fact

Organic luminescent display device and method of manufacturing at organic luminescent display device

An organic EL display device of the invention includes: a first substrate; a second substrate disposed above the first substrate and having a display area and a non-display area; and a light-emitting layer disposed between the display area and the first substrate, wherein a first alignment mark having the light-emitting layer is disposed between the non-display area and the first substrate, and a second alignment mark is disposed on the second substrate at a position corresponding to the first alignment mark.




fact

Light emitting device, electronic appliance, and method for manufacturing light emitting device

To provide a light emitting device that has a structure in which a light emitting element is sandwiched by two substrates to prevent moisture from penetrating into the light emitting element, and a method for manufacturing thereof. In addition, a gap between the two substrates can be controlled precisely. In the light emitting device according to the present invention, an airtight space surrounded by a sealing material with a closed pattern is kept under reduced pressure by attaching the pair of substrates under reduced pressure. A columnar or wall-shaped structure is formed between light emitting regions inside of the sealing material, in a region overlapping with the sealing material, or in a region outside of the sealing material so that the gap between the pair of substrates can be maintained precisely.




fact

Organic light emitting diode device and manufacturing method thereof

An organic light emitting diode device can have an enhanced thin film encapsulation layer for preventing moisture from permeating from the outside. The thin film encapsulation layer can have a multilayered structure in which one or more inorganic layers and one or more organic layers are alternately laminated. A barrier can be formed outside of a portion of the substrate on which the organic light emitting diode is formed. The organic layers of the thin film encapsulation layer can be formed inside an area defined by the barrier.




fact

Manufacturing method of light emitting devices

A manufacturing method of light emitting devices, comprises a substrate-forming step of forming a planar-shaped substrate, a frame-forming step of forming a closed frame on the substrate, an element-mounting step of mounting multiple light emitting elements in an inside of the frame, a sealing step of injecting a liquid material that is to be a sealing member to the inside of the frame so as to seal the multiple light emitting elements, and a dividing step of dividing the multiple light emitting elements together with the substrate and the sealing member so as to obtain multiple light emitting devices with the sealing member exposed from a side surface thereof.




fact

Apparatus for manufacturing deposition mask assembly for flat panel display

Provided is an apparatus for manufacturing a deposition mask assembly for a flat panel display, which prevents a pattern from being distorted in a pattern mask when divided pattern masks are welded to a support fixture. An apparatus for manufacturing a deposition mask assembly for a flat panel display of the present description, which includes a frame mask forming an opening, a support fixture installed in the frame mask, and a pattern mask welded to the support fixture to have a pattern allowing a deposition material to be transmitted therethrough, includes: a welding head disposed in a side of the pattern mask; and a support member supporting the support fixture in an opposite side of the welding head with the pattern mask interposed therebetween.




fact

Manufacturing method for organic electroluminescent panel and organic electroluminescent panel manufactured using the same

A simple manufacturing method for an organic electroluminescent panel in which organic electroluminescent elements are arranged and sealed by a sealing adhesive. The electroluminescent panel has excellent sealing properties and excellent durability as a result of the organic electroluminescent elements being adhered to one another by a heat-curable adhesive. The manufacturing method is for an organic electroluminescent panel in which at least a first electrode, an organic functional layer containing a light-emitting layer, an organic electroluminescent element having a second electrode, and a sealing substrate are bonded together on a substrate by the heat-curable adhesive. The method includes forming a heat-curable adhesive layer on the sealing substrate, subjecting the heat-curable adhesive layer formed on the sealing substrate to pre-heating treatment, bonding the pre-heated heat-curable adhesive layer to the organic electroluminescent element, and subjecting the heat-curable adhesive layer to heat curing, in the given order.




fact

System and method for manufacturing carbon nanotubes

A system and method for manufacturing carbon nanotubes using chemical vapor deposition. The system has a first chamber comprising at least one cathode and at least one anode, a gas supply source, at least one activation energy source, at least one alignment energy source, a second chamber situated within said first chamber, said second chamber comprising: a target growth plate, comprising a catalyst and a substrate, a second cathode configured to support said target growth plate, a movable platform configured to support said second cathode, and a gas permeable barrier vertically opposed from said second cathode.




fact

Apparatus for manufacturing single crystal silicon ingot having reusable dual crucible for silicon melting

