men

Russo Brothers to recommend and discuss movies as a part of Instagram series




men

Health department conducts checking at Zirakpur grocery shops




men

This Mother’s Day, doctors share what it’s like to help other women become mothers




men

Indian women’s archery team to get final chance at Olympic quota in June next year




men

‘Focussing on mental state, can pick up from where I left’: Virat Kohli




men

A versatile nanoreactor for complementary in situ X-ray and electron microscopy studies in catalysis and materials science

Two in situ `nanoreactors' for high-resolution imaging of catalysts have been designed and applied at the hard X-ray nanoprobe endstation at beamline P06 of the PETRA III synchrotron radiation source. The reactors house samples supported on commercial MEMS chips, and were applied for complementary hard X-ray ptychography (23 nm spatial resolution) and transmission electron microscopy, with additional X-ray fluorescence measurements. The reactors allow pressures of 100 kPa and temperatures of up to 1573 K, offering a wide range of conditions relevant for catalysis. Ptychographic tomography was demonstrated at limited tilting angles of at least ±35° within the reactors and ±65° on the naked sample holders. Two case studies were selected to demonstrate the functionality of the reactors: (i) annealing of hierarchical nanoporous gold up to 923 K under inert He environment and (ii) acquisition of a ptychographic projection series at ±35° of a hierarchically structured macroporous zeolite sample under ambient conditions. The reactors are shown to be a flexible and modular platform for in situ studies in catalysis and materials science which may be adapted for a range of sample and experiment types, opening new characterization pathways in correlative multimodal in situ analysis of functional materials at work. The cells will presently be made available for all interested users of beamline P06 at PETRA III.




men

Scientific instrument Femtosecond X-ray Experiments (FXE): instrumentation and baseline experimental capabilities

The European X-ray Free-Electron Laser (EuXFEL) delivers extremely intense (>1012 photons pulse−1 and up to 27000 pulses s−1), ultrashort (<100 fs) and transversely coherent X-ray radiation, at a repetition rate of up to 4.5 MHz. Its unique X-ray beam parameters enable novel and groundbreaking experiments in ultrafast photochemistry and material sciences at the Femtosecond X-ray Experiments (FXE) scientific instrument. This paper provides an overview of the currently implemented experimental baseline instrumentation and its performance during the commissioning phase, and a preview of planned improvements. FXE's versatile instrumentation combines the simultaneous application of forward X-ray scattering and X-ray spectroscopy techniques with femtosecond time resolution. These methods will eventually permit exploitation of wide-angle X-ray scattering studies and X-ray emission spectroscopy, along with X-ray absorption spectroscopy, including resonant inelastic X-ray scattering and X-ray Raman scattering. A suite of ultrafast optical lasers throughout the UV–visible and near-IR ranges (extending up to mid-IR in the near future) with pulse length down to 15 fs, synchronized to the X-ray source, serve to initiate dynamic changes in the sample. Time-delayed hard X-ray pulses in the 5–20 keV range are used to probe the ensuing dynamic processes using the suite of X-ray probe tools. FXE is equipped with a primary monochromator, a primary and secondary single-shot spectrometer, and a timing tool to correct the residual timing jitter between laser and X-ray pulses.




men

BioStruct-Africa: empowering Africa-based scientists through structural biology knowledge transfer and mentoring – recent advances and future perspectives

Being able to visualize biology at the molecular level is essential for our understanding of the world. A structural biology approach reveals the molecular basis of disease processes and can guide the design of new drugs as well as aid in the optimization of existing medicines. However, due to the lack of a synchrotron light source, adequate infrastructure, skilled persons and incentives for scientists in addition to limited financial support, the majority of countries across the African continent do not conduct structural biology research. Nevertheless, with technological advances such as robotic protein crystallization and remote data collection capabilities offered by many synchrotron light sources, X-ray crystallography is now potentially accessible to Africa-based scientists. This leap in technology led to the establishment in 2017 of BioStruct-Africa, a non-profit organization (Swedish corporate ID: 802509-6689) whose core aim is capacity building for African students and researchers in the field of structural biology with a focus on prevalent diseases in the African continent. The team is mainly composed of, but not limited to, a group of structural biologists from the African diaspora. The members of BioStruct-Africa have taken up the mantle to serve as a catalyst in order to facilitate the information and technology transfer to those with the greatest desire and need within Africa. BioStruct-Africa achieves this by organizing workshops onsite at our partner universities and institutions based in Africa, followed by post-hoc online mentoring of participants to ensure sustainable capacity building. The workshops provide a theoretical background on protein crystallography, hands-on practical experience in protein crystallization, crystal harvesting and cryo-cooling, live remote data collection on a synchrotron beamline, but most importantly the links to drive further collaboration through research. Capacity building for Africa-based researchers in structural biology is crucial to win the fight against the neglected tropical diseases, e.g. ascariasis, hookworm, trichuriasis, lymphatic filariasis, active trachoma, loiasis, yellow fever, leprosy, rabies, sleeping sickness, onchocerciasis, schistosomiasis, etc., that constitute significant health, social and economic burdens to the continent. BioStruct-Africa aims to build local and national expertise that will have direct benefits for healthcare within the continent.




