fact

Method for manufacturing semiconductor device

A larger substrate can be used, and a transistor having a desirably high field-effect mobility can be manufactured through formation of an oxide semiconductor layer having a high degree of crystallinity, whereby a large-sized display device, a high-performance semiconductor device, or the like can be put into practical use. A first multi-component oxide semiconductor layer is formed over a substrate and a single-component oxide semiconductor layer is formed thereover; then, crystal growth is carried out from a surface to an inside by performing heat treatment at 500° C. to 1000° C. inclusive, preferably 550° C. to 750° C. inclusive so that a first multi-component oxide semiconductor layer including single crystal regions and a single-component oxide semiconductor layer including single crystal regions are formed; and a second multi-component oxide semiconductor layer including single crystal regions is stacked over the single-component oxide semiconductor layer including single crystal regions.




fact

Method for manufacturing organic light-emitting device

A method for manufacturing a light-emitting device includes a step of forming an etching resistant protection layer on a substrate provided with an organic planarizing layer, a step of forming a plurality of electrodes on the etching resistant protection layer, a step of forming an organic compound layer on the substrate provided with the plurality of electrodes, a step of forming a resist layer on the organic compound layer formed on parts of electrodes among the plurality of electrodes using a photolithographic method, and a step of removing the organic compound layer in a region not covered with the resist layer by dry etching, wherein an entire surface of the organic planarizing layer on the substrate on which steps up to the step of forming the plurality of electrodes have been performed is covered with at least one of the etching resistant protection layer and the electrode.




fact

Method for manufacturing SOI substrate

An object of an embodiment of the present invention to be disclosed is to prevent oxygen from being taken in a single crystal semiconductor layer in laser irradiation even when crystallinity of the single crystal semiconductor layer is repaired by irradiation with a laser beam; and to make substantially equal or reduce an oxygen concentration in the semiconductor layer after the laser irradiation comparing before the laser irradiation. A single crystal semiconductor layer which is provided over a base substrate by bonding is irradiated with a laser beam, whereby the crystallinity of the single crystal semiconductor layer is repaired. The laser irradiation is performed under a reducing atmosphere or an inert atmosphere.




fact

Method of manufacturing silicon carbide semiconductor device

A first impurity region is formed by ion implantation through a first opening formed in a mask layer. By depositing a spacer layer on an etching stop layer on which the mask layer has been provided, a mask portion having the mask layer and the spacer layer is formed. By anisotropically etching the spacer layer, a second opening surrounded by a second sidewall is formed in the mask portion. A second impurity region is formed by ion implantation through the second opening. An angle of the second sidewall with respect to a surface is 90°±10° across a height as great as a second depth. Thus, accuracy in extension of an impurity region can be enhanced.




fact

Semiconductor device and method for manufacturing the same

It is an object to provide a semiconductor device including a thin film transistor with favorable electric properties and high reliability, and a method for manufacturing the semiconductor device with high productivity. In an inverted staggered (bottom gate) thin film transistor, an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer, and a buffer layer formed using a metal oxide layer is provided between the semiconductor layer and a source and drain electrode layers. The metal oxide layer is intentionally provided as the buffer layer between the semiconductor layer and the source and drain electrode layers, whereby ohmic contact is obtained.




fact

Semiconductor device and manufacturing method thereof

Disclosed is a semiconductor device including an oxide semiconductor film. A first oxide semiconductor film with a thickness of greater than or equal to 2 nm and less than or equal to 15 nm is formed over a gate insulating layer. First heat treatment is performed so that crystal growth from a surface of the first oxide semiconductor film to the inside thereof is caused, whereby a first crystal layer is formed. A second oxide semiconductor film with a thickness greater than that of the first oxide semiconductor film is formed over the first crystal layer. Second heat treatment is performed so that crystal growth from the first crystal layer to a surface of the second oxide semiconductor film is caused, whereby a second crystal layer is formed. Further, oxygen doping treatment is performed on the second crystal layer.