The present disclosure provides an apparatus for manufacturing a single crystal silicon ingot having a dual crucible for silicon melting which can be reused due to a dual crucible structure. The apparatus includes a dual crucible for silicon melting, into which raw silicon is charged, a crucible heater heating the dual crucible to melt the raw silicon into molten silicon, a crucible drive unit controlling rotation and elevation of the dual crucible, and a pull-up drive unit disposed above the dual crucible and pulling up a seed crystal dipped in the molten silicon to produce a silicon ingot. The dual crucible has a container shape open at an upper side thereof, and includes a graphite crucible having an inclined surface connecting an inner bottom and an inner wall, and a quartz crucible inserted into the graphite crucible and receiving the raw silicon charged into the dual crucible.




fact

Semi continuous process for the synthesis of a catalyst for use in the manufacture of polyolefins

A semi-continuous process and system thereof, for the synthesis of a narrow particle size distribution Zeigler Natta procatalyst for use in the manufacture of polyolefins. The process comprises: (a) mixing a reaction mixture containing a titanium compound; (b) charging a first reactor with said reaction mixture; (c) removing excess reactants from said first reactor as a filtrate; (d) feeding said filtrate to at least one further reactor; and continuously removing excess reactants from said at least further reactor.




fact

Method of manufacturing spherical mesoporous silica containing dispersed silver nanoparticles, and spherical mesoporous silica manufactured by said method

The present invention relates to a method of preparing a spherical mesoporous silica structure containing silver nanoparticles dispersed therein by adding a silver nitrate solution to an aqueous surfactant solution and performing a sol-gel process and to spherical mesoporous silica prepared thereby. The spherical mesoporous silica is cost-effective compared to a conventional method that uses silver nanoparticles as a raw material, because the silver nitrate solution that is inexpensive compared to silver nanoparticles is used. Also, the spherical mesoporous silica can be with high productivity in large amounts, and thus is easily commercialized. Moreover, because silver nanoparticles are incorporated into the pores of the mesoporous silica, the silver nanoparticles are used stably and do not change color and odor. In addition, the spherical mesoporous silica exhibits various additional effects, including far-infrared ray emission and deodorization, attributable to silica.




fact

Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material

A highly reliable vacuum heat insulating material having excellent processability, usability and heat insulating performance and a heat insulating box using the vacuum heat insulating material are provided. A vacuum heat insulating material related to the present invention includes: a core material structured by a laminated structure of an organic fiber assembly formed by forming an organic fiber into a sheet shape and cutting an end face with a predetermined length, and having a core material opening portion formed by a through hole or a notch with cutting; a gas-barrier outer cover material containing the core material inside, having a sealing portion for sealing surrounding of the sheet-shaped organic fiber assembly and surrounding of the core material opening portion, and hermetically sealing an inside with almost vacuum status by sealing the sealing portion; and an outer cover material opening portion provided at the outer cover material under a status in which the sealing portion provided at the surrounding of the sheet-shaped organic fiber assembly and the surrounding of the core material opening portion is sealed, being a through hole or a notch which is smaller than the core material opening portion with a sealed amount, and a long fiber being equal to or longer than a length of the sheet is used for the organic fiber.




fact

Method for manufacturing a resilient rail support block assembly

A rail support block assembly includes a resilient member and a molded block having a top, a bottom and peripheral wall. The block is adapted for fastening one or more rails on the top. The prefabricated resilient member has an outer tray and inner tray arranged within the outer tray, and includes a resilient intermediate structure between the trays. The block is molded in a block mold into with the moldable material is introduced and allowed to harden. The block is fixed in the inner tray to extend under the bottom of the block and along a lower region of the peripheral wall. The resilient member may form a part of the block mold, so that a mold member combined with the resilient member delimit the mold for the block. The moldable material is introduced and adheres directly to the inner tray of the prefabricated resilient member.




fact

Data carrier card and method for manufacturing a data carrier card

A card body for a portable data carrier, in particular a chip card or magnetic strip card, and a method for manufacturing a card body. The card body includes at least a coextruded foil having at least two areas with different material properties. By using coextruded foils a card body consisting of a plurality of alternating opaque and transmissive strips as well as a card body with a window can be formed in a simple fashion.




fact

Manufacturing bevel gears

A method of manufacturing bevel gears with a tool, such as a tapered milling tool (16), wherein the tool is located at a position offset (Rw) from the center position of a conventional face milling cutter and the tool follows a path, such as a circular arc path, during machining.