men

Transmission measurement at the Bernina branch of the Aramis Beamline of SwissFEL

The transmission of the optical components of the Bernina branch of the Aramis beamline at SwissFEL has been measured with an X-ray gas monitor from DESY and compared with a PSI gas detector upstream of the optical components. The transmission efficiencies of the Mo, Si and SiC mirror coatings of the Aramis beamline and the various other in-beam components were evaluated and compared with theoretical calculations, showing an agreement of 6% or better in all cases. The experiment has also shown the efficacy of the high-harmonic rejection mirrors at the Bernina branch of the Aramis beamline at SwissFEL, and characterized the transmission efficiency of the on-line spectrometer in the Aramis beamline. The theoretical transmission of the mirror coatings match the experimental data to within 7%. The accuracy of these measurements was checked against a radiative bolometer from a Japanese collaboration and found to agree to a level of 4% or better. Further comparisons with a diamond detector from a US-based inter-institute collaboration demonstrated a good agreement for the attenuator settings of the beamline.




men

Improved calibration of area detectors using multiple placements

Calibration of area detectors from powder diffraction standards is widely used at synchrotron beamlines. From a single diffraction image, it is not possible to determine both the sample-to-detector distance and the wavelength, but, with images taken from multiple positions along the beam direction and where the relative displacement is known, the sample-to-detector distance and wavelength can both be determined with good precision. An example calibration using the GSAS-II software package is presented.




men

XUV-driven plasma switch for THz: new spatio-temporal overlap tool for XUV–THz pump–probe experiments at FELs

A simple and robust tool for spatio-temporal overlap of THz and XUV pulses in in-vacuum pump–probe experiments is presented. The technique exploits ultrafast changes of the optical properties in semiconductors (i.e. silicon) driven by ultrashort XUV pulses that are probed by THz pulses. This work demonstrates that this tool can be used for a large range of XUV fluences that are significantly lower than when probing by visible and near-infrared pulses. This tool is mainly targeted at emerging X-ray free-electron laser facilities, but can be utilized also at table-top high-harmonics sources.




men

Full-field spectroscopic measurement of the X-ray beam from a multilayer monochromator using a hyperspectral X-ray camera

Multilayer monochromator devices are commonly used at (imaging) beamlines of synchrotron facilities to shape the X-ray beam to relatively small bandwidth and high intensity. However, stripe artefacts are often observed and can deteriorate the image quality. Although the intensity distribution of these artefacts has been described in the literature, their spectral distribution is currently unknown. To assess the spatio-spectral properties of the monochromated X-ray beam, the direct beam has been measured for the first time using a hyperspectral X-ray detector. The results show a large number of spectral features with different spatial distributions for a [Ru, B4C] strip monochromator, associated primarily with the higher-order harmonics of the undulator and monochromator. It is found that their relative contributions are sufficiently low to avoid an influence on the imaging data. The [V, B4C] strip suppresses these high-order harmonics even more than the former, yet at the cost of reduced efficiency.




men

The HXD95: a modified Bassett-type hydrothermal diamond-anvil cell for in situ XRD experiments up to 5 GPa and 1300 K

