hy

A step towards 6D WAXD tensor tomography

X-ray scattering/diffraction tensor tomography techniques are promising methods to acquire the 3D texture information of heterogeneous biological tissues at micrometre resolution. However, the methods suffer from a long overall acquisition time due to multi-dimensional scanning across real and reciprocal space. Here, a new approach is introduced to obtain 3D reciprocal information of each illuminated scanning volume using mathematic modeling, which is equivalent to a physical scanning procedure for collecting the full reciprocal information required for voxel reconstruction. The virtual reciprocal scanning scheme was validated by a simulated 6D wide-angle X-ray diffraction tomography experiment. The theoretical validation of the method represents an important technological advancement for 6D diffraction tensor tomography and a crucial step towards pervasive applications in the characterization of heterogeneous materials.




hy

The importance of definitions in crystallography

This paper was motivated by the articles `Same or different – that is the question' in CrystEngComm (July 2020) and `Change to the definition of a crystal' in the IUCr Newsletter (June 2021). Experimental approaches to crystal comparisons require rigorously defined classifications in crystallography and beyond. Since crystal structures are determined in a rigid form, their strongest equivalence in practice is rigid motion, which is a composition of translations and rotations in 3D space. Conventional representations based on reduced cells and standardizations theoretically distinguish all periodic crystals. However, all cell-based representations are inherently discontinuous under almost any atomic displacement that can arbitrarily scale up a reduced cell. Hence, comparison of millions of known structures in materials databases requires continuous distance metrics.




hy

The evolution of raw data archiving and the growth of its importance in crystallography

The hardware for data archiving has expanded capacities for digital storage enormously in the past decade or more. The IUCr evaluated the costs and benefits of this within an official working group which advised that raw data archiving would allow ground truth reproducibility in published studies. Consultations of the IUCr's Commissions ensued via a newly constituted standing advisory committee, the Committee on Data. At all stages, the IUCr financed workshops to facilitate community discussions and possible methods of raw data archiving implementation. The recent launch of the IUCrData journal's Raw Data Letters is a milestone in the implementation of raw data archiving beyond the currently published studies: it includes diffraction patterns that have not been fully interpreted, if at all. The IUCr 75th Congress in Melbourne included a workshop on raw data reuse, discussing the successes and ongoing challenges of raw data reuse. This article charts the efforts of the IUCr to facilitate discussions and plans relating to raw data archiving and reuse within the various communities of crystallography, diffraction and scattering.




hy

From X-ray crystallographic structure to intrinsic thermodynamics of protein–ligand binding using carbonic anhydrase isozymes as a model system

Carbonic anhydrase (CA) was among the first proteins whose X-ray crystal structure was solved to atomic resolution. CA proteins have essentially the same fold and similar active centers that differ in only several amino acids. Primary sulfonamides are well defined, strong and specific binders of CA. However, minor variations in chemical structure can significantly alter their binding properties. Over 1000 sulfonamides have been designed, synthesized and evaluated to understand the correlations between the structure and thermodynamics of their binding to the human CA isozyme family. Compound binding was determined by several binding assays: fluorescence-based thermal shift assay, stopped-flow enzyme activity inhibition assay, isothermal titration calorimetry and competition assay for enzyme expressed on cancer cell surfaces. All assays have advantages and limitations but are necessary for deeper characterization of these protein–ligand interactions. Here, the concept and importance of intrinsic binding thermodynamics is emphasized and the role of structure–thermodynamics correlations for the novel inhibitors of CA IX is discussed – an isozyme that is overexpressed in solid hypoxic tumors, and thus these inhibitors may serve as anticancer drugs. The abundant structural and thermodynamic data are assembled into the Protein–Ligand Binding Database to understand general protein–ligand recognition principles that could be used in drug discovery.




hy

Bridging the microscopic divide: a comprehensive overview of micro-crystallization and in vivo crystallography

A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale.




hy

Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography

Light–oxygen–voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intra­cellular signals responsible for various cell behaviors (e.g. phototropism and chloro­plast relocation). This ability relies on the light-induced formation of a covalent thio­ether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that result in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the activation cascade of the LOV domain to be observed in real time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to data collection, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the crystals obtained preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thio­ether adduct and the C-terminal region implicated in the signal transduction process.




hy

In situ serial crystallography facilitates 96-well plate structural analysis at low symmetry

The advent of serial crystallography has rejuvenated and popularized room-temperature X-ray crystal structure determination. Structures determined at physiological temperature reveal protein flexibility and dynamics. In addition, challenging samples (e.g. large complexes, membrane proteins and viruses) form fragile crystals that are often difficult to harvest for cryo-crystallography. Moreover, a typical serial crystallography experiment requires a large number of microcrystals, mainly achievable through batch crystallization. Many medically relevant samples are expressed in mammalian cell lines, producing a meager quantity of protein that is incompatible with batch crystallization. This can limit the scope of serial crystallography approaches. Direct in situ data collection from a 96-well crystallization plate enables not only the identification of the best diffracting crystallization condition but also the possibility for structure determination under ambient conditions. Here, we describe an in situ serial crystallography (iSX) approach, facilitating direct measurement from crystallization plates mounted on a rapidly exchangeable universal plate holder deployed at a microfocus beamline, ID23-2, at the European Synchrotron Radiation Facility. We applied our iSX approach on a challenging project, autotaxin, a therapeutic target expressed in a stable human cell line, to determine the structure in the lowest-symmetry P1 space group at 3.0 Å resolution. Our in situ data collection strategy provided a complete dataset for structure determination while screening various crystallization conditions. Our data analysis reveals that the iSX approach is highly efficient at a microfocus beamline, improving throughput and demonstrating how crystallization plates can be routinely used as an alternative method of presenting samples for serial crystallography experiments at synchrotrons.




hy

Exploring serial crystallography for drug discovery

Structure-based drug design is highly dependent on the availability of structures of the protein of interest in complex with lead compounds. Ideally, this information can be used to guide the chemical optimization of a compound into a pharmaceutical drug candidate. A limitation of the main structural method used today – conventional X-ray crystallography – is that it only provides structural information about the protein complex in its frozen state. Serial crystallography is a relatively new approach that offers the possibility to study protein structures at room temperature (RT). Here, we explore the use of serial crystallography to determine the structures of the pharmaceutical target, soluble epoxide hydro­lase. We introduce a new method to screen for optimal microcrystallization conditions suitable for use in serial crystallography and present a number of RT ligand-bound structures of our target protein. From a comparison between the RT structural data and previously published cryo-temperature structures, we describe an example of a temperature-dependent difference in the ligand-binding mode and observe that flexible loops are better resolved at RT. Finally, we discuss the current limitations and potential future advances of serial crystallography for use within pharmaceutical drug discovery.




