est

Structural investigation of methyl 3-(4-fluoro­benzo­yl)-7-methyl-2-phenyl­indolizine-1-carboxyl­ate, an inhibitory drug towards Mycobacterium tuberculosis

The title compound, C24H18FNO3, crystallizes in the monoclinic centrosymmetric space group P21/n and its mol­ecular conformation is stabilized via C—H⋯O intra­molecular inter­actions. The supra­molecular network mainly comprises C—H⋯O, C—H⋯F and C—H⋯π inter­actions, which contribute towards the formation of the crystal structure. The different inter­molecular inter­actions have been further analysed via Hirshfeld surface analysis and fingerprint plots.




est

Structure of a push–pull olefin prepared by ynamine hydro­boration with a borandiol ester

N-[(Z)-2-(2H-1,3,2-Benzodioxaborol-2-yl)-2-phenyl­ethen­yl]-N-(propan-2-yl)aniline, C23H22BNO2, contains a C=C bond that is conjugated with a donor and an acceptor group. An analysis that included similar push–pull olefins revealed that bond lengths in their B—C=C—N core units correlate with the perceived acceptor and donor strength of the groups. The two phenyl groups in the mol­ecule are rotated with respect to the plane that contains the BCCN atoms, and are close enough for significant π-stacking. Definite characterization of the title compound demonstrates, for the first time in a reliable way, that hydro­boration of ynamines with borandiol esters is feasible. Compared to olefin hydro­boration with borane, the ynamine substrate is activated enough to undergo reaction with the less active hydro­boration reagent catecholborane.




est

Structures of three ependymin-related proteins suggest their function as a hydrophobic molecule binder

Ependymin was first discovered as a predominant protein in brain extracellular fluid in fish and was suggested to be involved in functions mostly related to learning and memory. Orthologous proteins to ependymin called ependymin-related proteins (EPDRs) have been found to exist in various tissues from sea urchins to humans, yet their functional role remains to be revealed. In this study, the structures of EPDR1 from frog, mouse and human were determined and analyzed. All of the EPDR1s fold into a dimer using a monomeric subunit that is mostly made up of two stacking antiparallel β-sheets with a curvature on one side, resulting in the formation of a deep hydrophobic pocket. All six of the cysteine residues in the monomeric subunit participate in the formation of three intramolecular disulfide bonds. Other interesting features of EPDR1 include two asparagine residues with glycosylation and a Ca2+-binding site. The EPDR1 fold is very similar to the folds of bacterial VioE and LolA/LolB, which also use a similar hydrophobic pocket for their respective functions as a hydrophobic substrate-binding enzyme and a lipoprotein carrier, respectively. A further fatty-acid binding assay using EPDR1 suggests that it indeed binds to fatty acids, presumably via this pocket. Additional interactome analysis of EPDR1 showed that EPDR1 interacts with insulin-like growth factor 2 receptor and flotillin proteins, which are known to be involved in protein and vesicle translocation.




est

Investigation of growth characteristics and semimetal–semiconductor transition of polycrystalline bis­muth thin films

The preferred orientation growth characteristics and surface roughness of polycrystalline bis­muth (Bi) thin films fabricated on glass substrates using the molecular beam epitaxy method were investigated at temperatures ranging from 18 to 150°C. The crystallization and morphology were analyzed in detail and the polycrystalline metal film structure-zone model (SZM) was modified to fit the polycrystalline Bi thin film. The boundary temperature between Zone T and Zone II in the SZM shifted to higher temperatures with the increase in film thickness or the decrease of growth rate. Furthermore, the effect of the thickness and surface roughness on the transport properties was investigated, especially for Bi thin films in Zone II. A two-transport channels model was adopted to reveal the influence of the film thickness on the competition between the metallic surface states and the semiconducting bulk states, which is consistent with the results of Bi single-crystal films. Therefore, the polycrystalline Bi thin films are expected to replace the single-crystal films in the application of spintronic devices.




est

Crystal engineering of exemestane to obtain a co-crystal with enhanced urease inhibition activity

