diamino-1,2,4-triazole (DATA), C2H5N5·H2O, was synthesized in the presence of sodium perchlorate. The evaporation of H2O from its aqueous solution resulted in anhydrous DATA, suggesting that sodium perchlorate was required to precipitate the DATA hydrate. The DATA hydrate crystallizes in the P21/c space group in the form of needle-shaped crystals with one DATA and one water molecule in the asymmetric unit. The water molecules form a three-dimensional network in the crystal structure. Hirshfeld surface analysis revealed that 8.5% of the intermolecular interactions originate from H⋯O contacts derived from the incorporation of the water molecules. Full Article text
hy Synthesis, crystal structure and properties of μ-tetrathioantimonato-bis[(cyclam)zinc(II)] perchlorate 0.8-hydrate By journals.iucr.org Published On :: 2024-10-11 The reaction of Zn(ClO4)2·6H2O with Na3SbS4·9H2O in a water/acetonitrile mixture leads to the formation of the title compound, (μ-tetrathioantimonato-κ2S:S')bis[(1,4,8,11-tetraazacyclotetradecane-κ4N)zinc(II)] perchlorate 0.8-hydrate, [Zn2(SbS4)(C10H24N4)2]ClO4·0.8H2O or [(Zn-cyclam)2(SbS4)]+[ClO4]−·0.8H2O. The asymmetric unit consists of two crystallographically independent [SbS4]3– anions, two independent perchlorate anions and two independent water molecules as well as four crystallographically independent Zn(cyclam)2+ cations that are located in general positions. Both perchlorate anions and one cyclam ligand are disordered and were refined with a split mode using restraints. The water molecules are partially occupied. Two Zn(cyclam)2+ cations are linked via the [SbS4]3– anions into [Zn2(cyclam)2SbS4]+ cations that are charged-balanced by the [ClO4]− anions. The water molecules of crystallization are hydrogen bonded to the [SbS4]3– anions. The cations, anions and water molecules are linked by N—H⋯O, N—H⋯S and O—H⋯S hydrogen bonds into a three-dimensional network. Powder X-ray diffraction proves that a pure sample had been obtained that was additionally investigated for its spectroscopic properties. Full Article text
hy Structure of 2,3,5-triphenyltetrazol-3-ium chloride hemipentahydrate By journals.iucr.org Published On :: 2024-09-30 The title hydrated molecular salt, C19H15N4+·Cl−·2.5H2O, has two triphenyltetrazolium cations, two chloride anions and five water molecules in the asymmetric unit. The cations differ in the conformations of the phenyl rings with respect to the heterocyclic core, most notably for the C-bonded phenyl ring, for which the N—C—C—C torsion angles differ by 36.4 (3)°. This is likely a result of one cation accepting an O—H⋯N hydrogen bond from a water molecule [O⋯N = 3.1605 (15) Å], while the other cation accepts no hydrogen bonds. In the extended structure, the water molecules are involved in centrosymmetric (H2O)2Cl2 rings as well as (H2O)4 chains. An unusual O—H⋯π interaction and weak C—H⋯O and C—H⋯Cl hydrogen bonds are also observed. Full Article text
hy Synthesis, structures and Hirshfeld surface analyses of 2-hydroxy-N'-methylacetohydrazide and 2-hydroxy-N-methylacetohydrazide By journals.iucr.org Published On :: 2024-10-15 The structures of the title compounds 2-hydroxy-N'-methylacetohydrazide, 1, and 2-hydroxy-N-methylacetohydrazide, 2, both C3H8N2O2, as regioisomers differ in the position of the methyl group relative to the N atoms in 2-hydroxy-acetohydrazide. In the structure of 1, the 2-hydroxy-acetohydrazide core [OH—C—C(=O)—NH—NH] is almost planar and the methyl group is rotated relative to this plane. As opposed to 1, in the structure of 2 all non-hydrogen atoms lie in the same plane. The hydroxyl and carbonyl groups in structures 1 and 2 are in trans and cis positions, respectively. The methyl amino group and carbonyl group are in the cis position relative to the C—N bond in structure 1, while the amino group and carbonyl group are in the trans position relative to the C—N bond in stucture 2. In the crystal, molecules of 1 are linked by N—H⋯O and O—H⋯N intermolecular hydrogen bonds, forming layers parallel to the ab crystallographic plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 55.3%. The contribution of the H⋯O/O⋯H interaction is somewhat smaller, amounting to 30.8%. In the crystal, as a result of the intermolecular O—H⋯O hydrogen bonds, molecules of 2 form dimers, which are linked by N—H⋯O hydrogen bonds and a three-dimensional supramolecular network The major contributors to the Hirshfeld surface are H⋯H (58.5%) and H⋯O/O⋯H contacts (31.7%). Full Article text