fact

Method for manufacturing semiconductor device

To provide a method by which a semiconductor device including a thin film transistor with excellent electric characteristics and high reliability is manufactured with a small number of steps. After a channel protective layer is formed over an oxide semiconductor film containing In, Ga, and Zn, a film having n-type conductivity and a conductive film are formed, and a resist mask is formed over the conductive film. The conductive film, the film having n-type conductivity, and the oxide semiconductor film containing In, Ga, and Zn are etched using the channel protective layer and gate insulating films as etching stoppers with the resist mask, so that source and drain electrode layers, a buffer layer, and a semiconductor layer are formed.




fact

Semiconductor element and method for manufacturing the same

An object is to provide a thin film transistor and a method for manufacturing the thin film transistor including an oxide semiconductor with a controlled threshold voltage, high operation speed, a relatively easy manufacturing process, and sufficient reliability. An impurity having influence on carrier concentration in the oxide semiconductor layer, such as a hydrogen atom or a compound containing a hydrogen atom such as H2O, may be eliminated. An oxide insulating layer containing a large number of defects such as dangling bonds may be formed in contact with the oxide semiconductor layer, such that the impurity diffuses into the oxide insulating layer and the impurity concentration in the oxide semiconductor layer is reduced. The oxide semiconductor layer or the oxide insulating layer in contact with the oxide semiconductor layer may be formed in a deposition chamber which is evacuated with use of a cryopump whereby the impurity concentration is reduced.




fact

Semiconductor device and manufacturing method thereof

A semiconductor device having favorable electric characteristics and a manufacturing method thereof are provided. A transistor includes an oxide semiconductor layer formed over an insulating layer, a source electrode layer and a drain electrode layer which overlap with part of the oxide semiconductor layer, a gate insulating layer in contact with part of the oxide semiconductor layer, and a gate electrode layer over the gate insulating layer. In the transistor, a buffer layer having n-type conductivity is formed between the source electrode layer and the oxide semiconductor layer and between the drain electrode layer and the oxide semiconductor layer. Thus, parasitic resistance is reduced, resulting in improvement of on-state characteristics of the transistor.




fact

Semiconductor device and method for manufacturing semiconductor device

A highly reliable semiconductor device is manufactured by giving stable electric characteristics to a transistor in which an oxide semiconductor film is used for a channel. An oxide semiconductor film which can have a first crystal structure by heat treatment and an oxide semiconductor film which can have a second crystal structure by heat treatment are formed so as to be stacked, and then heat treatment is performed; accordingly, crystal growth occurs with the use of an oxide semiconductor film having the second crystal structure as a seed, so that an oxide semiconductor film having the first crystal structure is formed. An oxide semiconductor film formed in this manner is used for an active layer of the transistor.




fact

Manufacturing method of semiconductor film, manufacturing method of semiconductor device, and manufacturing method of photoelectric conversion device

A method for forming an amorphous semiconductor which contains an impurity element and has low resistivity and a method for manufacturing a semiconductor device with excellent electrical characteristics with high yield are provided. In the method for forming an amorphous semiconductor containing an impurity element, which utilizes a plasma CVD method, pulse-modulated discharge inception voltage is applied to electrodes under the pressure and electrode distance with which the minimum discharge inception voltage according to Paschen's Law can be obtained, whereby the amorphous semiconductor which contains an impurity element and has low resistivity is formed.




fact

Sensor substrate, method of manufacturing the same and sensing display panel having the same

A sensor substrate includes a blocking pattern disposed on a base substrate, a first electrode disposed on the base substrate and overlapping the blocking pattern, the first electrode including a plurality of first unit parts arranged in a first direction, each of the first unit parts including a plurality of lines connected to each other in a mesh-type arrangement, a color filter layer disposed on the base substrate, a plurality of contact holes defined in the color filter layer and exposing the first unit parts, and a bridge line between and connected to first unit parts adjacent to each other in the first direction, through the contact holes.




fact

Opposed substrate, manufacturing method thereof and LCD touch panel

An opposed substrate (9') comprises: a substrate (1); a static electricity protective electrode (2), a bridging electrode (4) and a touch induction electrode (6) comprising a plurality of sub-units sequentially formed on the substrate (1), wherein the distribution of the static electricity protective electrode (2) on the substrate (1) corresponds to dummy regions between sub-units, and the static electricity protective electrode (2), the bridging electrode (4) and the touch induction electrode (6) are insulated from each other. The opposed substrate (9') has a good touching effect. A method for manufacturing the opposed substrate, and a liquid crystal display touch panel are also disclosed.