hy

Texture tomography, a versatile framework to study crystalline texture in 3D

Crystallographic texture is a key organization feature of many technical and biological materials. In these materials, especially hierarchically structured ones, the preferential alignment of the nano constituents heavily influences the macroscopic behavior of the material. To study local crystallographic texture with both high spatial and angular resolution, we developed Texture Tomography (TexTOM). This approach allows the user to model the diffraction data of polycrystalline materials using the full reciprocal space of the crystal ensemble and describe the texture in each voxel via an orientation distribution function, hence it provides 3D reconstructions of the local texture by measuring the probabilities of all crystal orientations. The TexTOM approach addresses limitations associated with existing models: it correlates the intensities from several Bragg reflections, thus reducing ambiguities resulting from symmetry. Further, it yields quantitative probability distributions of local real space crystal orientations without further assumptions about the sample structure. Finally, its efficient mathematical formulation enables reconstructions faster than the time scale of the experiment. This manuscript presents the mathematical model, the inversion strategy and its current experimental implementation. We show characterizations of simulated data as well as experimental data obtained from a synthetic, inorganic model sample: the silica–witherite biomorph. TexTOM provides a versatile framework to reconstruct 3D quantitative texture information for polycrystalline samples; it opens the door for unprecedented insights into the nanostructural makeup of natural and technical materials.




hy

Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography

OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources. We further investigate the effect of the Y6W mutation in the BLUF domain, a mutation which results in a rearrangement of the hydrogen-bond network around the flavin and a notable rotation of the side chain of the critical Gln48 residue. These studies pave the way for picosecond–millisecond time-resolved serial crystallography experiments at X-ray free-electron lasers and synchrotrons in order to determine the early structural intermediates and correlate them with the well studied pico­second–millisecond spectroscopic intermediates.




hy

High-throughput nanoscale crystallization of di­hydro­pyridine active pharmaceutical ingredients

Single-crystal X-ray diffraction analysis of small molecule active pharmaceutical ingredients is a key technique in the confirmation of molecular connectivity, including absolute stereochemistry, as well as the solid-state form. However, accessing single crystals suitable for X-ray diffraction analysis of an active pharmaceutical ingredient can be experimentally laborious, especially considering the potential for multiple solid-state forms (solvates, hydrates and polymorphs). In recent years, methods for the exploration of experimental crystallization space of small molecules have undergone a `step-change', resulting in new high-throughput techniques becoming available. Here, the application of high-throughput encapsulated nanodroplet crystallization to a series of six di­hydro­pyridines, calcium channel blockers used in the treatment of hypertension related diseases, is described. This approach allowed 288 individual crystallization experiments to be performed in parallel on each molecule, resulting in rapid access to crystals and subsequent crystal structures for all six di­hydro­pyridines, as well as revealing a new solvate polymorph of nifedipine (1,4-dioxane solvate) and the first known solvate of nimodipine (DMSO solvate). This work further demonstrates the power of modern high-throughput crystallization methods in the exploration of the solid-state landscape of active pharmaceutical ingredients to facilitate crystal form discovery and structural analysis by single-crystal X-ray diffraction.




hy

Supramolecular synthons in hydrates and solvates of lamotrigine: a tool for cocrystal design

The molecule of anti-epileptic drug lamotrigine [LAM; 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine] is capable of the formation of multicomponent solids. Such an enhanced tendency is related to the diverse functionalities of the LAM chemical groups able to form hydrogen bonds. Two robust synthons are recognized in the supramolecular structure of LAM itself formed via N—H⋯N hydrogen bond: homosynthon, so-called aminopyridine dimer or synthon 1 [R22(8)] and larger homosynthon 2 [R32(8)]. The synthetic procedures for a new hydrate and 11 solvates of LAM (in the series: with acetone, ethanol: two polymorphs: form I and form II, 2-propanol, n-butanol, tert-butanol, n-pentanol, benzonitrile, acetonitrile, DMSO and dioxane) were performed. The comparative solid state structural analysis of a new hydrate and 11 solvates of LAM has been undertaken in order to establish robustness of the supramolecular synthons 1 and 2 found in the crystal structure of LAM itself as well as LAM susceptibility to build methodical solid state supramolecular architecture in the given competitive surrounding of potential hydrogen bonds. The aminopyridine dimer homosynthon 1 [R22(8)] has been switched from para-para (P-P) topology to ortho-ortho (O-O) topology in all crystal structures, except in LAM:n-pentanol:water solvate where it remains P-P. Homosynthon 2 [R32(8)] of the LAM crystal structure imitates in the LAM solvates as a heterosynthon by replacing the triazine nitrogen proton acceptor atoms of LAM with the proton acceptors of solvates molecules.




hy

Current developments and trends in quantum crystallography

Quantum crystallography is an emerging research field of science that has its origin in the early days of quantum physics and modern crystallography when it was almost immediately envisaged that X-ray radiation could be somehow exploited to determine the electron distribution of atoms and molecules. Today it can be seen as a composite research area at the intersection of crystallography, quantum chemistry, solid-state physics, applied mathematics and computer science, with the goal of investigating quantum problems, phenomena and features of the crystalline state. In this article, the state-of-the-art of quantum crystallography will be described by presenting developments and applications of novel techniques that have been introduced in the last 15 years. The focus will be on advances in the framework of multipole model strategies, wavefunction-/density matrix-based approaches and quantum chemical topological techniques. Finally, possible future improvements and expansions in the field will be discussed, also considering new emerging experimental and computational technologies.




hy

Synthesis and characterization of an organic–inorganic hybrid crystal: 2[Co(en)3](V4O13)·4H2O

Organic–inorganic hybrid crystals have diverse functionalities, for example in energy storage and luminescence, due to their versatile structures. The synthesis and structural characterization of a new cobalt–vanadium-containing compound, 2[Co(en)3]3+(V4O13)6−·4H2O (1) is presented. The crystal structure of 1, consisting of [Co(en)3]3+ complexes and chains of corner-sharing (VO4) tetrahedra, was solved by single-crystal X-ray diffraction in the centrosymmetric space group P1. Phase purity of the bulk material was confirmed by infrared spectroscopy, scanning electron microscopy, elemental analysis and powder X-ray diffraction. The volume expansion of 1 was found to be close to 1% in the reported temperature range from 100 to 300 K, with a volume thermal expansion coefficient of 56 (2) × 10−6 K−1. The electronic band gap of 1 is 2.30 (1) eV, and magnetic susceptibility measurements showed that the compound exhibits a weak paramagnetic response down to 1.8 K, probably due to minor CoII impurities (<1%) on the CoIII site.