Co-crystallization is a phenomenon widely employed to enhance the physio-chemical and biological properties of active pharmaceutical ingredients (APIs). Exemestane, or 6-methyl­ideneandrosta-1,4-diene-3,17-dione, is an anabolic steroid used as an irreversible steroidal aromatase inhibitor, which is in clinical use to treat breast cancer. The present study deals with the synthesis of co-crystals of exemestane with thio­urea by liquid-assisted grinding. The purity and homogeneity of the exemestane–thio­urea (1:1) co-crystal were confirmed by single-crystal X-ray diffraction followed by thermal stability analysis on the basis of differential scanning calorimetry and thermogravimetric analysis. Detailed geometric analysis of the co-crystal demonstrated that a 1:1 co-crystal stoichiometry is sustained by N—H⋯O hydrogen bonding between the amine (NH2) groups of thio­urea and the carbonyl group of exemestane. The synthesized co-crystal exhibited potent urease inhibition activity in vitro (IC50 = 3.86 ± 0.31 µg ml−1) compared with the API (exemestane), which was found to be inactive, and the co-former (thio­urea) (IC50 = 21.0 ± 1.25 µg ml−1), which is also an established tested standard for urease inhibition assays in vitro. The promising results of the present study highlight the significance of co-crystallization as a crystal engineering tool to improve the efficacy of pharmaceutical ingredients. Furthermore, the role of various hydrogen bonds in the crystal stability is successfully analysed quantitatively using Hirshfeld surface analysis.




est

Small-angle neutron scattering studies suggest the mechanism of BinAB protein internalization

Small-angle neutron scattering (SANS) is one of the most widely used neutron-based approaches to study the solution structure of biological macromolecular systems. The selective deuterium labelling of different protein components of a complex provides a means to probe conformational changes in multiprotein complexes. The Lysinibacillus sphaericus mosquito-larvicidal BinAB proteins exert toxicity through interaction with the receptor Cqm1 protein; however, the nature of the complex is not known. Rationally engineered deuterated BinB (dBinB) protein from the L. sphaericus ISPC-8 species was synthesized using an Escherichia coli-based protein-expression system in M9 medium in D2O for `contrast-matched' SANS experiments. SANS data were independently analysed by ab initio indirect Fourier transform-based modelling and using crystal structures. These studies confirm the dimeric status of Cqm1 in 100% D2O with a longest intramolecular vector (Dmax) of ∼94 Å and a radius of gyration (Rg) of ∼31 Å. Notably, BinB binds to Cqm1, forming a heterodimeric complex (Dmax of ∼129 Å and Rg of ∼40 Å) and alters its oligomeric status from a dimer to a monomer, as confirmed by matched-out Cqm1–dBinB (Dmax of ∼70 Å and Rg of ∼22 Å). The present study thus provides the first insight into the events involved in the internalization of larvicidal proteins, likely by raft-dependent endocytosis.




est

Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1

Methods are presented that detect three types of aberrations in single-particle cryo-EM data sets: symmetrical and antisymmetrical optical aberrations and magnification anisotropy. Because these methods only depend on the availability of a preliminary 3D reconstruction from the data, they can be used to correct for these aberrations for any given cryo-EM data set, a posteriori. Using five publicly available data sets, it is shown that considering these aberrations improves the resolution of the 3D reconstruction when these effects are present. The methods are implemented in version 3.1 of the open-source software package RELION.




est

Disappeared supramolecular isomer reappears with perylene guest

Among different types of polymorphism, disappearing polymorphism deals with the metastable kinetic form which can not be reproduced after its first isolation. In the world of coordination polymers (CPs) and metal–organic frameworks (MOFs), despite the fact that many types of supramolecular isomerism exist, we are unaware of disappearing supramolecular isomerism akin to disappearing polymorphism. This work reports a MOF with dia topology that could not be reproduced, but subsequent synthesis yielded another supramolecular isomer, a double-pillared-layer MOF. When perylene was added in the same reaction, the disappeared dia MOF reappeared with perylene as a guest in the channels. Interestingly, the photoluminescence of the dia MOF with a perylene guest is dominated by the emission of the guest molecule. The influence of guest molecules on the stabilization of the supramolecular isomers of a MOF opens up a strategy to access MOFs with different structures.