fact

Semiconductor device and method of manufacturing the semiconductor device

In a semiconductor device, a first interlayer insulating layer made of an inorganic material and formed on inverse stagger type TFTs, a second interlayer insulating layer made of an organic material and formed on the first interlayer insulating layer, and a pixel electrode formed in contact with the second interlayer insulating layer are disposed on a substrate, and an input terminal portion that is electrically connected to a wiring of another substrate is provided on an end portion of the substrate. The input terminal portion includes a first layer made of the same material as that of the gate electrode and a second layer made of the same material as that of the pixel electrode. With this structure, the number of photomasks used in the photolithography method can be reduced to 5.




fact

Liquid crystal display devices and methods of manufacturing liquid crystal display devices

A liquid crystal display device includes a first substrate, a first electrode on the first substrate, a second substrate opposed to the first substrate, and a second electrode on the second substrate. The second electrode corresponds to the first electrode. The liquid crystal display device also includes a liquid crystal structure between the first electrode and the second electrode. The liquid crystal structure includes a plurality of liquid crystal molecules and at least one movement control member. The movement control member in the liquid crystal structure restricts a movement of the liquid crystal molecules.




fact

Optical compensated bending mode liquid crystal display panel and method for manufacturing the same

The present invention provides an optical compensated bending (OCB) mode liquid crystal display (LCD) panel and a method for manufacturing the same. The method comprises the following steps: forming alignment layers on substrate, respectively; forming a liquid crystal layer between the alignment layers to form a liquid crystal cell; applying an electrical signal across the liquid crystal cell; and irradiating light rays to or heating the liquid crystal cell, so as to form a first polymer alignment layer and a second polymer alignment layer, respectively. The present invention can reduce a phase transition time of liquid crystal molecules from a splay state to a bent state.




fact

Liquid crystal display device and manufacturing method of liquid crystal display device

Disclosed herein is a liquid crystal display device including a plurality of pixels each having a reflecting section and a transmitting section, the pixels each including a plurality of sub-pixels resulting from alignment division, the liquid crystal display device including: an element layer formed on a substrate; an insulating film formed on the substrate so as to cover the element layer; a pixel electrode formed on the insulating film so as to be connected to the element layer; a gap adjusting layer formed on the insulating film on the element layer including a region of connection between the element layer and the pixel electrode; and a dielectric formed on a connecting part for making an electric connection between the sub-pixels.




fact

Liquid crystal display device and manufacturing method thereof

A liquid crystal display device includes a liquid crystal display element including a first alignment film and a second alignment film and a liquid crystal layer that is provided between the first alignment film and the second alignment film, wherein the first alignment film includes a compound in which a polymer compound that includes a cross-linked functional group or a polymerized functional group as a side chain is cross-linked or polymerized, the second alignment film includes the same compound as the compound that configures the first alignment film, and the formation and processing of the second alignment film is different from the formation and processing of the first alignment film and when a pretilt angle of the liquid crystal molecules which is conferred by the first alignment film is θ1 and a pretilt angle of the liquid crystal molecules which is conferred by the second alignment film is θ2, θ1>θ2.




fact

Display device substrate, display device substrate manufacturing method, display device, liquid crystal display device, liquid crystal display device manufacturing method and organic electroluminescent display device

The present invention provides a display device substrate, a display device substrate manufacturing method, a display device, a liquid crystal display device, a liquid crystal display device manufacturing method and an organic electroluminescent display device that allow suppressing faults derived from occurrence of gas and/or bubbles in a pixel region. The present invention is a display device substrate that comprises: a photosensitive resin film; and a pixel electrode, in this order, from a side of an insulating substrate. The display device substrate has a gas-barrier insulating film, at a layer higher than the photosensitive resin film, for preventing advance of a gas generated from the photosensitive resin film, or has a gas-barrier insulating film, between the photosensitive resin film and the pixel electrode, for preventing advance of gas generated from the photosensitive resin film.