hy

Crystal structure of S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazate and of its bis-chelated nickel(II) complex

The nitro­gen–sulfur Schiff base proligand S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazate, C17H26N2S2 (HL), was prepared by reaction of S-octyl di­thio­carbamate with aceto­phenone. Treatment of HL with nickel acetate yielded the complex bis­[S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazato]nickel(II), [Ni(C17H25N2S2)2] (NiL2), which was shown to adopt a tetra­hedrally distorted cis-square-planar coordination geometry, with the NiSN planes of the two ligands forming a dihedral angle of 21.66 (6)°. Changes in the geometry of the L ligand upon chelation of Ni2+ are described, involving a ca 180° rotation around the N(azomethine)—C(thiol­ate) bond.




hy

Synthesis and crystallographic characterization of 6-hydroxy-1,2-dihydropyridin-2-one

The title compound, C5H5NO2, is a hy­droxy­lated pyridine ring that has been studied for its involvement in microbial degradation of nicotinic acid. Here we describe its synthesis as a formic acid salt, rather than the standard hydro­chloride salt that is commercially available, and its spectroscopic and crystallographic characterization.




hy

Crystal structure and Hirshfeld surface analysis of (2Z)-3-oxo-N-phenyl-2-[(1H-pyrrol-2-yl)methylidene]butanamide monohydrate

In the title compound, C15H14N2O2·H2O, the 1H-pyrrole ring makes a dihedral angle of 59.95 (13)° with the phenyl ring. In the crystal, the mol­ecules are connected by C—H⋯O hydrogen bonds into layers parallel to the (020) plane, while two mol­ecules are connected to the water mol­ecule by two N—H⋯O hydrogen bonds and one mol­ecule by an O—H⋯O hydrogen bond. C—H⋯π and π–π inter­actions further link the mol­ecules into chains extending in the [overline{1}01] direction and stabilize the mol­ecular packing. According to a Hirshfeld surface study, H⋯H (49.4%), C⋯H/H⋯C (23.2%) and O⋯H/H⋯O (20.0%) inter­actions are the most significant contributors to the crystal packing.




hy

Synthesis, crystal structure and Hirshfeld analysis of trans-bis­(2-{1-[(6R,S)-3,5,5,6,8,8-hexa­methyl-5,6,7,8-tetra­hydronaphthalen-2-yl]ethyl­idene}-N-methyl­hydrazinecarbo­thio­amidato-κ2N2,S)palladium(II) ethanol mon

The reaction between the (R,S)-fixolide 4-methyl­thio­semicarbazone and PdII chloride yielded the title compound, [Pd(C20H30N3S)2]·C2H6O {common name: trans-bis­[(R,S)-fixolide 4-methyl­thio­semicarbazonato-κ2N2S]palladium(II) ethanol monosolvate}. The asymmetric unit of the title compound consists of one bis-thio­semicarbazonato PdII complex and one ethanol solvent mol­ecule. The thio­semicarbazononato ligands act as metal chelators with a trans configuration in a distorted square-planar geometry. A C—H⋯S intra­molecular inter­action, with graph-set motif S(6), is observed and the coordination sphere resembles a hydrogen-bonded macrocyclic environment. Additionally, one C—H⋯Pd anagostic inter­action can be suggested. Each ligand is disordered over the aliphatic ring, which adopts a half-chair conformation, and two methyl groups [s.o.f. = 0.624 (2):0.376 (2)]. The disorder includes the chiral carbon atoms and, remarkably, one ligand has the (R)-isomer with the highest s.o.f. value atoms, while the other one shows the opposite, the atoms with the highest s.o.f. value are associated with the (S)-isomer. The N—N—C(=S)—N fragments of the ligands are approximately planar, with the maximum deviations from the mean plane through the selected atoms being 0.0567 (1) and −0.0307 (8) Å (r.m.s.d. = 0.0403 and 0.0269 Å) and the dihedral angle with the respective aromatic rings amount to 46.68 (5) and 50.66 (4)°. In the crystal, the complexes are linked via pairs of N—H⋯S inter­actions, with graph-set motif R22(8), into centrosymmetric dimers. The dimers are further connected by centrosymmetric pairs of ethanol mol­ecules, building mono-periodic hydrogen-bonded ribbons along [011]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are [atoms with highest/lowest s.o.f.s considered separately]: H⋯H (81.6/82.0%), H⋯C/C⋯H (6.5/6.4%), H⋯N/N⋯H (5.2/5.0%) and H⋯S/S⋯H (5.0/4.9%).




hy

Synthesis, crystal structure and hydrogenation properties of MgxLi3 − xB48 − y (x = 1.11, y = 0.40)

The ternary magnesium/lithium boride, MgxLi3 − xB48 − y (x = 1.11, y = 0.40, idealized formula MgLi2B48), crystallizes as its own structure type in P43212, which is closely related to the structural family comprising α-AlB12, Be0.7Al1.1B22 and tetra­gonal β-boron. The asymmetric unit of title structure contains two statistical mixtures Mg/Li in Wyckoff sites 8b with relative occupancies Mg:Li = 0.495 (9):0.505 (9) and 4a with Mg:Li = 0.097 (8):0.903 (8). The boron atoms occupy 23 8b sites and two 4a sites. One of the latter sites has a partial occupancy factor of 0.61 (2). Both unique Mg/Li atoms adopt a twelvefold coordination environment in the form of truncated tetra­hedra (Laves polyhedra). These polyhedra are connected by triangular faces to four [B12] icosa­hedra. The boron atoms exhibit four kinds of polyhedra, namely penta­gonal pyramid (coordination number CN = 6), distorted tetra­gonal pyramid (CN = 5), bicapped hexa­gon (CN = 8) and gyrobifastigium (CN = 8). At the gas hydrogenation of MgLi2B48 alloy, formation of the eutectic composite hydride LiBH4+Mg(BH4)2 and amorphous boron is observed. In the temperature range 543–623 K, the hydride eutectics decompose, forming MgH2, LiH, MgB4, B and H2.