A new diamond-anvil cell apparatus for in situ synchrotron X-ray diffraction measurements of liquids and glasses, at pressures from ambient to 5 GPa and temperatures from ambient to 1300 K, is reported. This portable setup enables in situ monitoring of the melting of complex compounds and the determination of the structure and properties of melts under moderately high pressure and high temperature conditions relevant to industrial processes and magmatic processes in the Earth's crust and shallow mantle. The device was constructed according to a modified Bassett-type hydro­thermal diamond-anvil cell design with a large angular opening (θ = 95°). This paper reports the successful application of this device to record in situ synchrotron X-ray diffraction of liquid Ga and synthetic PbSiO3 glass to 1100 K and 3 GPa.




men

IRIXS: a resonant inelastic X-ray scattering instrument dedicated to X-rays in the intermediate energy range

A new resonant inelastic X-ray scattering (RIXS) instrument has been constructed at beamline P01 of the PETRA III synchrotron. This instrument has been named IRIXS (intermediate X-ray energy RIXS) and is dedicated to X-rays in the tender-energy regime (2.5–3.5 keV). The range covers the L2,3 absorption edges of many of the 4d elements (Mo, Tc, Ru, Rh, Pd and Ag), offering a unique opportunity to study their low-energy magnetic and charge excitations. The IRIXS instrument is currently operating at the Ru L3-edge (2840 eV) but can be extended to the other 4d elements using the existing concept. The incoming photons are monochromated with a four-bounce Si(111) monochromator, while the energy analysis of the outgoing photons is performed by a diced spherical crystal analyzer featuring (102) lattice planes of quartz (SiO2). A total resolution of 100 meV (full width at half-maximum) has been achieved at the Ru L3-edge, a number that is in excellent agreement with ray-tracing simulations.




men

Foreword to the special virtual issue dedicated to the proceedings of the PhotonDiag2018 workshop on FEL Photon Diagnostics, Instrumentation, and Beamlines Design




men

Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments

Possibilities in auxiliary technique combinations with small- and wide-angle X ray scattering are described, as well as more complicated sample environments used in X-ray and neutron scattering.




men

The first X-ray diffraction measurements on Mars

The X-ray diffraction/X-ray fluorescence instrument CheMin on the Curiosity rover is a shoebox-sized device using transmission geometry and an energy-discriminating CCD detector. The instrument has returned the first X-ray diffraction data for soil and drilled samples from Mars outcrops, revealing a suite of primary basaltic minerals, amorphous components and varied hydrous alteration products including phyllosilicates.











men

Visualization Bench for the screening of crystallization assays and the automation of in situ experiments




men

Industrial cryo-EM facility setup and management

The setup and operation of an industrial cryo-EM laboratory is described.




men

Development of basic building blocks for cryo-EM: the emcore and emvis software libraries

This article presents an overview of the development of two basic software libraries for image manipulation and data visualization in cryo-EM: emcore and emvis.




men

Crystal and solution structures of fragments of the human leucocyte common antigen-related protein

The crystal and solution SAXS structures of a fragment of human leucocyte common antigen-related protein show that it is less flexible than the homologous proteins tyrosine phosphatase receptors δ and σ.




men

3-(4-Iodo­phen­yl)-2,3-di­hydro-1H-benzo[f]chromen-1-one

In the title compound, C19H13IO2, the dihedral angle between the naphthyl ring system and the pendant iodo­phenyl ring is 72.48 (11)°. In the crystal, C—H⋯π inter­actions and I⋯O [3.293 (2) Å] halogen bonds are observed, which combine to generate a herringbone packing motif.




men

Poly[(μ4-5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetra­copper]: a three-dimensional copper(I) coordination polymer

The reaction of ligand 5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine (L) with CuI lead to the formation of a three-dimensional coordination polymer, incorporating the well known [CuxIx]n staircase motif (x = 4). These polymer [Cu4I4]n chains are linked via the N and S atoms of the ligand to form the three-dimensional coordination polymer poly[(μ4-5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetra­copper], [Cu4I4(C8H8N2S2)]n (I). The asymmetric unit is composed of half a ligand mol­ecule, with the pyrazine ring located about a center of symmetry, and two independent copper(I) atoms and two independent I− ions forming the staircase motif via centers of inversion symmetry. The framework is consolidated by C—H⋯I hydrogen bonds.




men

6-Methyl-4-{[4-(tri­methyl­sil­yl)-1H-1,2,3-triazol-1-yl]meth­yl}-2H-chromen-2-one