hy N,N'-Dibenzylethylenediammonium dichloride By journals.iucr.org Published On :: 2024-10-04 The isolation and crystalline structure of N,N'-dibenzylethylenediammonium dichloride, C16H22N22+·2Cl−, is reported. This was obtained as an unintended product of an attempted Curtius rearrangement that involved benzylamine as one of the reagents and 1,2-dichloroethane as the solvent. Part of a series of reactions of a course-based undergraduate research experience (CURE), this was not the intended reaction outcome. The goal of the course was to engage students as active participants in a laboratory experience which applies the foundational techniques of a synthetic organic laboratory, using the Curtius rearrangement as a tool for the assembly of medicinally significant scaffolds. The isolation of the title compound, N,N'-dibenzylethylenediammonium dichloride, the result of the 1,2-dichloroethane solvent outcompeting the Curtius isocyanate intermediate in the reaction with the nucleophilic amine, confirms the importance of conducting research at the undergraduate level where the outcome is not predetermined. The solid-state structure of N,N'-dibenzylethylenediammonium dichloride was found to feature an all-trans methylene-ammonium backbone. Strong N—H⋯Cl hydrogen bonds and C—H⋯Cl interactions lead to a layered structure with pseudo-translational symmetry emulating a C-centered setting. Different phenyl torsion angles at each end of the molecule enable a more stable packing by allowing stronger hydrogen-bonding interactions, leading to a more ordered but lower symmetry and modulated structure in P21/n. Full Article text
hy Synthesis and crystal structure of sodium (ethane-1,2-diyl)bis[(3-methoxypropyl)phosphinodithiolate] octahydrate By journals.iucr.org Published On :: 2024-10-08 The title compound, catena-poly[[triaquasodium]-di-μ-aqua-[triaquasodium]-μ-(ethane-1,2-diyl)bis[(3-methoxypropyl)phosphinodithiolato]], [Na2(C10H22O2P2S4)(H2O)8]n, crystallizes in the triclinic space group P1. The dianionic [CH3O(CH2)3P(=S)(S—)CH2CH2P(=S)(S—)(CH2)3OCH3]2− ligand fragments are joined by a dicationic [Na2(H2O)8]2+ cluster that includes the oxygen of the methoxypropyl unit of the ligand to form infinite chains. Full Article text
hy Triclinic polymorph of bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetrachloridocadmium(II) By journals.iucr.org Published On :: 2024-10-04 The crystal structure of the title organic–inorganic hybrid salt, (C13H12N3)2[CdCl4], (I), has been reported with four molecules in the asymmetric unit in a monoclinic cell [Vassilyeva et al. (2021). RSC Advances, 11, 7713–7722]. While using two different aldehydes in the oxidative cyclization–condensation involving CH3NH2·HCl to prepare a new monovalent cation with the imidazo[1,5-a]pyridinium skeleton, a new polymorph was obtained for (I) in space group P1 and a unit cell with approximately half the volume of the monoclinic form. The structural configurations of the two crystallographically non-equivalent organic cations as well as the geometry of the moderately distorted tetrahedral CdCl42– dianion show minor changes. In the crystal, identically stacked cations and tetrachlorocadmate anions form separate columns parallel to the a axis. The loose packing of the anions leads to a minimal separation of approximately 9.53 Å between the metal atoms in the triclinic form versus 7.51 Å in the monoclinic one, indicating that the latter is packed slightly more densely. The two forms also differ by aromatic stacking motifs. Similar to the monoclinic polymorph, the triclinic one excited at 364 nm shows an intense unsymmetrical photoluminescent band with maximum at 403 nm and a full width at half maximum of 51 nm in the solid state. Full Article text
hy Crystal structure of a hydrogen-bonded 2:1 co-crystal of 4-nitrophenol and 4,4'-bipyridine By journals.iucr.org Published On :: 2024-10-08 In the title compound, C10H8N2·2C6H5NO3, 4-nitrophenol and 4,4'-bipyridine crystallized together in a 2:1 ratio in the space group P21/n. There is a hydrogen-bonding interaction between the nitrogen atoms on the 4,4'-bipyridine molecule and the hydrogen atom on the hydroxyl group on the 4-nitrophenol, resulting in trimolecular units. This structure is a polymorph of a previously reported structure [Nayak & Pedireddi (2016). Cryst. Growth Des. 16, 5966–5975], which differs mainly due to a twist in the 4,4'-bipyridine molecule. Full Article text