hy

An octa­nuclear nickel(II) pyrazolate cluster with a cubic Ni8 core and its methyl- and n-octyl-functionalized derivatives

The mol­ecular and crystal structure of a discrete [Ni8(μ4-OH)6(μ-4-Rpz)12]2− (R = H; pz = pyrazolate anion, C3H3N2−) cluster with an unprecedented, perfectly cubic arrangement of its eight Ni centers is reported, along with its lower-symmetry alkyl-functionalized (R = methyl and n-oct­yl) derivatives. Crystals of the latter two were obtained with two identical counter-ions (Bu4N+), whereas the crystal of the complex with the parent pyrazole ligand has one Me4N+ and one Bu4N+ counter-ion. The methyl derivative incorporates 1,2-di­chloro­ethane solvent mol­ecules in its crystal structure, whereas the other two are solvent-free. The compounds are tetra­butyl­aza­nium tetra­methyl­aza­nium hexa-μ4-hydroxido-dodeca-μ2-pyrazolato-hexa­hedro-octa­nickel, (C16H36N)(C4H12N)[Ni8(C3H3N2)12(OH)6] or (Bu4N)(Me4N)[Ni8(μ4-OH)6(μ-pz)12] (1), bis­(tetra­butyl­aza­nium) hexa-μ4-hydroxido-dodeca-μ2-(4-methyl­pyrazolato)-hexa­hedro-octa­nickel 1,2-di­chloro­ethane 7.196-solvate, (C16H36N)2[Ni8(C4H5N2)12(OH)6]·7.196C2H4Cl2 or (Bu4N)2[Ni8(μ4-OH)6(μ-4-Mepz)12]·7.196(ClCH2CH2Cl) (2), and bis­(tetra­butyl­aza­nium) hexa-μ4-hydroxido-dodeca-μ2-(4-octylpyrazolato)-hexa­hedro-octa­nickel, (C16H36N)2[Ni8(C11H19N2)12(OH)6] or (Bu4N)2[Ni8(μ4-OH)6(μ-4-nOctpz)12] (3). All counter-ions are disordered (with the exception of one Bu4N+ in 3). Some of the octyl chains of 3 (the crystal is twinned by non-merohedry) are also disordered. Various structural features are discussed and contrasted with those of other known [Ni8(μ4-OH)6(μ-4-Rpz)12]2− complexes, including extended three-dimensional metal–organic frameworks. In all three structures, the Ni8 units are lined up in columns.




hy

Synthesis, crystal structure and computational analysis of 2,7-bis­(4-chloro­phen­yl)-3,3-dimethyl-1,4-diazepan-5-one

In the title compound, C19H20Cl2N2O, the seven-membered 1,4-diazepane ring adopts a chair conformation while the 4-chloro­phenyl substituents adopt equatorial orientations. The chloro­phenyl ring at position 7 is disordered over two positions [site occupancies 0.480 (16):0.520 (16)]. The dihedral angle between the two benzene rings is 63.0 (4)°. The methyl groups at position 3 have an axial and an equatorial orientation. The compound exists as a dimer exhibiting inter­molecular N—H⋯O hydrogen bonding with R22(8) graph-set motifs. The crystal structure is further stabilized by C—H⋯O hydrogen bonds together with two C—Cl⋯π (ring) inter­actions. The geometry was optimized by DFT using the B3LYP/6–31 G(d,p) level basis set. In addition, the HOMO and LUMO energies, chemical reactivity parameters and mol­ecular electrostatic potential were calculated at the same level of theory. Hirshfeld surface analysis indicated that the most important contributions to the crystal packing are from H⋯H (45.6%), Cl⋯H/H⋯Cl (23.8%), H⋯C/C⋯H (12.6%), H⋯O/O⋯H (8.7%) and C⋯Cl/Cl⋯C (7.1%) inter­actions. Analysis of the inter­action energies showed that the dispersion energy is greater than the electrostatic energy. A crystal void volume of 237.16 Å3 is observed. A mol­ecular docking study with the human oestrogen receptor 3ERT protein revealed good docking with a score of −8.9 kcal mol−1.




hy

Crystal structure and Hirshfeld surface analysis of a new benzimidazole compound, 3-{1-[(2-hy­droxyphen­yl)meth­yl]-1H-1,3-benzo­diazol-2-yl}phenol

The title compound, C20H16N2O2, is composed of two monosubstituted benzene rings and one benzimidazole unit. The benzimidazole moiety subtends dihedral angles of 46.16 (7) and 77.45 (8)° with the benzene rings, which themselves form a dihedral angle of 54.34 (9)°. The crystal structure features O—H⋯N and O—H⋯O hydrogen-bonding inter­actions, which together lead to the formation of two-dimensional hydrogen-bonded layers parallel to the (101) plane. In addition, π–π inter­actions also contribute to the crystal cohesion. Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are: H⋯H (47.5%), O⋯H/H⋯O (12.4%), N⋯H/H⋯N (6.1%), C⋯H/H⋯C (27.6%) and C⋯C (4.6%).




hy

Crystal structure of [1,3-bis­(2,4,6-tri­methyl­phen­yl)imidazolidin-2-yl­idene]di­chlorido­(2-{[(2-methoxyeth­yl)(meth­yl)amino]­meth­yl}benzyl­idene)ruth­en­ium

The title compound, [RuCl2(C33H43N3O)], is an example of a new generation of N,N-dialkyl ruthenium catalysts with an N—Ru coordination bond as part of a six-membered chelate ring. The Ru atom has an Addison τ parameter of 0.244, which indicates a geometry inter­mediate between square-based pyramidal and trigonal–bipyramidal. The complex shows the usual trans arrangement of the two chlorides, with Ru—Cl bond lengths of 2.3515 (8) and 2.379 (7) Å, and a Cl—Ru—Cl angle of 158.02 (3)°. One of the chlorine atoms and the atoms of the 2-meth­oxy-N-methyl-N-[(2-methyl­phen­yl)meth­yl]ethane-1-amine group of the title complex display disorder over two positions in a 0.889 (2): 0.111 (2) ratio.