fact

Color filter substrate and method of manufacturing the same

Embodiments of the disclosed technology relate to a color filter substrate and a method of manufacturing the same. The color filter substrate comprises a base substrate having a black matrix pattern thereon, the black matrix pattern having a plurality of openings; and a plurality of color filter layers in different colors, disposed on the base substrate and located at the openings of the black matrix pattern, the color filter layers being glass layers in different colors.




fact

Pixel electrode panel, a liquid crystal display panel assembly and methods for manufacturing the same

A liquid crystal display panel, including: a pixel electrode formed on a first substrate; an alignment layer formed on the pixel electrode, wherein the alignment layer includes an alignment layer material and aligns first liquid crystal molecules in a direction substantially perpendicular to the pixel electrode; and a photo hardening layer formed on the alignment layer, wherein the photo hardening layer includes a photo hardening layer material and aligns second liquid crystal molecules to be tilted with respect to the pixel electrode, wherein the alignment layer material and the photo hardening layer material have different polarities from each other.




fact

Liquid crystal display and method of manufacturing liquid crystal display

A liquid crystal display capable of realizing a high transmittance while maintaining favorable voltage response characteristics, and a method of manufacturing the same are provided. The liquid crystal display includes: a liquid crystal layer; a first substrate and a second substrate arranged to face each other with the liquid crystal layer in between; a plurality of pixel electrodes provided on a liquid crystal layer side of the first substrate; and an opposite electrode provided on the second substrate to face the plurality of pixel electrodes. One or both of a face on the liquid crystal layer side of the pixel electrode, and a face on the liquid crystal layer side of the opposite electrode includes a concavo-convex structure.




fact

Seat cushion, for instance for an aircraft seat, and a method for manufacturing such a seat cushion

A seat cushion, in particular for an aircraft seat, the seat cushion comprising a seat part having a receiving surface adapted to receive a person and a reinforcing part supporting the seat part, wherein at least the reinforcing part contains expanded polypropylene (EPP), preferably comprising fire retardant properties. The invention further relates to a method for manufacturing such a seat cushion, a seat comprising such a seat cushion and a vehicle comprising such a seat.




fact

Inductor Q factor enhancement apparatus has bias circuit that is coupled to negative resistance generator for providing bias signal

The present invention provides an apparatus for enhancing Q factor of an inductor. The apparatus includes a negative resistance generator coupled to the inductor for providing a negative resistance, and a bias circuit coupled to the negative resistance generator for biasing the negative resistance generator.




fact

Communication module having tuner units that are separated and isolated from each other, and method of manufacturing the same

A communication module is provided in which its characteristic of separation between its first and second tuner units is improved. The module is equipped with a circuit board having a first main surface, and a second main surface opposite to the first main surface; a first amplifier arranged on the first main surface, for amplifying a first signal; a first mixer arranged on the first main surface, for converting a signal supplied from the first amplifier to an intermediate-frequency signal; a second amplifier for amplifying a second signal; and a mixer for converting a signal supplied from the second amplifier to an intermediate-frequency signal, both arranged on the second main surface of the circuit board.




fact

Dynamically adjustable Q-factors

One embodiment relates to a circuit for active loss compensation. The circuit includes a parallel inductor-capacitive (LC) tank circuit having a first single-ended output. A first adjustable capacitor, which includes a first terminal and a second terminal, is coupled to the first single-ended output. The circuit also includes a first pair of transistors having sources coupled to a first common node. One transistor of the first pair of transistors has a drain coupled to the first single-ended output and the other transistor of the first pair of transistors has a gate coupled to the second terminal of the first adjustable capacitor. Other embodiments are also disclosed.




fact

Band-pass filter device, method of manufacturing same, television tuner, and television receiver

A band-pass filter device includes: a plurality of band-pass filter elements on a principal plane of a substrate; wherein the band-pass filter elements correspond to a plurality of respective channels divided by frequency regions, and each have a plurality of piezoelectric resonators. Each of the piezoelectric resonators includes a piezoelectric film whose periphery is supported by the substrate, a first electrode formed on a lower surface of the piezoelectric film, a second electrode formed on an upper surface of the piezoelectric film and formed in a state of overlapping at least a part of the first electrode with the piezoelectric film interposed between the second electrode and the first electrode, a lower space formed between the substrate and the piezoelectric film, and an upper space formed over the piezoelectric film.