fact

Bevel gear manufacture with face cutters without swing axis motion

A method of machining bevel gears whereby machining of both flanks of a tooth slot and crowning of the tooth surfaces in the lengthwise direction are realized without an active pivot axis and by a modification of the conventional relationship between the radial and swivel basic settings during gear generating.




fact

Casting method for manufacturing a work piece

A method for manufacturing a work piece is provided. The method includes preparing fiberglass in a mold, preparing a closed mold cavity around the fiberglass, flushing the closed mold cavity with an oxygen-free gas, injecting resin in the closed mold cavity, and curing the casted work piece. Furthermore, a work piece manufactured by the above method is provided.




fact

Methods of manufacturing wind turbine blades

An elongate web is attached to the root end of a spar of a wind turbine rotor blade to provide additional support along the width of the blade. The root end is formed by a winding operation, and a recess is then cut into the surface of the spar. The recess is defined by a relatively large first, cylindrical surface, which is coaxial with the longitudinal axis of the root end, and a relatively small second, conical surface. A tapered end of the elongate web is attached within the recess of the root end using a layer of suitable adhesive and an array of pins. Resilient spacer elements are arranged within the recess so as to surround the pins. The large area of the cylindrical surface causes the tensile and compressive stresses which arise along the elongate web in use to be transmitted to the spar as shear stresses.




fact

Method of manufacturing a wind turbine blade having predesigned segment

A blade for a rotor of a wind turbine is manufactured with a root region with a substantially circular or elliptical profile closest to the hub, an airfoil region with a lift generating profile furthest away from the hub and a transition region having a profile gradually changing the root region to the airfoil region. A first blade design is used for the first base part on a first longitudinal section of an airfoil region of a second blade, so that an induction factor of the first base part on the second blade deviates from a target induction factor. The first longitudinal section of the second blade is provided with flow altering devices so as to adjust the aerodynamic properties of the first longitudinal segment to substantially meet the target induction factor at the design point on the second blade.




fact

Axially-split radial turbines and methods for the manufacture thereof

Embodiments of an axially-split radial turbine, as are embodiments of a method for manufacturing an axially-split radial turbine. In one embodiment, the method includes the steps of joining a forward bladed ring to a forward disk to produce a forward turbine rotor, fabricating an aft turbine rotor, and disposing the forward turbine rotor and the aft turbine rotor in an axially-abutting, rotationally-fixed relationship to produce the axially-split radial turbine.




fact

Wind turbine blade and method for manufacturing a wind turbine blade with vortex generators

A wind turbine for generating electrical energy may include a wind turbine blade including a plurality of vortex generators integrally formed in the outer surface of the blade. The vortex generator includes a first component that defines a portion of the outer surface of the blade and a second component defining the shape of the vortex generator and at least partially surrounded by the first component. A method of manufacturing the wind turbine blade includes disposing a first plurality of layers of structural material over a mold main body and a removable insert member with a shaped cavity. A shaped plug is then pressed into the shaped cavity, and a second plurality of layers of structural material is disposed over the plug and the mold main body to complete manufacture of a wind turbine blade with a vortex generator.




fact

System and method for correcting for metal artifacts using multi-energy computed tomography

A method is provided. The method includes acquiring a first dataset at a first energy spectrum and a second dataset at a second energy spectrum. The method also includes extracting a metal artifact correction signal using the first dataset and the second dataset or using a first reconstructed image and a second reconstructed image generated respectively from the first and the second datasets. The method further includes performing metal artifact correction on the first reconstructed image using the metal artifact correction signal to generate a first corrected image.




fact

Data transmission apparatus having frequency synthesizer with integer division factor, corresponding method, and data transmission system

A data transmission apparatus disposed within two network layers operative at different data rates is provided. The data transmission apparatus is coupled to a clock generator which provides a reference clock for a lower network layer and is coupled to a frequency synthesizer with an integer division factor that generates a divided clock for an upper network layer according to the reference clock and the integer division factor. The data transmission apparatus includes a first processing circuit and a second processing circuit. The first processing circuit corresponding to the upper network layer receives and transmits data by using the divided clock as its operation frequency. The second processing circuit corresponding to the lower network layer receives and transmits data from the first processing circuit by using the reference clock as an operation frequency for encoding data. The divided clock is generated from the frequency synthesizer with the integer division factor.