hy

Crystal structure of dilithium biphenyl-4,4'-di­sulfonate dihydrate

The asymmetric unit of the title compound, μ-biphenyl-4,4'-di­sulfonato-bis­(aqua­lithium), [Li2(C12H8O6S2)(H2O)2] or Li2[Bph(SO3)2](H2O)2, consists of an Li ion, half of the diphenyl-4,4'-di­sulfonate [Bph(SO3−)2] ligand, and a water mol­ecule. The Li ion exhibits a four-coordinate tetra­hedral geometry with three oxygen atoms of the Bph(SO3−)2 ligands and a water mol­ecule. The tetra­hedral LiO4 units, which are inter­connected by biphenyl moieties, form a layer structure parallel to (100). These layers are further connected by hydrogen-bonding inter­actions to yield a three-dimensional network.




hy

Crystal structure and Hirshfeld-surface analysis of di­aqua­bis­(5-methyl-1H-1,2,4-triazole-3-carboxyl­ato)copper(II)

The title compound, [Cu(HL)2(H2O)2] or [Cu(C4H4N3O2)2(H2O)2], is a mononuclear octa­hedral CuII complex based on 5-methyl-1H-1,2,4-triazole-3-carb­oxy­lic acid (H2L). [Cu(HL)2(H2O)2] was synthesized by reaction of H2L with copper(II) nitrate hexa­hydrate (2:1 stoichiometric ratio) in water under ambient conditions to produce clear light-blue crystals. The central Cu atom exhibits an N2O4 coordination environment in an elongated octa­hedral geometry provided by two bidentate HL− anions in the equatorial plane and two water mol­ecules in the axial positions. Hirshfeld surface analysis revealed that the most important contributions to the surface contacts are from H⋯O/O⋯H (33.1%), H⋯H (29.5%) and H⋯N/N⋯H (19.3%) inter­actions.




hy

Synthesis, crystal structure and properties of poly[(μ-2-methyl­pyridine N-oxide-κ2O:O)bis­(μ-thio­cyanato-κ2N:S)cobalt(II)]

The title compound, [Co(NCS)2(C6H7NO)]n or Co(NCS)2(2-methyl­pyridine N-oxide), was prepared by the reaction of Co(NCS)2 and 2-methyl­pyridine N-oxide in methanol. All crystals obtained by this procedure show reticular pseudo-merohedric twinning, but after recrystallization, one crystal was found that had a minor component with only a very few overlapping reflections. The asymmetric unit consists of one CoII cation, two thio­cyanate anions and one 2-methyl­pyridine N-oxide coligand in general positions. The CoII cations are octa­hedrally coordinated by two O-bonding 2-methyl­pyridine N-oxide ligands, as well as two S- and two N-bonding thio­cyanate anions, and are connected via μ-1,3(N,S)-bridging thio­cyanate anions into chains that are linked by μ-1,1(O,O) bridging coligands into layers. No pronounced directional inter­molecular inter­actions are observed between the layers. The 2-methyl­pyridine coligand is disordered over two orientations and was refined using a split model with restraints. Powder X-ray diffraction (PXRD) indicates that a pure sample was obtained and IR spectroscopy confirms that bridging thio­cyanate anions are present. Thermogravimetry and differential thermoanalysis (TG-DTA) shows one poorly resolved mass loss in the TG curve that is accompanied by an exothermic and an endothermic signal in the DTA curve, which indicate the decomposition of the 2-methyl­pyridine N-oxide coligands.




hy

Crystal structure and Hirshfeld surface analysis of dimethyl 4-hy­droxy-5,4'-dimethyl-2'-(toluene-4-sulfonyl­amino)­biphenyl-2,3-di­carboxyl­ate

In the title compound, C25H25NO7S, the mol­ecular conformation is stabilized by intra­molecular O—H⋯O and N—H⋯O hydrogen bonds, which form S(6) and S(8) ring motifs, respectively. The mol­ecules are bent at the S atom with a C—SO2—NH—C torsion angle of −70.86 (11)°. In the crystal, mol­ecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, forming mol­ecular layers parallel to the (100) plane. C—H⋯π inter­actions are observed between these layers.




hy

Crystal structure and Hirshfeld surface analysis of 3-benzyl-2-[bis(1H-pyrrol-2-yl)methyl]thiophene

In the title compound, C20H18N2S, the asymmetric unit comprises two similar mol­ecules (A and B). In mol­ecule A, the central thio­phene ring makes dihedral angles of 89.96 (12) and 57.39 (13)° with the 1H-pyrrole rings, which are bent at 83.22 (14)° relative to each other, and makes an angle of 85.98 (11)° with the phenyl ring. In mol­ecule B, the corresponding dihedral angles are 89.49 (13), 54.64 (12)°, 83.62 (14)° and 85.67 (11)°, respectively. In the crystal, mol­ecular pairs are bonded to each other by N—H⋯N inter­actions. N—H⋯π and C—H⋯π inter­actions further connect the mol­ecules, forming a three-dimensional network. A Hirshfeld surface analysis indicates that H⋯H (57.1% for mol­ecule A; 57.3% for mol­ecule B), C⋯H/H⋯C (30.7% for mol­ecules A and B) and S⋯H/H⋯S (6.2% for mol­ecule A; 6.4% for mol­ecule B) inter­actions are the most important contributors to the crystal packing.




hy

Crystal structure and Hirshfeld surface analysis of dieth­yl (3aS,3a1R,4S,5S,6R,6aS,7R,9aS)-3a1,5,6,6a-tetra­hydro-1H,3H,4H,7H-3a,6:7,9a-di­epoxy­benzo[de]isochromene-4,5-di­carboxyl­ate

In the title compound, C18H22O7, two hexane rings and an oxane ring are fused together. The two hexane rings tend toward a distorted boat conformation, while the tetra­hydro­furan and di­hydro­furan rings adopt envelope conformations. The oxane ring is puckered. The crystal structure features C—H⋯O hydrogen bonds, which link the mol­ecules into a three-dimensional network. According to a Hirshfeld surface study, H⋯H (60.3%) and O⋯H/H⋯O (35.3%) inter­actions are the most significant contributors to the crystal packing.




hy

Crystal structure of poly[hexa-μ-bro­mido-bis{2-[1-(py­ri­din-2-yl)ethyl­idene­amino]ethanol­ato}tetracopper(II)]