hy Synthesis, crystal structure and absolute configuration of (3aS,4R,5S,7aR)-7-(but-3-en-1-yn-1-yl)-2,2-dimethyl-3a,4,5,7a-tetrahydro-2H-1,3-benzodioxole-4,5-diol By journals.iucr.org Published On :: 2024-10-11 The absolute configuration of the title compound, C13H16O4, determined as 1S,2R,3S,4R based on the synthetic pathway, was confirmed by single-crystal X-ray diffraction. The molecule is a relevant intermediary for the synthesis of speciosins, epoxyquinoides or their analogues. The molecule contains fused five- and six-membered rings with two free hydroxyl groups and two protected as an isopropylidenedioxo ring. The packing is directed by hydrogen bonds that define double planes of molecules laying along the ab plane and van der Waals interactions between aliphatic chains that point outwards of the planes. Full Article text
hy Synthesis and crystal structure of 1,3,5-tris[(1H-benzotriazol-1-yl)methyl]-2,4,6-triethylbenzene By journals.iucr.org Published On :: 2024-10-31 In the crystal structure of the title compound, C33H33N9, the tripodal molecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The three benzotriazolyl moieties are inclined at angles of 88.3 (1), 85.7 (1) and 82.1 (1)° with respect to the mean plane of the benzene ring. In the crystal, only weak molecular cross-linking involving C—H⋯N hydrogen bonds is observed. Full Article text
hy Synthesis and structure of trans-2,5-dimethylpiperazine-1,4-diium dihydrogen diphosphate By journals.iucr.org Published On :: 2024-10-24 In the title salt, C6H16N22+ ·H2P2O72−, the complete dication is generated by a crystallographic centre of symmetry with the methyl groups in equatorial orientations. The complete dianion is generated by a crystallographic twofold axis with the central O atom lying on the axis: the P—O—P bond angle is 135.50 (12)°. In the crystal, the dihydrogen diphosphate anions are linked by O—H⋯O hydrogen bonds, generating (001) layers. The organic cations bond to the inorganic layers by way of N—H⋯O and C—H⋯O hydrogen bonds. A Hirshfeld surface analysis shows that the most important contributions for the crystal packing are from O⋯H/H⋯O (60.5%) and H⋯H (39.4%) contacts. Full Article text
hy Structural multiplicity in a solvated hydrate of the antiretroviral protease inhibitor Lopinavir By journals.iucr.org Published On :: 2024-10-24 Lopinavir is a potent protease inhibitor that is used as a first-line pharmaceutical drug for the treatment of HIV. The multi-component solvated Lopinavir crystal, systematic name (2S)-N-[(2S,4S,5S)-5-[2-(2,6-dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide–ethane-1,2-diol–water (8/3/7) 8C37H48N4O5·3C2H6O2·7H2O, was prepared using evaporative methods. The crystalline material obtained from this experimental synthesis was characterized and elucidated by single-crystal X-ray diffraction (SC-XRD). The crystal structure is unusual in that the unit cell contains 18 molecules. The stoichiometric ratio of this crystal is eight Lopinavir molecules [8(C37H48N4O5)], three ethane-1,2-diol molecules [3(C2H6O2)] and seven water molecules [7(H2O)]. The crystal packing features both bi- and trifurcated hydrogen bonds between atoms. Full Article text
hy Synthesis, crystal structure and Hirshfeld surface analysis of 2-{4-[(2-chlorophenyl)methyl]-3-methyl-6-oxopyridazin-1-yl}-N-phenylacetamide By journals.iucr.org Published On :: 2024-10-31 In the title molecule, C20H18ClN3O2, the 2-chlorophenyl group is disordered to a small extent [occupancies 0.875 (2)/0.125 (2)]. The phenylacetamide moiety is nearly planar due to a weak, intramolecular C—H⋯O hydrogen bond. In the crystal, N—H⋯O hydrogen bonds and π-stacking interactions between pyridazine and phenyl rings form helical chains of molecules in the b-axis direction, which are linked by C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions. A Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O interactions to dominate the intermolecular contacts in the crystal. Full Article text