fact

Device for manufacturing a fabric, and fabric

A device for manufacturing a fabric has a plurality of automatically working apparatus arranged next to one another on at least one carrier for manufacturing a leno weave (a leno weave apparatus). Two leno threads are fed to each leno weave apparatus. The device has at least one weft thread picking device; wherein the weft thread is introduced into the shed of leno threads raised by a plurality of leno weave apparatus. The weft thread is bound using at least two leno threads at a plurality of points behind the weft thread over the width of the fabric. At least one of the leno weave apparatus arranged in the end region of the fabric carries out a higher number of interlacings for achieving a homogenized warp tension distribution over the width of the fabric; and/or the lowering of the shed is carried out by the leno weave apparatus over the width of the fabric at different times for achieving a homogenized warp tension distribution.




fact

Manufacturing method of medical textiles woven from chitosan containing high wet modulus rayon fibre

An anti-“Methicillin-Resistant Staphylococcus Aureus (MRSA)” chitosan containing antibacterial High Wet Modulus (HWM) rayon fiber textile for medical usage is made of the steps as following: chitin flakes made from natural shrimp or crab shells are deacetylated to generate chitosan with a high deacetylation degree of 90% or more. Next chitosan is dissolved in acetic acid and regenerated by caustic soda to form a chitosan antibacterial nanoparticles slurry, then added to HWM viscose rayon process, and spinning to produce a chitosan containing antibacterial HWM rayon fiber. The antibacterial amino groups of chitosan and the hydroxyl groups of rayon cellulose combine together via hydrogen bonding. Therefore, the fiber becomes the anti-MRSA antibacterial HWM rayon fiber containing amino groups (—NH3+). Finally the resulting HWM rayon fiber is conducted via a yarn spinning or/and weaving process to procure a medical textile with chitosan content.




fact

Method and device for the manufacturing of fabrics with at least two different pile heights in a same pile row

A method weaves pile fabrics with at least two different pile heights (a, b) in the same pile row, wherein the fabrics have weft threads, ground warp threads and pile-warp threads (1, 2), wherein these pile-warp threads are interlaced in the fabric, according to a pattern, in a figure-forming manner or are inwoven in a non-figure-forming manner, and which, when they are figure-forming, form pile with a well-defined pile height. The method includes a first set of pile warp threads, under light strain and at least a second set of pile warp threads under a higher strain. A device for manufacturing such fabrics is described.




fact

Safety lanyard and manufacturing method thereof

This lanyard, which is movable by elasticity between a rest position and a stretched position, comprises a tubular sheath made from non-stretchable material, and a set of elastic threads joined to the sheath. According to the invention, the elastic threads define at least one longitudinal weaving zone in which they are woven on one surface of the sheath only, each weaving zone being proper to form a bending zone of the lanyard, in the rest position, in which the elastic threads are folded onto themselves.




fact

Regulator/brush-holder assembly for a motor-vehicle alternator, manufacturing process and corresponding alternator

The regulator/brush-holder assembly (1) comprises a support (2) and an electrical circuit (5, 6) comprising a regulating element (5) connected by microwires to a trace circuit (6). The electrical circuit further includes a filtering circuit (10) separate from the regulating element and connected by microwires to the trace circuit. According to one particular embodiment, the filtering circuit comprises an insulating substrate (11) and surface-mounted components (C1, C2, S1, S2, V). A ground plane (19) and/or one or more ground pads may be provided for connection to a ground trace of the trace circuit. The filtration frequencies of the filter circuit extend from 100 kHz to 1 GHz.




fact

Disassembling method of mandrel used for manufacturing composite material structure and disassembling apparatus of mandrel

The present invention provides a technique which can disassemble a mandrel having a substantially cylindrical shape and being dividable into a plurality of segments, easily and efficiently. The disassembling method comprises, in the mandrel adhesively attached with a composite material structure on an outer peripheral surface thereof, a rotation step of rotating the pair of support rings along with the mandrel to position a segment which is a detached target to an uppermost portion; and a segment detaching step of detaching the segment which is the detached target positioned at the uppermost portion, from the pair of support rings; wherein in the segment detaching step, the segment which is the detached target is moved in a vertically downward direction to a position inside of the mandrel, between the pair of support rings, and is carried out from between the pair of support rings.