The reaction of the Schiff base 2-[1-(pyridin-2-yl)ethyl­idene­amino]­ethanol (HL), which is formed by reaction of 2-amino­ethanol and 2-acetyl­pyridine with CuBr2 in ethanol results in the isolation of the new polymeric complex poly[hexa-μ-bromido-bis­{2-[1-(pyridin-2-yl)ethyl­idene­amino]­ethano­lato}tetra­copper(II)], [Cu4Br6(C9H11N2O)2]n or [Cu4Br6L2]n. The asymmetric unit of the crystal structure of the polymeric [Cu4Br6L2]n complex is composed by four copper (II) cations, two monodeprotonated mol­ecules of the ligand, and six bromide anions, which act as bridges. The ligand mol­ecules act in a tridentate fashion through their azomethine nitro­gen atoms, their pyridine nitro­gen atoms, and their alcoholate O atoms. The crystal structure shows two types of geometries in the coordination polyhedrons around Cu2+ ions. Two copper cations are situated in a square-based pyramidal environment, while the two other copper cations adopt a tetra­hedral geometry. Bromides anions acting as bridges between two metal ions connect the units, resulting in a tetra­nuclear polymer compound.




hy

An unexpected tautomer: synthesis and crystal structure of N-[6-amino-4-(methyl­sulfan­yl)-1,2-di­hydro-1,3,5-triazin-2-yl­idene]benzenesulfonamide

The title compound, C10H11N5O2S2, consists of an unexpected tautomer with a protonated nitro­gen atom in the triazine ring and a formal exocyclic double bond C=N to the sulfonamide moiety. The ring angles at the unsubstituted nitro­gen atoms are narrow, at 115.57 (12) and 115.19 (12)°, respectively, whereas the angle at the carbon atom between these N atoms is very wide, 127.97 (13)°. The inter­planar angle between the two rings is 79.56 (5)°. The mol­ecules are linked by three classical hydrogen bonds, forming a ribbon structure. There are also unusual linkages involving three short contacts (< 3 Å) from a sulfonamide oxygen atom to the C—NH—C part of a triazine ring.




hy

Crystal structure and Hirshfeld surface analysis of (E)-2-[2-(2-amino-1-cyano-2-oxo­ethyl­idene)hydrazin-1-yl]benzoic acid N,N-di­methylformamide monosolvate

In the title compound, C10H8N4O3·C3H7NO, the asymmetric unit contains two crystallographically independent mol­ecules A and B, each of which has one DMF solvate mol­ecule. Mol­ecules A and B both feature intra­molecular N—H⋯O hydrogen bonds, forming S(6) ring motifs and consolidating the mol­ecular configuration. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect mol­ecules A and B, forming R22(8) ring motifs. Weak C—H⋯O inter­actions link the mol­ecules, forming layers parallel to the (overline{2}12) plane. The DMF solvent mol­ecules are also connected to the main mol­ecules (A and B) by N—H⋯O hydrogen bonds. π–π stacking inter­actions [centroid-to-centroid distance = 3.8702 (17) Å] between the layers also increase the stability of the mol­ecular structure in the third dimension. According to the Hirshfeld surface study, O⋯H/H⋯O inter­actions are the most significant contributors to the crystal packing (27.5% for mol­ecule A and 25.1% for mol­ecule B).




hy

{[(E)-(1,3-Benzodioxol-5-yl)methyl­idene]amino}thio­urea

The synthesis and crystallographic analysis of the title compound, C9H9N3O2S, are reported. The compound crystallizes in the monoclinic space group P21/c, revealing characteristic bond lengths and angles typical of thio­semicarbazone groups. The supra­molecular organization primarily arises from hydrogen bonding and π–π stacking inter­actions, leading to distinctive dimeric formations.




hy

Synthesis and crystal structure of N1,N2-di­methyl­ethane­dihydrazide

The title compound, N1,N2-di­methyl­ethane­dihydrazide, C4H10N4O2, was obtained by the methyl­ation of oxalyl dihydrazide protected with phthalimide. The mol­ecule is essentially non-planar with a dihedral angle between the two planar hydrazide fragments of 86.5 (2)°. This geometry contributes to the formation of a multi-contact three-dimensional supra­molecular network via C—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds.




hy

Synthesis, crystal structure and thermal properties of di­bromido­bis­(2-methyl­pyridine N-oxide-κO)cobalt(II)

Reaction of CoBr2 with 2-methyl­pyridine N-oxide in n-butanol leads to the formation of the title compound, [CoBr2(C6H7NO)2] or [CoBr2(2-methyl­pyridine N-oxide)2]. Its asymmetric unit consists of one CoII cation as well as two bromide anions and two 2-methyl­pyridine N-oxide coligands in general positions. The CoII cations are tetra­hedrally coordinated by two bromide anions and two 2-methyl­pyridine N-oxides, forming discrete complexes. In the crystal structure, these complexes are linked predominantly by weak C–H⋯Br hydrogen bonding into chains that propagate along the crystallographic a-axis. Powder X-ray diffraction (PXRD) measurements indicate that a pure phase was obtained. Thermoanalytical investigations prove that the title compound melts before decomposition; before melting, a further endothermic signal of unknown origin was observed that does not correspond to a phase transition.




hy

Synthesis and crystal structure of diiso­thio­cyanato­tetra­kis­(4-methyl­pyridine N-oxide)cobalt(II) and diiso­thio­cyanato­tris­(4-methyl­pyridine N-oxide)cobalt(II) showing two different metal coor

The reaction of Co(NCS)2 with 4-methyl­pyridine N-oxide (C6H7NO) leads to the formation of two compounds, namely, tetra­kis­(4-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)4] (1), and tris­(4-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3] (2). The asymmetric unit of 1 consists of one CoII cation located on a centre of inversion, as well as one thio­cyanate anion and two 4-methyl­pyridine N-oxide coligands in general positions. The CoII cations are octa­hedrally coordinated by two terminal N-bonding thio­cyanate anions in trans positions and four 4-methyl­pyridine N-oxide ligands. In the extended structure, these complexes are linked by C—H⋯O and C—H⋯S inter­actions. In compound 2, two crystallographically independent complexes are present, which occupy general positions. In each of these complexes, the CoII cations are coordinated in a trigonal–bipyramidal manner by two terminal N-bonding thio­cyanate anions in axial positions and by three 4-methyl­pyridine N-oxide ligands in equatorial positions. In the crystal, these complex mol­ecules are linked by C—H⋯S inter­actions. For compound 2, a nonmerohedral twin refinement was performed. Powder X-ray diffraction (PXRD) reveals that 2 was nearly obtained as a pure phase, which is not possible for compound 1. Differential thermoanalysis and thermogravimetry data (DTA–TG) show that compound 2 start to decompose at about 518 K.