hy Crystal structures and photophysical properties of mono- and dinuclear ZnII complexes flanked by triethylammonium By journals.iucr.org Published On :: 2024-10-24 Two new zinc(II) complexes, triethylammonium dichlorido[2-(4-nitrophenyl)-4-phenylquinolin-8-olato]zinc(II), (C6H16N){Zn(C21H13N2O3)Cl2] (ZnOQ), and bis(triethylammonium) {2,2'-[1,4-phenylenebis(nitrilomethylidyne)]diphenolato}bis[dichloridozinc(II)], (C6H16N)2[Zn2(C20H14N2O2)Cl4] (ZnBS), were synthesized and their structures were determined using ESI–MS spectrometry, 1H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitrophenyl)-4-phenylquinolin-8-ol (HOQ) and N,N'-bis(2-hydroxybenzylidene)benzene-1,4-diamine (H2BS) were deprotonated by triethyl-amine, forming the counter-ion Et3NH+, which interacts via an N—H⋯O hydrogen bond with the ligand. The ZnII atoms have a distorted trigonal–pyramidal (ZnOQ) and distorted tetrahedral (ZnBS) geometries with a coordination number of four, coordinating with the ligands via N and O atoms. The N atoms coordinating with ZnII correspond to the heterocyclic nitrogen for the HOQ ligand, while for the H2BS ligand, it is the nitrogen of the imine (CH=N). The crystal packing of ZnOQ is characterized by C—H⋯π interactions, while that of ZnBS by C—H⋯Cl interactions. The emission spectra showed that ZnBS complex exhibits green fluorescence in the solid state with a small band-gap energy, and the ZnOQ complex does exhibit non-fluorescence. Full Article text
hy Crystal structure and Hirshfeld surface analysis of the salt 2-iodoethylammonium iodide – a possible side product upon synthesis of hybrid perovskites By journals.iucr.org Published On :: 2024-10-31 The title organic–inorganic hybrid salt, C2H7IN+·I−, is isotypic with its bromine analog, C2H7BrN+·Br− [Semenikhin et al. (2024). Acta Cryst. E80, 738–741]. Its asymmetric unit consists of one 2-iodoethylammonium cation and one iodide anion. The NH3+ group of the organic cation forms weak hydrogen bonds with four neighboring iodide anions, leading to the formation of supramolecular layers propagating parallel to the bc plane. Hirshfeld surface analysis reveals that the most important contribution to the crystal packing is from N—H⋯I interactions (63.8%). The crystal under investigation was twinned by a 180° rotation around [001]. Full Article text
hy Fast nanoscale imaging of strain in a multi-segment heterostructured nanowire with 2D Bragg ptychography By journals.iucr.org Published On :: 2024-02-01 Developing semiconductor devices requires a fast and reliable source of strain information with high spatial resolution and strain sensitivity. This work investigates the strain in an axially heterostructured 180 nm-diameter GaInP nanowire with InP segments of varying lengths down to 9 nm, simultaneously probing both materials. Scanning X-ray diffraction (XRD) is compared with Bragg projection ptychography (BPP), a fast single-projection method. BPP offers a sufficient spatial resolution to reveal fine details within the largest segments, unlike scanning XRD. The spatial resolution affects the quantitative accuracy of the strain maps, where BPP shows much-improved agreement with an elastic 3D finite element model compared with scanning XRD. The sensitivity of BPP to small deviations from the Bragg condition is systematically investigated. The experimental confirmation of the model suggests that the large lattice mismatch of 1.52% is accommodated without defects. Full Article text
hy Revisiting the hydrogenation behavior of NdGa and its hydride phases By journals.iucr.org Published On :: 2024-02-16 NdGa hydride and deuteride phases were prepared from high-quality NdGa samples and their structures characterized by powder and single-crystal X-ray diffraction and neutron powder diffraction. NdGa with the orthorhombic CrB-type structure absorbs hydrogen at hydrogen pressures ≤ 1 bar until reaching the composition NdGaH(D)1.1, which maintains a CrB-type structure. At elevated hydrogen pressure additional hydrogen is absorbed and the maximum composition recovered under standard temperature and pressure conditions is NdGaH(D)1.6 with the Cmcm LaGaH1.66-type structure. This structure is a threefold superstructure with respect to the CrB-type structure. The hydrogen atoms are ordered and distributed on three fully occupied Wyckoff positions corresponding to tetrahedral (4c, 8g) and trigonal–bipyramidal (8g) voids in the parent structure. The threefold superstructure is maintained in the H-deficient phases NaGaH(D)x until 1.6 ≥ x ≥ 1.2. At lower H concentrations, coinciding with the composition of the hydride obtained from hydrogenation at atmospheric pressure, the unit cell of the CrB-type structure is resumed. This phase can also display H deficiency, NdGaH(D)y (1.1 ≥ y ≥ 0.9), with H(D) exclusively situated in partially empty tetrahedral voids. The phase boundary between the threefold superstructure (LaGaH1.66 type) and the onefold structure (NdGaH1.1 type) is estimated on the basis of phase–composition isotherms and neutron powder diffraction to be x = 1.15. Full Article text