In the title compound, C16H19N3O2Si, the dihedral angle between the coumarin ring system (r.m.s. deviation = 0.031 Å) and the triazole ring is 73.81 (8)°. In the crystal, mol­ecules are linked into [010] chains by weak C—H⋯O inter­actions.




men

Poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)]: a two-dimensional copper(I) coordination polymer

The reaction of ligand 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine (L) with CuI led to the formation of a two-dimensional coordination polymer, incorporating a [Cu2I2] motif. These units are linked via the four S atoms of the ligand to form the title two-dimensional coordination poly­mer, poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)], [Cu2I2(C12H16N2S4)]n, (I). The asymmetric unit is composed of a ligand mol­ecule, two copper(I) atoms and two I− ions. Both copper(I) atoms are fourfold S2I2 coordinate with almost regular trigonal-pyramidal environments. In the crystal, the layers, lying parallel to (102), are linked by C—H⋯I hydrogen bonds, forming a supra­molecular framework.




men

The crystal structure of (RS)-7-chloro-2-(2,5-di­meth­oxy­phen­yl)-2,3-di­hydro­quinazolin-4(1H)-one: two hydrogen bonds generate an elegant three-dimensional framework structure

In the title compound, C61H15ClN2O3, the heterocyclic ring adopts an envelope conformation, folded across the N⋯N line, with the 2,5-di­meth­oxy­phenyl unit occupying a quasi-axial site. There are two N—H⋯O hydrogen bonds in the structure: one hydrogen bond links mol­ecules related by a 41 screw axis to form a C(6) chain, and the other links inversion-related pairs of mol­ecules to form an R22(8) ring. The ring motif links all of the chains into a continuous three-dimensional framework structure. Comparisons are made with the structures of some related compounds.




men

Crystal structure and Hirshfeld surface analysis of 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetic acid dimethyl sulfoxide monosolvate

The title compound, C11H8O5·(CH3)2SO, is a new coumarin derivative. The asymmetric unit contains two coumarin mol­ecules (A and B) and two di­methyl­sulfoxide solvent mol­ecules (A and B). The dihedral angle between the pyran and benzene rings in the chromene moiety is 3.56 (2)° for mol­ecule A and 1.83 (2)° for mol­ecule B. In mol­ecule A, the dimethyl sulfoxide sulfur atom is disordered over two positions with a refined occupancy ratio of 0.782 (5):0.218 (5). In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. In addition, there are also C—H⋯π and π–π inter­actions present within the layers. The inter­molecular contacts in the crystal have been analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots, which indicate that the most important contributions to the packing are from H⋯H (33.9%) and O⋯H/H⋯O (41.2%) contacts.




men

Crystal structures of two new isocoumarin derivatives: 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one

The title compounds, 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one, C22H17NO2, (I), and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one, C14H17NO2, (II), are new isocoumarin derivatives in which the isochromene ring systems are planar. Compound II crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In I, the two phenyl rings are inclined to each other by 56.41 (7)° and to the mean plane of the 1H-isochromene ring system by 67.64 (6) and 44.92 (6)°. In both compounds, there is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal of I, mol­ecules are linked by N—H⋯π inter­actions, forming chains along the b-axis direction. A C—H⋯π inter­action links the chains to form layers parallel to (100). The layers are then linked by a second C—H⋯π inter­action, forming a three-dimensional structure. In the crystal of II, the two independent mol­ecules (A and B) are linked by N—H⋯O hydrogen bonds, forming –A–B–A–B– chains along the [101] direction. The chains are linked into ribbons by C—H⋯π inter­actions involving inversion-related A mol­ecules. The latter are linked by offset π–π inter­actions [inter­centroid distances vary from 3.506 (1) to 3.870 (2) Å], forming a three-dimensional structure.




men

New refinement of the crystal structure of Zn(NH3)2Cl2 at 100 K

The crystal structure of [ZnCl2(NH3)2], diamminedi­chlorido­zinc, was re-investigated at low temperature, revealing the positions of the hydrogen atoms and thus a deeper insight into the hydrogen-bonding scheme in the crystal packing. In comparison with previous crystal structure determinations [MacGillavry & Bijvoet (1936). Z. Kristallogr. 94, 249–255; Yamaguchi & Lindqvist (1981). Acta Chem. Scand. 35, 727–728], an improved precision of the structural parameters was achieved. In the crystal, tetra­hedral [Zn(NH3)2Cl2] units (point-group symmetry mm2) are linked through N—H⋯Cl hydrogen bonds into a three-dimensional network.