est

Deriving and refining atomic models in crystallography and cryo-EM: the latest Phenix tools to facilitate structure analysis




est

Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix

The refinement of biomolecular crystallographic models relies on geometric restraints to help to address the paucity of experimental data typical in these experiments. Limitations in these restraints can degrade the quality of the resulting atomic models. Here, an integration of the full all-atom Amber molecular-dynamics force field into Phenix crystallographic refinement is presented, which enables more complete modeling of biomolecular chemistry. The advantages of the force field include a carefully derived set of torsion-angle potentials, an extensive and flexible set of atom types, Lennard–Jones treatment of nonbonded interactions and a full treatment of crystalline electrostatics. The new combined method was tested against conventional geometry restraints for over 22 000 protein structures. Structures refined with the new method show substantially improved model quality. On average, Ramachandran and rotamer scores are somewhat better, clashscores and MolProbity scores are significantly improved, and the modeling of electrostatics leads to structures that exhibit more, and more correct, hydrogen bonds than those refined using traditional geometry restraints. In general it is found that model improvements are greatest at lower resolutions, prompting plans to add the Amber target function to real-space refinement for use in electron cryo-microscopy. This work opens the door to the future development of more advanced applications such as Amber-based ensemble refinement, quantum-mechanical representation of active sites and improved geometric restraints for simulated annealing.




est

Factors influencing estimates of coordinate error for molecular replacement

Good prior estimates of the effective root-mean-square deviation (r.m.s.d.) between the atomic coordinates of the model and the target optimize the signal in molecular replacement, thereby increasing the success rate in difficult cases. Previous studies using protein structures solved by X-ray crystallography as models showed that optimal error estimates (refined after structure solution) were correlated with the sequence identity between the model and target, and with the number of residues in the model. Here, this work has been extended to find additional correlations between parameters of the model and the target and hence improved prior estimates of the coordinate error. Using a graph database, a curated set of 6030 molecular-replacement calculations using models that had been solved by X-ray crystallography was analysed to consider about 120 model and target parameters. Improved estimates were achieved by replacing the sequence identity with the Gonnet score for sequence similarity, as well as by considering the resolution of the target structure and the MolProbity score of the model. This approach was extended by analysing 12 610 additional molecular-replacement calculations where the model was determined by NMR. The median r.m.s.d. between pairs of models in an ensemble was found to be correlated with the estimated r.m.s.d. to the target. For models solved by NMR, the overall coordinate error estimates were larger than for structures determined by X-ray crystallography, and were more highly correlated with the number of residues.




est

Estimating local protein model quality: prospects for molecular replacement

Model quality assessment programs estimate the quality of protein models and can be used to estimate local error in protein models. ProQ3D is the most recent and most accurate version of our software. Here, it is demonstrated that it is possible to use local error estimates to substantially increase the quality of the models for molecular replacement (MR). Adjusting the B factors using ProQ3D improved the log-likelihood gain (LLG) score by over 50% on average, resulting in significantly more successful models in MR compared with not using error estimates. On a data set of 431 homology models to address difficult MR targets, models with error estimates from ProQ3D received an LLG of >50 for almost half of the models 209/431 (48.5%), compared with 175/431 (40.6%) for the previous version, ProQ2, and only 74/431 (17.2%) for models with no error estimates, clearly demonstrating the added value of using error estimates to enable MR for more targets. ProQ3D is available from http://proq3.bioinfo.se/ both as a server and as a standalone download.




est

Quantitative three-dimensional nondestructive imaging of whole anaerobic ammonium-oxidizing bacteria

Anaerobic ammonium-oxidizing (anammox) bacteria play a key role in the global nitrogen cycle and in nitrogenous wastewater treatment. The anammox bacteria ultrastructure is unique and distinctly different from that of other prokaryotic cells. The morphological structure of an organism is related to its function; however, research on the ultrastructure of intact anammox bacteria is lacking. In this study, in situ three-dimensional nondestructive ultrastructure imaging of a whole anammox cell was performed using synchrotron soft X-ray tomography (SXT) and the total variation-based simultaneous algebraic reconstruction technique (TV-SART). Statistical and quantitative analyses of the intact anammox bacteria were performed. High soft X-ray absorption composition inside anammoxosome was detected and verified to be relevant to iron-binding protein. On this basis, the shape adaptation of the anammox bacteria response to iron was explored.




est

Development of a scanning soft X-ray spectromicroscope to investigate local electronic structures on surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere

A scanning soft X-ray spectromicroscope was recently developed based mainly on the photon-in/photon-out measurement scheme for the investigation of local electronic structures on the surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere. The apparatus was installed at the soft X-ray beamline (BL17SU) at SPring-8. The characteristic features of the apparatus are described in detail. The feasibility of this spectromicroscope was demonstrated using soft X-ray undulator radiation. Here, based on these results, element-specific two-dimensional mapping and micro-XAFS (X-ray absorption fine structure) measurements are reported, as well as the observation of magnetic domain structures from using a reference sample of permalloy micro-dot patterns fabricated on a silicon substrate, with modest spatial resolution (e.g. ∼500 nm). Then, the X-ray radiation dose for Nafion® near the fluorine K-edge is discussed as a typical example of material that is not radiation hardened against a focused X-ray beam, for near future experiments.




est

Synchrotron X-ray diffraction investigation of the surface condition of artefacts from King Henry VIII's warship the Mary Rose

Synchrotron X-ray diffraction (XRD) measured on the XMaS beamline at the ESRF was used to characterize the alloy composition and crystalline surface corrosion of three copper alloy Tudor artefacts recovered from the undersea wreck of King Henry VIII's warship the Mary Rose. The XRD method adopted has a dynamic range ∼1:105 and allows reflections <0.002% of the height of major reflections in the pattern to be discerned above the background without smoothing. Laboratory XRD, scanning electron microscopy–energy dispersive spectroscopy, synchrotron X-ray fluorescence and X-ray excited optical luminescence–X-ray near-edge absorption structure were used as supporting techniques, and the combination revealed structural and compositional features of importance to both archaeology and conservation. The artefacts were brass links believed to be fragments of chainmail and were excavated from the seabed during 1981 and 1982. Their condition reflects very different treatment just after recovery, viz. complete cleaning and conservation, chemical corrosion inhibition and chloride removal only, and distilled water soaking only (to remove the chlorides). The brass composition has been determined for all three at least in the top 7 µm or so as Cu(73%)Zn(27%) from the lattice constant. Measurement of the peak widths showed significant differences in the crystallite size and microstrain between the three samples. All of the links are found to be almost chloride-free with the main corrosion products being spertiniite, sphalerite, zincite, covellite and chalcocite. The balance of corrosion products between the links reflects the conservation treatment applied to one and points to different corrosion environments for the other two.




est

Estimating signal and noise of time-resolved X-ray solution scattering data at synchrotrons and XFELs

Elucidating the structural dynamics of small molecules and proteins in the liquid solution phase is essential to ensure a fundamental understanding of their reaction mechanisms. In this regard, time-resolved X-ray solution scattering (TRXSS), also known as time-resolved X-ray liquidography (TRXL), has been established as a powerful technique for obtaining the structural information of reaction intermediates and products in the liquid solution phase and is expected to be applied to a wider range of molecules in the future. A TRXL experiment is generally performed at the beamline of a synchrotron or an X-ray free-electron laser (XFEL) to provide intense and short X-ray pulses. Considering the limited opportunities to use these facilities, it is necessary to verify the plausibility of a target experiment prior to the actual experiment. For this purpose, a program has been developed, referred to as S-cube, which is short for a Solution Scattering Simulator. This code allows the routine estimation of the shape and signal-to-noise ratio (SNR) of TRXL data from known experimental parameters. Specifically, S-cube calculates the difference scattering curve and the associated quantum noise on the basis of the molecular structure of the target reactant and product, the target solvent, the energy of the pump laser pulse and the specifications of the beamline to be used. Employing a simplified form for the pair-distribution function required to calculate the solute–solvent cross term greatly increases the calculation speed as compared with a typical TRXL data analysis. Demonstrative applications of S-cube are presented, including the estimation of the expected TRXL data and SNR level for the future LCLS-II HE beamlines.




est

Hard X-ray phase-contrast-enhanced micro-CT for quantifying interfaces within brittle dense root-filling-restored human teeth

Phase-contrast enhanced micro-computed tomography reveals huge discontinuities at the interfaces between dental fillings and the tooth substrate. Despite the complex micromorphology, gaps in bonding could be visualized and quantified in 3D.




est

The nondestructive measurement of strain distributions in air plasma sprayed thermal barrier coatings as a function of depth from entire Debye–Scherrer rings