fact

Tunable high quality factor inductor

An inductor circuit with high quality (Q) factor includes a primary inductor and a compensation sub-circuit. The compensation sub-circuit is electrically isolated from the primary inductor. The compensation sub-circuit is magnetically coupled with the primary inductor to compensate the loss in the primary inductor.




fact

Electrical components and method of manufacture

An electrical component provides a ceramic element located on or in a dielectric substrate between and in contact with a pair of electrical conductors, wherein the ceramic element includes one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.5 mol % throughout the ceramic element. A method of fabricating an electrical component, provides or forming a ceramic element between and in contact with a pair of electrical conductors on a substrate including depositing a mixture of metalorganic precursors and causing simultaneous decomposition of the metal oxide precursors to form the ceramic element including one or more metal oxides.




fact

Forging heat resistant steel, manufacturing method thereof, forged parts and manufacturing method thereof

A forging heat resistant steel of an embodiment contains in percent by mass C: 0.05-0.2, Si: 0.01-0.1, Mn: 0.01-0.15, Ni: 0.05-1, Cr: 8 or more and less than 10, Mo: 0.05-1, V: 0.05-0.3, Co: 1-5, W: 1-2.2, N: 0.01 or more and less than 0.015, Nb: 0.01-0.15, B: 0.003-0.03, and a remainder comprising Fe and unavoidable impurities.




fact

Thin film of copper—nickel—molybdenum alloy and method for manufacturing the same

A Cu—Ni—Mo alloy thin film, including Ni as a solution element and Mo as a diffusion barrier element. Ni and Mo are co-doped with Cu. The enthalpy of mixing between Mo and Cu is +19 kJ/mol, and the enthalpy of mixing between Mo and Ni is −7 kJ/mol. The atomic fraction of Mo/Ni is within the range of 0.06-0.20 or the weight faction of Mo/Ni within the range of 0.10-0.33. The total amount of Ni and Mo additions is within the range of 0.14-1.02 at. % or wt. %. A method for manufacturing the alloy thin film is also provided.




fact

Switchable plate manufacturing vacuum tool

Systems, methods, and apparatus are provided to enable a vacuum tool to have a switchable plate, such that a common vacuum tool may be adapted with different plates. A switchable plate may form the entirety of the vacuum tool's material contacting surface or a switchable plate may form a portion of the material contacting surface. The vacuum tool is effective for picking and placing one or more manufacturing parts utilizing a vacuum force.




fact

Robot hand, robot device and method of manufacturing robot hand

A robot hand includes a finger unit that is in contact with an object. The finger unit includes: a first member in which a tip portion and a base portion connected to the tip portion are formed as a single member; and a second member that covers a surface of the first member.




fact

Electronic interface apparatus and method and system for manufacturing same

A method for manufacture of an electronic interface card (100) including defining a pair of apertures in a substrate layer (116), associating an antenna (112) with the substrate layer (116) such that opposite ends of the antenna (112) terminate at the apertures, placing a metal element in each of the apertures, connecting the ends of the antenna to the metal elements, laminating the substrate layer together with a top layer (114) and a bottom layer (118), forming a recess (122) in the top layer and the substrate layer, attaching end of connection wires (130) to the metal elements, attaching opposite ends of the connection wires (130) to a chip module (120) and sealing the chip module in the recess (122).




fact

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Bendable tubular item and method of manufacture

A flexible tubular item having an outer flexible section of hollow tubing with a first end and a second end, a flexible wire positioned within the hollow tubing, a flexible paint layer covering an exterior surface of the flexible wire, and a viscous liquid contained within the hollow tubing. The hollow tubing is a transparent vinyl tube. The flexible wire is copper wire having a bend resistance greater than the bend resistance of the hollow tubing. The liquid is mineral oil filling the area around the flexible wire within the hollow tubing. Ball members are affixed in liquid-tight relationship within the first and second ends of the hollow tubing. These ball members are acrylic spheres having a diameter greater than the interior diameter of the hollow tubing.