men

Crystal structures and Hirshfeld surface analyses of (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbo­hydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimeth­oxybenzyl­idene)-2H-chromene-3-carbohydrazide: lattice ene

The crystal structures of the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-tri­meth­oxy­benzyl­idene)-2H-chromene-3-carbohydrazide, C20H18N2O6·0.5C2H6OS, and (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbohydrazide, C17H12N2O3 (4: R = C6H5), are discussed. The non-hydrogen atoms in compound [4: R = (3,4,5-MeO)3C6H2)] exhibit a distinct curvature, while those in compound, (4: R = C6H5), are essential coplanar. In (4: R = C6H5), C—H⋯O and π–π intra­molecular inter­actions combine to form a three-dimensional array. A three-dimensional array is also found for the hemi-DMSO solvate of [4: R = (3,4,5-MeO)3C6H2], in which the mol­ecules of coumarin are linked by C—H⋯O and C—H⋯π inter­actions, and form tubes into which the DMSO mol­ecules are cocooned. Hirshfeld surface analyses of both compounds are reported, as are the lattice energy and inter­molecular inter­action energy calculations of compound (4: R = C6H5).




men

The crystal structure of ((cyclo­hexyl­amino){(Z)-2-[(E)-5-meth­oxy-3-nitro-2-oxido­benzyl­idene-κO]hydrazin-1-yl­idene-κN2}methane­thiol­ato-κS)(dimethyl sulfoxide-κS)platinum(II): a supra­molecular two-dimens

The PtII atom in the title complex, [Pt(C15H18N4O4S)(C2H6OS)], exists within a square-planar NS2O donor set provided by the N, S, O atoms of the di-anionic tridentate thio­semicarbazo ligand and a dimethyl sulfoxide S atom. The two chelate rings are coplanar, subtending a dihedral angle of 1.51 (7)°. The maximum deviation from an ideal square-planar geometry is seen in the five-membered chelate ring with an S—Pt—S bite angle of 96.45 (2)°. In the crystal, mol­ecules are linked via N—H⋯O, C—H⋯O, C—H⋯N and C—H⋯π inter­actions into two-dimensional networks lying parallel to the ab plane. The conformations of related cyclo­hexyl­hydrazine-1-carbo­thio­amide ligands are compared to that of the title compound.




men

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions: supra­molecular assembly in one, two and three dimensions

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluoro­benzoate, 4-chloro­benzoate and 4-bromo­benzoate salts, C11H17N2O+·C7H5O2−·H2O (I), C11H17N2O+·C7H4FO2−·H2O (II), C11H17N2O+·C7H4ClO2−·H2O (III), and C11H17N2O+·C7H4BrO2−·H2O (IV), respectively, are isomorphous and all exhibit disorder in the 4-meth­oxy­phenyl unit: the components are linked by N—H⋯O and O—H⋯O hydrogen bond to form chains of rings. The unsolvated 2-hy­droxy­benzoate, pyridine-3-carboxyl­ate and 2-hy­droxy-3,5-di­nitro­benzoate salts, C11H17N2O+·C7H5O3− (V), C11H17N2O+·C6H4NO2− (VI) and C11H17N2O+·C7H3N2O7− (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N—H⋯O hydrogen bonds to form a chain of rings; those of (VI) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N—H⋯O and C—H⋯O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, C11H17N2O+·C4H5O4− (VIII) and C11H17N2O+·C4H3O3− (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N—H⋯O and O—H⋯O hydrogen bonds link the ions into sheets, which are further linked by C—H⋯π(arene) inter­actions. The anion of the hydrogenmaleate salt, C11H17N2O+·C4H3O3− (X), contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond, and N—H⋯O hydrogen bonds link the anions into chains of rings. The ions in the tri­chloro­acetate salt, C11H17N2O+·C2Cl3O2− (XI), are linked into simple chains by N—H⋯O hydrogen bonds. In the hydrated chloranilate salt, 2C11H17N2O+·C6Cl2O42−·2H2O (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group P21/n, and a combination of N—H⋯O and O—H⋯O hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds.