The residual strain distribution has been measured as a function of depth in both top coat and bond coat in as-received and heat-treated air plasma sprayed thermal barrier coating samples. High-energy synchrotron X-ray beams were used in transmission to produce full Debye–Scherrer rings whose non-circular aspect ratio gave the in-plane and out-of-plane strains far more efficiently than the sin2ψ method. The residual strain in the bond coat is found to be tensile and the strain in the β phase of the as-received sample was measured. The residual strains observed in the top coat were generally compressive (increasing towards the interface), with two kinds of nonlinear trend. These was a `jump' feature near the interface, and in some cases there was another `jump' feature near the surface. It is shown how these trend differences can be correlated to cracks in the coating.




est

Orientational disorder of monomethyl-quinacridone investigated by Rietveld refinement, structure refinement to the pair distribution function and lattice-energy minimizations

The crystal structure of the organic pigment 2-monomethyl-quinacridone (Pigment Red 192, C21H14N2O2) was solved from X-ray powder diffraction data. The resulting average structure is described in space group Poverline 1, Z = 1 with the molecule on the inversion centre. The molecules are arranged in chains. The molecules, which have no inversion symmetry, show orientational head-to-tail disorder. In the average structure, the methyl group is disordered and found on both ends of the molecule with an occupancy of 0.5 each. The disorder and the local structure were investigated using various ordered structural models. All models were analysed by three approaches: Rietveld refinement, structure refinement to the pair distribution function (PDF) and lattice-energy minimization. All refinements converged well. The Rietveld refinement provided the average structure and gave no indication of a long-range ordering. The refinement to the PDF turned out to be very sensitive to small structural details, giving insight into the local structure. The lattice-energy minimizations revealed a significantly preferred local ordering of neighbouring molecules along the [0ar 11] direction. In conclusion, all methods indicate a statistical orientational disorder with a preferred parallel orientation of molecules in one direction. Additionally, electron diffraction revealed twinning and faint diffuse scattering.




est

Orientational disorder of mono­methyl-quinacridone investigated by Rietveld refinement, structure refinement to the pair-distribution function and lattice-energy minimizations

The crystal structure of the nanocrystalline pigment mono­methyl-quinacridone was solved from X-ray powder data. The orientational disorder was investigated using Rietveld refinements, structure refinement to the pair-distribution function, and lattice-energy minimizations of various ordered structural models.




est

Best Path to get into Cloud technology jobs .




est

How to move up out of the help desk and other questions




est

Rising acidification of estuary waters spells trouble for Chesapeake Bay oysters

Already under siege from overfishing, disease and poor water quality, the oyster population in the Chesapeake Bay today stands at 2 percent of what it was in colonial times. Now, new data show that rising acidity in the Bay will have a negative impact on oyster shells.

The post Rising acidification of estuary waters spells trouble for Chesapeake Bay oysters appeared first on Smithsonian Insider.




est

Roads kill rainforests. Stop them now, say Smithsonian biologists

Determining the locations of future highways and roads in countries with tropical rainforests will be the greatest single factor in influencing future forest loss, fragmentation and degradation. In broad terms, roads can be thought of as the enemies of rainforests. By spreading people out across the forest, roads inherently promote rapid and widespread deforestation.

The post Roads kill rainforests. Stop them now, say Smithsonian biologists appeared first on Smithsonian Insider.




est

Video: Common birds in Washington, D.C. are helping Smithsonian scientists track intensity of the West Nile Virus

Scientists from the Smithsonian Migratory Bird Center at the National Zoo have taken blood samples from thousands of birds and mosquitoes in an effort to track the progress of the West Nile Virus in the eastern United States. Come along in this video as Smithsonian scientists net birds living in downtown Washington, D.C., extract small amounts of blood, and then release them back into the "wild."

The post Video: Common birds in Washington, D.C. are helping Smithsonian scientists track intensity of the West Nile Virus appeared first on Smithsonian Insider.




est

Laboratory tests reveal precise way to measure vertical lift in bumblebees and other small insects and birds

Birds do it. Bees do it. And in a laboratory in northern California, scientists using bumblebees recently figured out the best way to measure it--vertical lift!