fact

Display device with flexible substrate and manufacturing method thereof

A display device and a manufacturing method thereof are provided. The display of the present invention includes a flexible substrate, a display layer, a protecting layer, an electronic unit, and a filling glue. The flexible substrate has a carrying surface. The display layer is disposed on the carrying surface and has a side edge. The protecting layer is disposed on the opposite side of the display layer corresponding to the carrying surface. The electronic unit is disposed on the carrying surface with a space formed between the electronic unit and the side edge of the display layer. The filling glue is filled in the space and connected with the side edge of the display layer, the electronic unit, and the carrying surface.




fact

Light guide plate having uniform light emission and manufacturing method thereof

A light guide plate includes a main body and a number of micro protrusions. The main body includes a light emitting surface, a bottom surface, and a light incident surface. The bottom surface is opposite to the light emitting surface. The light incident surface connects the light emitting surface and the bottom surface. The protrusions are randomly positioned on the light emitting surface, and are used for reflecting light rays towards random directions.




fact

Method of aligning liquid crystals in a process of manufacturing liquid crystal display

A method of manufacturing a liquid crystal display includes: preparing a lower mother substrate, where lower cells, each including a thin film transistor, are provided on the lower mother substrate, and a lower alignment layer is disposed on the lower cells; preparing an upper mother substrate, where upper cells corresponding to the lower cells are provided on the upper mother substrate, and an upper alignment layer is disposed on the upper cells; providing a mother substrate assembly by providing a liquid crystal mixture layer between the lower and upper mother substrates and combining the lower and upper mother substrates; providing a pretilt of the liquid crystals by applying a voltage to a voltage application unit of the lower mother substrate; and curing an alignment supporting agents in the liquid crystal mixture layer or the lower and upper alignment layers by irradiating light to a side of the mother substrate assembly.




fact

Substrate attachment device of display device and method for manufacturing display device using the same

A substrate attachment device of a display device and a method for manufacturing the display device using the same are disclosed. The substrate attachment device of the display device includes a guide unit which is curvedly disposed, a first support unit which moves forward and backwards along the guide unit and transfers a cover substrate having a curved surface, a second support unit which is disposed on the guide unit, moves forward and backwards, and transfers a display panel, and a roller unit which rotates so that the cover substrate having the curved surface is attached to the display panel.




fact

Spark plug for internal combustion engine and method for manufacturing same

The spark plug has a configuration satisfying the relationships of B≧0.7A and 0.3 mm≦A≦0.6 mm, where B is an axial thickness along the central axis line Q of the weld portion formed between the base material electrode and the noble-metal chip, and A is an axial distance along the central axis line Q between the intersection points P3 and X. The intersection point P3 is a point at which a phantom axis line radially distant from the central axis line Q by D/2 (D being a diameter of the noble-metal chip) intersects with the boundary line between the weld portion and the noble-metal chip. The intersection point X is a point at which an extension of the contour line of the base material electrode in the vicinity of the weld portion intersects with a boundary line between the weld portion and the base material electrode.




fact

Organic light emitting display device and method of manufacturing the same

An organic light emitting display device and a method of manufacturing the same are provided. The organic light emitting display device includes: a substrate including a display portion displaying an image as a plurality of sub-pixels that are arranged, and a non-display portion extending at an edge of the display portion; and a sealant formed along a periphery of the display portion, wherein an organic film having an emissive layer is formed on the plurality of sub-pixels, and an emissive layer storage unit storing an emissive layer coated on the non-display portion is formed between the display portion and the sealant. By forming the emissive layer storage unit by removing at least a part of a pixel defining layer on an edge of the substrate, a raw material of the emissive layer coated on the non-display portion on the substrate is easily processed via the emissive layer storage unit.




fact

Spark plug electrode and spark plug manufacturing method

A method of making a spark plug electrode includes several steps. One step includes providing an inner core of a ruthenium (Ru) based alloy or an iridium (Ir) based alloy. Another step includes providing an outer skin over a portion or more of the inner core in order to produce a core and skin assembly. The outer skin can be made of platinum (Pt), gold (Au), silver (Ag), nickel (Ni), or an alloy of one of these. Yet another step includes increasing the temperature of the core and skin assembly. And another step includes hot forming the core and skin assembly at the increased temperature.