hy

Synthesis, crystal structure and Hirshfeld surface analysis of sodium bis­(malonato)borate monohydrate

In the title salt, poly[aqua­[μ4-bis­(malonato)borato]sodium], {[Na(C6H4BO8)]·H2O}n or Na+·[B(C3H2O4)2]−·H2O, the sodium cation exhibits fivefold coordination by four carbonyl O atoms of the bis­(malonato)borate anions and a water O atom. The tetra­hedral B atom at the centre of the anion leads to the formation of a polymeric three-dimensional framework, which is consolidated by C—H⋯O and O—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are H⋯O/O⋯H (49.7%), Na⋯O/O⋯Na (16.1%), O⋯O (12.6%), H⋯H (10.7%) and C⋯O/O⋯C (7.3%).




hy

(E)-N,N-Diethyl-4-{[(4-meth­oxy­phen­yl)imino]­meth­yl}aniline: crystal structure, Hirshfeld surface analysis and energy framework

In the title benzyl­ideneaniline Schiff base, C18H22N2O, the aromatic rings are inclined to each other by 46.01 (6)°, while the Car—N= C—Car torsion angle is 176.9 (1)°. In the crystal, the only identifiable directional inter­action is a weak C—H⋯π hydrogen bond, which generates inversion dimers that stack along the a-axis direction.




hy

(S)-(+)-1-(4-Bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine and bis­{(S)-(+)-1-(4-bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine-κN}di­chlorido­palladium(II)

The (S)-(+)-1-(4-bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine ligand, C16H16BrNO, (I), was synthesized through the reaction of 4-meth­oxy­anisaldehyde with (S)-(−)-1-(4-bromo­phen­yl)ethyl­amine. It crystallizes in the ortho­rhom­bic space group P212121 belonging to the Sohncke group, featuring a single mol­ecule in the asymmetric unit. The refinement converged successfully, achieving an R factor of 0.0508. The PdII com­plex bis­{(S)-(+)-1-(4-bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine-κN}di­chlorido­pal­ladium(II), [PdCl2(C16H16BrNO)2], (II), crystallizes in the monoclinic space group P21 belonging to the Sohncke group, with two mol­ecules in the asymmetric unit. The central atom is tetra­coordinated by two N atoms and two Cl atoms, resulting in a square-planar configuration. The imine moieties exhibit a trans configuration around the PdII centre, with average Cl—Pd—N angles of approximately 89.95 and 90°. The average distances within the palladium com­plex for the two mol­ecules are ∼2.031 Å for Pd—N and ∼2.309 Å for Pd—Cl.




hy

Crystal structures and Hirshfeld surface analyses of methyl 4-{2,2-di­chloro-1-[(E)-phenyl­diazen­yl]eth­enyl}benzoate, methyl 4-{2,2-di­chloro-1-[(E)-(4-methyl­phen­yl)diazen­yl]ethen­yl}benzoate and methyl 4-

The crystal structures and Hirshfeld surface analyses of three similar azo compounds are reported. Methyl 4-{2,2-di­chloro-1-[(E)-phenyl­diazen­yl]ethen­yl}benzoate, C16H12Cl2N2O2, (I), and methyl 4-{2,2-di­chloro-1-[(E)-(4-methyl­phen­yl)diazen­yl]ethen­yl}benzoate, C17H14Cl2N2O2, (II), crystallize in the space group P21/c with Z = 4, and methyl 4-{2,2-di­chloro-1-[(E)-(3,4-di­methyl­phen­yl)diazen­yl]ethen­yl}benzoate, C18H16Cl2N2O2, (III), in the space group Poverline{1} with Z = 2. In the crystal of (I), mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains with C(6) motifs parallel to the b axis. Short inter­molecular Cl⋯O contacts of 2.8421 (16) Å and weak van der Waals inter­actions between these chains stabilize the crystal structure. In (II), mol­ecules are linked by C—H⋯O hydrogen bonds and C—Cl⋯π inter­actions, forming layers parallel to (010). Weak van der Waals inter­actions between these layers consolidate the mol­ecular packing. In (III), mol­ecules are linked by C—H⋯π and C—Cl⋯π inter­actions forming chains parallel to [011]. Furthermore, these chains are connected by C—Cl⋯π inter­actions parallel to the a axis, forming (0overline{1}1) layers. The stability of the mol­ecular packing is ensured by van der Waals forces between these layers.




hy

Crystal structure, Hirshfeld surface analysis, crystal voids, inter­action energy calculations and energy frameworks and DFT calculations of ethyl 2-cyano-3-(3-hy­droxy-5-methyl-1H-pyrazol-4-yl)-3-phen­yl­propano­ate

The title compound, C16H17N3O3, is racemic as it crystallizes in a centrosymmetric space group (Poverline{1}), although the trans disposition of substituents about the central C—C bond is established. The five- and six-membered rings are oriented at a dihedral angle of 75.88 (8)°. In the crystal, N—H⋯N hydrogen bonds form chains of mol­ecules extending along the c-axis direction that are connected by inversion-related pairs of O—H⋯N into ribbons. The ribbons are linked by C—H⋯π(ring) inter­actions, forming layers parallel to the ab plane. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (45.9%), H⋯N/N⋯H (23.3%), H⋯C/C⋯H (16.2%) and H⋯O/O⋯H (12.3%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 100.94 Å3 and 13.20%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




hy

Crystal structure, Hirshfeld surface analysis, crystal voids, inter­action energy calculations and energy frameworks, and DFT calculations of 1-(4-methyl­benz­yl)in­do­line-2,3-dione

The in­do­line portion of the title mol­ecule, C16H13NO2, is planar. In the crystal, a layer structure is generated by C—H⋯O hydrogen bonds and C—H⋯π(ring), π-stacking and C=O⋯π(ring) inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.0%), H⋯C/C⋯H (25.0%) and H⋯O/O⋯H (22.8%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 120.52 Å3 and 9.64%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6-311G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state.




hy

Crystal structure and Hirshfeld surface analysis of 4-(2-chloro­eth­yl)-5-methyl-1,2-di­hydro­pyrazol-3-one