men

The crystal structures and Hirshfeld surface analysis of 6-(naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexa­hydro­spiro­[chromeno[3',4':3,4]pyrrolo­[1,2-c]thia­zole-11,11'-indeno­[1,2-b]quinoxaline] and 6'-(naphthalen-1-yl)-6a

The title compounds, 6-(naphthalen-1-yl)-6a-nitro-6,6a,6 b,7,9,11a-hexa­hydro­spiro­[chromeno[3',4':3,4]pyrrolo­[1,2-c]thia­zole-11,11'-indeno­[1,2-b]quinoxaline], C37H26N4O3S, (I), and 6'-(naphthalen-1-yl)-6a'-nitro-6',6a',6b',7',8',9',10',12a'-octa­hydro-2H-spiro­[ace­naphthyl­ene-1,12'-chromeno[3,4-a]indolizin]-2-one, C36H28N2O4, (II), are new spiro derivatives, in which both the pyrrolidine rings adopt twisted conformations. In (I), the five-membered thia­zole ring adopts an envelope conformation, while the eight-membered pyrrolidine-thia­zole ring adopts a boat conformation. An intra­molecular C—H⋯N hydrogen bond occurs, involving a C atom of the pyran ring and an N atom of the pyrazine ring. In (II), the six-membered piperidine ring adopts a chair conformation. An intra­molecular C—H⋯O hydrogen bond occurs, involving a C atom of the pyrrolidine ring and the keto O atom. For both compounds, the crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds. In (I), the C—H⋯O hydrogen bonds link adjacent mol­ecules, forming R22(16) loops propagating along the b-axis direction, while in (II) they form zigzag chains along the b-axis direction. In both compounds, C—H⋯π inter­actions help to consolidate the structure, but no significant π–π inter­actions with centroid–centroid distances of less than 4 Å are observed.




men

Crystal structures of two 4H-chromene derivatives: 2-amino-3-cyano-4-(3,4-di­chloro­phen­yl)-7-hy­droxy-4H-benzo[1,2-b]pyran 1,4-dioxane monosolvate and 2-amino-3-cyano-4-(2,6-di­chloro­phen­yl)-7-hy­droxy-4H-benzo[

In the title compounds, C16H9Cl2N2O2·C4H8O2 and C16H9Cl2N2O2, the bicyclic 4H-chromene cores are nearly planar with maximum deviations of 0.081 (2) and 0.087 (2) Å. In both structures, the chromene derivative mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds, forming R22(16) motifs. These dimers are further linked in the 3,4-di­chloro­phenyl derivative by N—H⋯N hydrogen bonds into double layers parallel to (100) and in the 2,6-di­chloro­phenyl derivative by O—H⋯N hydrogen bonds into ribbons along the [1overline{1}0] direction. In the 3,4-di­chloro­phenyl derivative, the 1,4-dioxane solvent mol­ecules are connected to the chromene mol­ecules via O—H⋯O hydrogen bonds.




men

Crystal structures, syntheses, and spectroscopic and electrochemical measurements of two push–pull chromophores: 2-[4-(di­methyl­amino)­benzyl­idene]-1H-indene-1,3(2H)-dione and (E)-2-{3-[4-(di­meth­ylamino)­phen­yl

The title pull–push chromophores, 2-[4-(di­methyl­amino)­benzyl­idene]-1H-indene-1,3(2H)-dione, C18H15NO2 (ID[1]) and (E)-2-{3-[4-(di­methyl­amino)­phen­yl]allyl­idene}-1H-indene-1,3(2H)-dione, C20H17NO2 (ID[2]), have donor–π-bridge–acceptor structures. The mol­ecule with the short π-bridge, ID[1], is almost planar while for the mol­ecule with a longer bridge, ID[2], is less planar. The benzene ring is inclined to the mean plane of the 2,3-di­hydro-1H-indene unit by 3.19 (4)° in ID[1] and 13.06 (8)° in ID[2]. The structures of three polymorphs of compound ID[1] have been reported: the α-polymorph [space group P21/c; Magomedova & Zvonkova (1978). Kristallografiya, 23, 281–288], the β-polymorph [space group P21/c; Magomedova & Zvonkova (1980). Kristallografiya, 25 1183–1187] and the γ-polymorph [space group Pna21; Magomedova, Neigauz, Zvonkova & Novakovskaya (1980). Kristallografiya, 25, 400–402]. The mol­ecular packing in ID[1] studied here is centrosymmetric (space group P21/c) and corresponds to the β-polymorph structure. The mol­ecular packing in ID[2] is non-centrosymmetric (space group P21), which suggests potential NLO properties for this crystalline material. In both compounds, there is short intra­molecular C—H⋯O contact present, enclosing an S(7) ring motif. In the crystal of ID[1], mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming layers parallel to the bc plane. In the crystal of ID[2], mol­ecules are liked by C—H⋯O hydrogen bonds to form 21 helices propagating along the b-axis direction. The mol­ecules in the helix are linked by offset π–π inter­actions with, for example, a centroid–centroid distance of 3.9664 (13) Å (= b axis) separating the indene rings, and an offset of 1.869 Å. Spectroscopic and electrochemical measurements show the ability of these compounds to easily transfer electrons through the π-conjugated chain.