fact

Manufacturing apparatus

The present invention provides a manufacturing apparatus which can realize so-called sequential substrate transfer and can improve throughput, even when one multi-layered thin film includes plural layers of the same film type. A manufacturing apparatus according to an embodiment of the present invention includes a transfer chamber, three sputtering deposition chambers each including one sputtering cathode, two sputtering deposition chambers each including two or more sputtering cathodes, and a process chamber for performing a process other than sputtering, and the three sputtering deposition chambers, the two sputtering deposition chambers, and the process chamber are arranged around the transfer chamber so that each is able to perform delivery and receipt of the substrate with the transfer chamber.




fact

Electrode strip and sensor strip and manufacture method thereof and system thereof

The present disclosure relates to an electrode strip, a sensor strip, a system thereof and a manufacturing method thereof. The sensor strip includes a first reactive film, a second reactive film and a vent hole. The first reactive film includes a substrate, a first electrode layer and a first insulation layer. The first end of the first insulation layer is concaved to a first depth to form a first reactive area. The second reactive film includes a second electrode layer and a second insulation layer. The first end of the second insulation layer is concaved to a second depth to form a second reactive area. The vent hole penetrates the second insulation layer, the second electrode layer and the first insulation layer so as to connect the first reactive area and the second reactive area.




fact

Gas sensor and method of manufacturing thereof

In a gas sensor sensing a specific gas component contained in gas to be measured, oxygen ion conductive solid electrolyte is used in a sensing element for sensing the specific gas component. A terminal unit is used, which comprises a pair of insulators, each having an inner side surface, disposed to pinch and hold the base end portion of the sensing element on the pair of electrode-mounted surfaces of the sensing element. The terminal unit comprises two pairs of metal terminals and a spring member. The metal terminals electrically contact electrode pads of the sensing element, pair by pair, respectively, and are disposed on the inner side surfaces of the insulators. The spring members press the pair of insulators at one or more positions of electrode-mounted surfaces of the sensing element in a width direction so that the insulators are pressed to be opposed to each other.




fact

Device and method for manufacturing the same

The present invention provides a device that decreases deformation during manufacturing of the device, provides a firm joint without use of an adhesive, and allows chemical modification of a channel during manufacturing of the device. The device includes two joined substrates, and a concavity is formed on at least one of the opposing surfaces of the two substrates so as to make a channel, where the two substrates are joined together by a covalent bond via a crosslinking agent (A), and the crosslinking agent (A) is exposed on an inner wall surface of the channel.




fact

TFT array substrate, manufacturing method of the same and display device

According to embodiments of the invention, a TFT array substrate, a manufacturing method of the TFT array substrate and a display device are provided. The method comprises: depositing a metal film on a substrate, and forming a gate electrode and a gate line; forming a gate insulating layer and a passivation layer on the substrate; depositing a transparent conductive layer, a first source/drain metal layer and a first ohmic contact layer, and forming a drain electrode, a pixel electrode, a data line, and a first ohmic contact layer pattern provided on the drain electrode; and depositing a semiconductor layer, a second ohmic contact layer and a second source/drain metal layer, and forming a source electrode, a second ohmic contact layer pattern provided below the source electrode, and a semiconductor channel between the source electrode and the drain electrode.




fact

OLED display having organic and inorganic encapsulation layers, and manufacturing method thereof

An organic light emitting diode (OLED) display a includes: a substrate; an organic light emitting element on the substrate and including a first electrode, a light emission layer, and a second electrode; and an encapsulation layer on the substrate while covering the organic light emitting element. The encapsulation layer includes an organic layer and an inorganic layer. A mixed area, where organic materials forming the organic layer and inorganic materials forming the inorganic layer co-exist along a plane direction of the encapsulation layer, is formed at the boundary between the organic layer and the inorganic layer.




fact

Semiconductor device and method for manufacturing the same

An object is to manufacture a semiconductor device with high reliability by providing the semiconductor device including an oxide semiconductor with stable electric characteristics. In a transistor including an oxide semiconductor layer, a gallium oxide film is used for a gate insulating layer and made in contact with an oxide semiconductor layer. Further, gallium oxide films are provided so as to sandwich the oxide semiconductor layer, whereby reliability is increased. Furthermore, the gate insulating layer may have a stacked structure of a gallium oxide film and a hafnium oxide film.




fact

Semiconductor device, semiconductor wafer and manufacturing method of semiconductor device