fact

Method of manufacturing display device

To provide a method of manufacturing a display device having an excellent impact resistance property with high yield, in particular, a method of manufacturing a display device having an optical film that is formed using a plastic substrate. The method of manufacturing a display device includes the steps of: laminating a metal film, an oxide film, and an optical filter on a first substrate; separating the optical filter from the first substrate; attaching the optical filter to a second substrate; forming a layer including a pixel on a third substrate; and attaching the layer including the pixel to the optical filter.




fact

Organic luminescence display device having getter pattern and method of manufacturing the same

Provided is a method of manufacturing an organic luminescence display device, the method including: bringing a getter powder into direct contact with a first surface of an encapsulation substrate; irradiating a laser to a second surface of the encapsulation substrate correspondingly to a getter pattern area to melt the second surface of the encapsulation substrate; and bonding the getter powder to the molten second surface of the encapsulation substrate to form a getter pattern corresponding to the getter pattern area. Since the getter powder is directly bonded to the encapsulation substrate by laser irradiation, a fine getter pattern may be formed.




fact

Liquid crystal display and method for manufacturing the same

A liquid crystal display is provided that includes: a first display panel including a thin film transistor and a plurality of pixel electrodes; a second display panel facing the first display panel with a cell gap therebetween; a lower resistive layer disposed on the first display panel; an upper resistive layer disposed on the second display panel; and a sensing spacer connecting the lower resistive layer and the upper resistive layer.




fact

Flat panel type image display device and method for manufacturing the same

Disclosed are a flat panel type image display device of a clear borderless design without a case defining an external appearance of an image display device, and a method for manufacturing the same. The flat panel type image display device includes an image display panel to display an image, a panel guide including a panel fixing portion, to which the image display panel is attached, and a guide frame formed in a dual coupling structure, the panel fixing portion being configured to move together with the guide frame in at least one direction of x, y, and z-axis directions, and a bottom case formed to cover an opened back surface of the panel guide comprising a back surface of the image display panel, the bottom case being fixed to an inner side surface of the panel guide.




fact

Display apparatus and method of manufacturing the same

A display device according to an exemplary embodiment of the present invention includes a substrate, a display panel disposed on the substrate, a sealing substrate which is disposed opposite to the display panel, and a sealing unit disposed between the substrate and the sealing substrate, enclosing the display panel. The sealing unit has a penetration hole which passes through the sealing unit in a vertical direction.




fact

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Manufacturing method for organic electroluminescent panel and organic electroluminescent panel manufactured using the same

A simple manufacturing method for an organic electroluminescent panel in which organic electroluminescent elements are arranged and sealed by a sealing adhesive. The electroluminescent panel has excellent sealing properties and excellent durability as a result of the organic electroluminescent elements being adhered to one another by a heat-curable adhesive. The manufacturing method is for an organic electroluminescent panel in which at least a first electrode, an organic functional layer containing a light-emitting layer, an organic electroluminescent element having a second electrode, and a sealing substrate are bonded together on a substrate by the heat-curable adhesive. The method includes forming a heat-curable adhesive layer on the sealing substrate, subjecting the heat-curable adhesive layer formed on the sealing substrate to pre-heating treatment, bonding the pre-heated heat-curable adhesive layer to the organic electroluminescent element, and subjecting the heat-curable adhesive layer to heat curing, in the given order.




fact

Light-emitting device, lighting device including the light-emitting device, and method of manufacturing the light-emitting device

A light-emitting device includes a light-emitting element with a pair of element electrodes as a first element electrode and a second element electrode positioned at the lower surface of the light-emitting element; a phosphor plate disposed on the upper surface of the light-emitting element; a first resin covering the lower surface and the peripheral side surface of the light-emitting element with the first element electrode and the second element electrode partly appearing from the first resin; and a second resin provided in the phosphor plate.




fact

Organic light emitting display apparatus and manufacturing method thereof

An organic light emitting display apparatus includes a pixel part including a pixel electrode, a light emitting layer and an opposite electrode, and a contact part in which the opposite electrode contacts a power line, wherein a first thickness of the opposite electrode in the pixel part is different from a second thickness of the opposite electrode in the contact part.