men

One-dimensional ladder gallium coordination polymer

A one-dimensional ladder-type coordination polymer, poly[[(μ2-hydroxido)(μ2-1H-pyrazole-3,5-di­carboxyl­ato)gallium(III)] monohydrate], [Ga(C5H2N2O4)(OH)(H2O)]n or [Ga(HPDC)(OH)(H2O)]n, I, isotypic with a V3+ coordination polymer previously reported by Chen et al. [J. Coord. Chem. (2008). 61, 3556–3567] was prepared from Ga3+ and pyrazole-3,5-di­carb­oxy­lic acid monohydrate (H3PDC·H2O). Compound I was isolated using three distinct experimental methods: hydro­thermal (HT), microwave-assisted (MWAS) and one-pot (OP) and the crystallite size should be fine-tuned according to the method employed. The coordination polymeric structure is based on a dimeric Ga3+ moiety comprising two μ2-bridging hydroxide groups, which are inter­connected by HPDC2− anionic organic linkers. The close packing of individual polymers is strongly directed by the supra­molecular inter­actions, namely several O—H⋯O and N—H⋯O hydrogen-bonding inter­actions.




men

Tetra-n-butyl­ammonium orotate monohydrate: knowledge-based comparison of the results of accurate and lower-resolution analyses and a non-routine disorder refinement

The title hydrated mol­ecular salt (systematic name: tetra-n-butyl­ammonium 2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidine-4-carboxyl­ate monohydrate), C16H36N+·C5H3N2O4−·H2O, crystallizes with N—H⋯O and O—H⋯O hydrogen-bonded double-stranded anti­parallel ribbons consisting of the hydro­philic orotate monoanions and water mol­ecules, separated by the bulky hydro­phobic cations. The hydro­phobic and hydro­philic regions of the structure are joined by weaker non-classical C—H⋯O hydrogen bonds. An accurate structure analysis conducted at T = 100 K is compared to a lower-resolution less accurate determination using data measured at T = 295 K. The results of both analyses are evaluated using a knowledge-based approach, and it is found that the less accurate room-temperature structure analysis provides geometric data that are similar to those derived from the accurate low-temperature analysis, with both sets of results consistent with previously analyzed structures. A minor disorder of one methyl group in the cation at low temperature was found to be slightly more complex at room temperature; while still involving a minor fraction of the structure, the disorder at room temperature was found to require a non-routine treatment, which is described in detail.




men

Crystal structure of a two-dimensional coordination polymer of formula [Zn(NDC)(DEF)] (H2NDC is naphthalene-2,6-di­carb­oxy­lic acid and DEF is N,N-di­ethyl­formamide)

A zinc metal–organic framework, namely poly[bis­(N,N-di­ethyl­formamide)(μ4-naphthalene-2,6-di­carboxyl­ato)(μ2-naphthalene-2,6-di­carboxyl­ato)dizinc(II)], [Zn(C12H6O4)(C15H11NO)]n, built from windmill-type secondary building units and forming zigzag shaped two-dimensional stacked layers, has been solvothermally synthesized from naphthalene-2,6-di­carb­oxy­lic acid and zinc(II) acetate as the metal source in N,N-di­ethyl­formamide containing small amounts of formic acid.




men

Crystal structures of 2-(2-bromo-5-fluoro­phen­yl)-8-eth­oxy-3-nitro-2H-thio­chromene and 2-(2-bromo-5-fluoro­phen­yl)-7-meth­oxy-3-nitro-2H-thio­chromene