A semiconductor device includes wiring layers formed over a semiconductor wafer, a via-layer between the wiring layers, conductive films in the wiring layers, and a via-plug in the via-layer connecting the conductive films of the wiring layers above and below, a scribe region at an outer periphery of a chip region along an edge of the semiconductor substrate and including a pad region in the vicinity of the edge, the pad region overlapping the conductive films of the plurality of wiring layers in the plan view, the plurality of wiring layers including first second wiring layers, the conductive film of the first wiring layer includes a first conductive pattern formed over an entire surface of said pad region in a plan view, and the conductive film of the second wiring layer includes a second conductive pattern formed in a part of the pad region in a plan view.




fact

Semiconductor device and method for manufacturing the same

An object is to provide a semiconductor device including an oxide semiconductor film, which has stable electrical characteristics and high reliability. A stack of first and second material films is formed by forming the first material film (a film having a hexagonal crystal structure) having a thickness of 1 nm to 10 nm over an insulating surface and forming the second material film having a hexagonal crystal structure (a crystalline oxide semiconductor film) using the first material film as a nucleus. As the first material film, a material film having a wurtzite crystal structure (e.g., gallium nitride or aluminum nitride) or a material film having a corundum crystal structure (α-Al2O3, α-Ga2O3, In2O3, Ti2O3, V2O3, Cr2O3, or α-Fe2O3) is used.




fact

Semiconductor device and method of manufacturing semiconductor device

A semiconductor device, includes a semiconductor substrate, a first interconnect layer formed over the semiconductor substrate, a gate electrode formed in the first interconnect layer, a gate insulating film formed over the gate electrode, a second interconnect layer formed over the gate insulating film, an oxide semiconductor layer formed in the second interconnect layer, and a via formed in the second interconnect layer and connected to the oxide semiconductor layer. The gate electrode, the gate insulating film and the oxide semiconductor layer overlap in a plan view.




fact

Semiconductor device and method for manufacturing the same

It is an object to manufacture a highly reliable semiconductor device including a thin film transistor whose electric characteristics are stable. An insulating layer which covers an oxide semiconductor layer of the thin film transistor contains a boron element or an aluminum element. The insulating layer containing a boron element or an aluminum element is formed by a sputtering method using a silicon target or a silicon oxide target containing a boron element or an aluminum element. Alternatively, an insulating layer containing an antimony (Sb) element or a phosphorus (P) element instead of a boron element covers the oxide semiconductor layer of the thin film transistor.




fact

Semiconductor device and manufacturing method thereof

A semiconductor device which includes a thin film transistor having an oxide semiconductor layer and excellent electrical characteristics is provided. Further, a method for manufacturing a semiconductor device in which plural kinds of thin film transistors of different structures are formed over one substrate to form plural kinds of circuits and in which the number of steps is not greatly increased is provided. After a metal thin film is formed over an insulating surface, an oxide semiconductor layer is formed thereover. Then, oxidation treatment such as heat treatment is performed to oxidize the metal thin film partly or entirely. Further, structures of thin film transistors are different between a circuit in which emphasis is placed on the speed of operation, such as a logic circuit, and a matrix circuit.




fact

Semiconductor device and manufacturing method thereof

A semiconductor film having an impurity region to which at least an n-type or p-type impurity is added and a wiring are provided. The wiring includes a diffusion prevention film containing a conductive metal oxide, and a low resistance conductive film over the diffusion prevention film. In a contact portion between the wiring and the semiconductor film, the diffusion prevention film and the impurity region are in contact with each other. The diffusion prevention film is framed in such a manner that a conductive film is exposed to plasma generated from a mixed gas of an oxidizing gas and a halogen-based gas to form an oxide of a metal material contained in the conductive film, the conductive film in which the oxide of the metal material is formed is exposed to an atmosphere containing water to be fluidized, and the fluidized conductive film is solidified.




fact

Semiconductor device and method for manufacturing the same

To provide a semiconductor device which has transistor characteristics with little variation and includes an oxide semiconductor. The semiconductor device includes an insulating film over a conductive film and an oxide semiconductor film over the insulating film. The oxide semiconductor film includes a first oxide semiconductor layer, a second oxide semiconductor layer over the first oxide semiconductor layer, and a third oxide semiconductor layer over the second oxide semiconductor layer. The energy level of a bottom of a conduction band of the second oxide semiconductor layer is lower than those of the first and third oxide semiconductor layers. An end portion of the second oxide semiconductor layer is positioned on an inner side than an end portion of the first oxide semiconductor layer.