In the crystal of the title compound, C6H9ClN2O, mol­ecular pairs form dimers with an R22(8) motif through N—H⋯O hydrogen bonds. These dimers are connect into ribbons parallel to the (100) plane with R44(10) motifs by N—H⋯O hydrogen bonds along the c-axis direction. In addition, π–π [centroid-to-centroid distance = 3.4635 (9) Å] and C—Cl⋯π inter­actions between the ribbons form layers parallel to the (100) plane. The three-dimensional consolidation of the crystal structure is also ensured by Cl⋯H and Cl⋯Cl inter­actions between these layers. According to a Hirshfeld surface study, H⋯H (43.3%), Cl⋯H/H⋯Cl (22.1%) and O⋯H/H⋯O (18.7%) inter­actions are the most significant contributors to the crystal packing.




hy

[4-(2-Aminoethyl)morpholine-κ2N,N']di­bromidocadmium(II): synthesis, crystal structure and Hirshfeld surface analysis

The title compound, [CdBr2(C6H14N2O)], was synthesized upon complexation of 4-(2-aminoethyl)morpholine and cadmium(II) bromide tetra­hydrate at 303 K. It crystallizes as a centrosymmetric dimer, with one cadmium atom, two bromine atoms and one N,N'-bidentate 4-(2-aminoethyl)morpholine ligand in the asymmetric unit. The metal atom is six-coordinated and has a distorted octa­hedral geometry. In the crystal, O⋯Cd inter­actions link the dimers into a polymeric double chain and inter­molecular C—H⋯O hydrogen bonds form R22(6) ring motifs. Further C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network. As the N—H⋯Br hydrogen bonds are shorter than the C—H⋯Br inter­actions, they have a larger effect on the packing. A Hirshfeld surface analysis reveals that the largest contributions to the packing are from H⋯H (46.1%) and Br⋯H/H⋯Br (38.9%) inter­actions with smaller contributions from the O⋯H/H⋯O (4.7%), Br⋯Cd/Cd⋯Br (4.4%), O⋯Cd/Cd⋯O (3.5%), Br⋯Br (1.1%), Cd⋯H/H⋯Cd (0.9%), Br⋯O/O⋯Br (0.3%) and O⋯N/N⋯O (0.1%) contacts.




hy

Crystal structure and Hirshfeld surface analysis of (Z)-N-{chloro­[(4-ferrocenylphen­yl)imino]­meth­yl}-4-ferrocenylaniline N,N-di­methyl­formamide monosolvate

The title mol­ecule, [Fe2(C5H5)2(C23H17ClN2)]·C3H7NO, is twisted end to end and the central N/C/N unit is disordered. In the crystal, several C—H⋯π(ring) inter­actions lead to the formation of layers, which are connected by further C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (60.2%) and H⋯C/C⋯H (27.0%) inter­actions. Hydrogen bonding, C—H⋯π(ring) inter­actions and van der Waals inter­actions dominate the crystal packing.




hy

Crystal structures of sulfonamide protected bicyclic guanidines: (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­

Two compounds, (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium tri­fluoro­methane­sulfonate, C27H46N3O4SSi+·CF3O3S−, (1) and (S)-8-(iodo­meth­yl)-1-tosyl-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I−, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-but­oxy­carbon­yl)-l-me­thio­nine (Boc-l-Met-OH). The guanidine is protected by a 2,2,4,6,7-penta­methyl­dihydro­benzo­furan-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N–H forms an intra­molecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group.




hy

Crystal structure of di­ethyl­ammonium dioxido{Z)-N-[(pyri­din-2-yl)car­bon­yl­azan­idyl]pyri­dine-2-car­box­imid­ato}vana­date(1−) monohydrate

The title compound, (C4H12N)[V(C12H8N4O2)O2]·H2O, was synthesized via aerial oxidation on refluxing picolinohydrazide with ethyl picolinate followed by addition of VIVO(acac)2 and di­ethyl­amine in methanol. It crystallizes in the triclinic crystal system in space group Poverline{1}. In the complex anion, the dioxidovanadium(V) moiety exhibits a distorted square-pyramidal geometry. In the crystal, extensive hydrogen bonding links the water mol­ecule to two complex anions and one di­ethyl­ammonium ion. One of the CH2 groups in the di­ethyl­amine is disordered over two sets of sites in a 0.7:0.3 ratio.




hy

Syntheses, characterizations, crystal structures and Hirshfeld surface analyses of methyl 4-[4-(di­fluorometh­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, isopropyl 4-[4-(di­fluoro&

The crystal structures and Hirshfeld surface analyses of three similar compounds are reported. Methyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, (C21H23F2NO4), (I), crystallizes in the monoclinic space group C2/c with Z = 8, while isopropyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carb­oxyl­ate, (C23H27F2NO4), (II) and tert-butyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, (C24H29F2NO4), (III) crystallize in the ortho­rhom­bic space group Pbca with Z = 8. In the crystal structure of (I), mol­ecules are linked by N—H⋯O and C—H⋯O inter­actions, forming a tri-periodic network, while mol­ecules of (II) and (III) are linked by N—H⋯O, C—H⋯F and C—H⋯π inter­actions, forming layers parallel to (002). The cohesion of the mol­ecular packing is ensured by van der Waals forces between these layers. In (I), the atoms of the 4-di­fluoro­meth­oxy­phenyl group are disordered over two sets of sites in a 0.647 (3): 0.353 (3) ratio. In (III), the atoms of the dimethyl group attached to the cyclo­hexane ring, and the two carbon atoms of the cyclo­hexane ring are disordered over two sets of sites in a 0.646 (3):0.354 (3) ratio.




hy

Crystal structure of 4-(benzo[d]thia­zol-2-yl)-1,2-dimethyl-1H-pyrazol-3(2H)-one

In the title compound, C12H11N3OS, the inter­planar angle between the pyrazole and benzo­thia­zole rings is 3.31 (7)°. In the three-dimensional mol­ecular packing, the carbonyl oxygen acts as acceptor to four C—H donors (with one H⋯O as short as 2.25 Å), while one methyl hydrogen is part of the three-centre system H⋯(S, O). A double layer structure parallel to (overline{1}01) can be recognized as a subsection of the packing.




hy

Crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II)

The crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II) (systematic name: tetra­ethyl­ammonium N-methane­sulfonyl-4-nitro-2-phen­oxy­anilinide), C8H20N+·C13H11N2O5S−, was determined using single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group P21/c with one tetra­ethyl­ammonium cation and one nimesulide anion in the asymmetric unit. In the crystal, the ions are linked by C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π inter­actions. There are differences in the geometry of both the nimesulide anion and the tetra­ethyl­ammonium cation in polymorphs I [Rybczyńska & Sikorski (2023). Sci. Rep. 13, 17268] and II of the title compound.