Two thio­chromene com­pounds containing Br and F atoms, namely 2-(2-bromo-5-fluoro­phen­yl)-8-eth­oxy-3-nitro-2H-thio­chromene (C17H13BrFNO3S, A) and 2-(2-bromo-5-fluoro­phen­yl)-7-meth­oxy-3-nitro-2H-thio­chromene (C16H11BrFNO3S, B), were prepared via the condensation reaction between 2-mer­capto­benzaldehyde and nitro­styrene derivatives. In both com­pounds, the thio­chromene plane is almost perpendicular to the phenyl ring. In the structure of A, mol­ecules are assembled via π–π stacking and C—H⋯O and C—F⋯π inter­actions. In the crystal packing of B, mol­ecules are linked by C—H⋯F, C—H⋯O, C—H⋯π and π–π inter­actions.




men

Crystal structure and Hirshfeld surface analysis of poly[tris­(μ4-benzene-1,4-di­carboxyl­ato)tetra­kis­(di­methyl­formamide)­trinickel(II)]: a two-dimensional coordination network

The crystal structure of the title compound, [Ni3(C8H4O4)3(C3H7NO)4], is a two-dimensional coordination network formed by trinuclear linear Ni3(tp)3(DMF)4 units (tp = terephthalate = benzene-1,4-di­carboxyl­ate and DMF = di­methyl­formamide) displaying a characteristic coordination mode of acetate groups in polynuclear metal–organic compounds. Individual trinuclear units are connected through tp anions in a triangular network that forms layers. One of the DMF ligands points outwards and provides inter­actions with equivalent planes above and below, leaving the second ligand in a structural void much larger than the DMF mol­ecule, which shows positional disorder. Parallel planes are connected mainly through weak C—H⋯O, H⋯H and H⋯C inter­actions between DMF mol­ecules, as shown by Hirshfeld surface analysis.




men

Crystal structures and Hirshfeld surface analyses of (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbo­hydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimeth­oxybenzyl­idene)-2H-chromene-3-carbohydrazide: lattice ene

In the paper by Gomes et al. [Acta Cryst. (2019), E75, 1403–1410], there was an error and omission in the author and affiliation list.




men

Crystal structure of a new polymorph of 3-acetyl-8-meth­oxy-2H-chromen-2-one

A new polymorphic form of the title compound, C12H10O4, is described in the ortho­rhom­bic space group Pbca and Z = 8, as compared to polymorph I, which crystallizes in the monoclinic space group C2/c and Z = 8 [Li et al. (2012). Chin. J. Struct. Chem. 31, 1003–1007.]. In polymorph II, the coumarin ring system is almost planar (r.m.s. deviation = 0.00129 Å). In the crystal, mol­ecules are connected by Csp3—H⋯O and Car—H⋯O hydrogen bonds, forming mol­ecular sheets linked into zigzag shaped layers along the b-axis direction. The three-dimensional lattice is assembled through stacking of the zigzag layers by π–π inter­actions with a centroid-to-centroid distance of 3.600 (9) Å and anti­parallel C=O⋯C=O inter­actions with a distance of 3.1986 (17) Å, which give rise to a helical supra­molecular architecture.




men

Structure refinement of (NH4)3Al2(PO4)3 prepared by ionothermal synthesis in phospho­nium based ionic liquids – a redetermination

After crystallization during ionothermal syntheses in phospho­nium-containing ionic liquids, the structure of (NH4)3Al2(PO4)3 [tri­ammonium dialuminum tris­(phosphate)] was refined on the basis of powder X-ray diffraction data from a synchrotron source. (NH4)3Al2(PO4)3 is a member of the structural family with formula A3Al2(PO4)3, where A is a group 1 element, and of which the NH4, K, and Rb forms were previously known. The NH4 form is isostructural with the K form, and was previously solved from single-crystal X-ray data when the material (SIZ-2) crystallized from a choline-containing eutectic mixture [Cooper et al. (2004). Nature, 430, 1012–1017]. Our independent refinement incorporates NH4 groups and shows that these NH4 groups are hydrogen bonded to framework O atoms present in rings containing 12 T sites in a channel along the c-axis direction. We describe structural details of (NH4)3Al2(PO4)3 and discuss differences with respect to isostructural forms.