fact

Semiconductor thin film, semiconductor thin film manufacturing method and semiconductor element

An amorphous oxide thin film containing amorphous oxide is exposed to an oxygen plasma generated by exciting an oxygen-containing gas in high frequency. The oxygen plasma is preferably generated under the condition that applied frequency is 1 kHz or more and 300 MHz or less and pressure is 5 Pa or more. The amorphous oxide thin film is preferably exposed by a sputtering method, ion-plating method, vacuum deposition method, sol-gel method or fine particle application method.




fact

Semiconductor device and manufacturing method the same

An object is to manufacture and provide a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a method for manufacturing a semiconductor device including a thin film transistor in which a semiconductor layer including a channel formation region serves as an oxide semiconductor film, heat treatment for reducing impurities such as moisture (heat treatment for dehydration or dehydrogenation) is performed after an oxide insulating film serving as a protective film is formed in contact with an oxide semiconductor layer. Then, the impurities such as moisture, which exist not only in a source electrode layer, in a drain electrode layer, in a gate insulating layer, and in the oxide semiconductor layer but also at interfaces between the oxide semiconductor film and upper and lower films which are in contact with the oxide semiconductor layer, are reduced.




fact

Blanking apparatus, drawing apparatus, and method of manufacturing article

The present invention provides a blanking apparatus comprising a plurality of blankers configured to respectively blank a plurality of beams with respect to a target position on an object, and a driving device configured to drive the plurality of blankers, wherein the driving device includes a change device configured to change relation between a combination of beams of the plurality of beams, and a target dose.




fact

Thermal-conduction element for improving the manufacture of a package for transporting and/or storing radioactive materials

The invention relates to a thermal conduction element (20) for a package for transporting and/or storing radioactive materials, comprising: an internal part (30) intended to be in contact with a lateral body (14) of the package;an external part (34) intended to form a portion of an external envelope (24) of said package, holding radiological protection means (22);an intermediate part (32) arranged between the internal and external parts,the internal, external and intermediate parts being produced from copper and one of the alloys thereof. According to the invention, the external part (34) is equipped, at each of its two opposite ends, with an area (36) for connection by welding to another thermal conduction element (20), each connection area (36) being produced from steel.




fact

Solid state imaging device, portable information terminal device and method for manufacturing solid state imaging device

According to one embodiment, a solid state imaging device includes a sensor substrate having a plurality of pixels formed on an upper face, a microlens array substrate having a plurality of microlenses formed and a connection post with one end bonded to a region between the microlenses on the microlens array substrate and with the other end bonded to the upper face.




fact

Photovoltaic device including flexible substrate or inflexible substrate and method for manufacturing the same

Disclosed is a photovoltaic device. The photovoltaic device includes: a substrate; a first electrode placed on the substrate; a second electrode which is placed opposite to the first electrode and which light is incident on; a first unit cell being placed between the first electrode and the second electrode, and including an intrinsic semiconductor layer including crystalline silicon grains making the surface of the intrinsic semiconductor layer toward the second electrode textured; and a second unit cell placed between the first unit cell and the second electrode.




fact

Back electrode type solar cell, back electrode type solar cell with interconnection sheet, solar cell module, method of manufacturing back electrode type solar cell with interconnection sheet, and method of manufacturing solar cell module

A back electrode type solar cell in which a no-electrode-formed region where no electrode is placed is provided in a part of a peripheral portion of a back surface of the back electrode type solar cell such that a line connecting end portions of a plurality of electrodes to one another includes a partially inwardly recessed region and the no-electrode-formed region is located adjacent to each of an electrode for n-type and an electrode for p-type adjacent to each other, a solar cell module, a method of manufacturing a back electrode type solar cell with interconnection sheet, and a method of manufacturing a solar cell module are provided.




fact

Photovoltaic cell and manufacturing method thereof

A photovoltaic cell comprises a top subcell having a first band gap; a middle subcell comprising a substrate and having a second band gap, wherein the substrate comprises a first side and a second side opposite to the first side; and a bottom subcell having a third band gap, wherein the top subcell is grown on the first side of the substrate and the bottom subcell is grown on the second side of the substrate, wherein the first band gap is larger than the second band gap and the second band gap is larger than the third band gap.