The post Laboratory tests reveal precise way to measure vertical lift in bumblebees and other small insects and birds appeared first on Smithsonian Insider.




est

Smithsonian ecologists discover forests are growing at a faster rate

A new study published in the Feb. 2 issue of the Proceedings of the National Academy of Sciences indicates that forests in the Eastern United […]

The post Smithsonian ecologists discover forests are growing at a faster rate appeared first on Smithsonian Insider.




est

At 1,500,000 mph, twin stars in the constellation Cancer win speediest orbit award

The stars move quickly because they are very close to each other, separated by only about one-fourth the distance from the Earth to the Moon. As a result, they share strong gravitational forces. They were once farther apart but have spiraled closer together over time. Billions of years from now, they will crash together and merge.

The post At 1,500,000 mph, twin stars in the constellation Cancer win speediest orbit award appeared first on Smithsonian Insider.




est

Newly discovered prehistoric turtle co-existed with world’s biggest snake

About as thick as a standard dictionary, this turtle’s shell may have warded off attacks by the Titanoboa, thought to have been the world’s biggest snake, and by other, crocodile-like creatures living in its neighborhood 60 million years ago.

The post Newly discovered prehistoric turtle co-existed with world’s biggest snake appeared first on Smithsonian Insider.




est

NSRC to receive $25 million Investing in Innovation grant from U.S. Department of Education

The funding will allow the National Science Resources Center to validate its LASER (Leadership Assistance for Science Education Reform) Model. LASER, a systemic approach to reform, is a set of processes and strategies designed to help state, district and school leadership teams effectively implement and sustain
high-quality science education for elementary, middle and secondary school students.

The post NSRC to receive $25 million Investing in Innovation grant from U.S. Department of Education appeared first on Smithsonian Insider.




est

Scientists establish first frozen repository of Hawaiian coral

Unless action is taken now, coral reefs and many of the animals that depend on them may cease to exist within the next 40 years, causing the first global extinction of a worldwide ecosystem during current history.

The post Scientists establish first frozen repository of Hawaiian coral appeared first on Smithsonian Insider.




est

Earth’s highest coastal mountain range moved 1,367 miles in 170 million years

Using the ancient magnetic field recorded in these rocks, a Smithsonian research group revealed Santa Marta’s 2,200-kilometer journey from northern Peru to its modern position on the Caribbean coast of Colombia during the past 170 million years.

The post Earth’s highest coastal mountain range moved 1,367 miles in 170 million years appeared first on Smithsonian Insider.




est

Newly discovered Madagascar spider spins largest, toughest webs on record

Darwin's bark spider cast giant webs across streams, rivers and lakes, suspending the web’s orb above water and attaching it to plants on each riverbank. Bridgelines of these water-spanning webs have been measured as long as 25 meters.

The post Newly discovered Madagascar spider spins largest, toughest webs on record appeared first on Smithsonian Insider.




est

Smithsonian bat expert Kristofer Helgen answers common questions about bats

To celebrate a cool Halloween creature--bats--we teamed up with the Smithsonian’s Kristofer Helgen, curator of mammals at the National Museum of Natural History. Here, he answers three commonly asked questions about these winged mammals.

The post Smithsonian bat expert Kristofer Helgen answers common questions about bats appeared first on Smithsonian Insider.




est

Chandra X-ray Observatory finds youngest nearby black hole

Astronomers using NASA's Chandra X-ray Observatory have found evidence of the youngest black hole known to exist in our cosmic neighborhood. The 30-year-old object is a remnant of SN 1979C, a supernova in the galaxy M100 approximately 50 million light years from Earth.

The post Chandra X-ray Observatory finds youngest nearby black hole appeared first on Smithsonian Insider.




est

Turkey’s trip to table: Domesticating North America’s largest fowl

The turkey has become synonymous with Thanksgiving in the United States. But when exactly where turkeys first domesticated? And where? Bruce Smith, senior archeologist at the Smithsonian’s National Museum of Natural History has the answers.

The post Turkey’s trip to table: Domesticating North America’s largest fowl appeared first on Smithsonian Insider.




est

Exurban development is changing communities of birds in Eastern Forests

Despite the general perception of exurban development as environmentally preferable to urban sprawl, this is not necessarily correct. Housing development is detrimental for natural bird communities even at low housing levels.

The post Exurban development is changing communities of birds in Eastern Forests appeared first on Smithsonian Insider.




est

Environmental Research Center to help with Chesapeake Bay seagrass restoration

A research team from The Smithsonian Environmental Research Center and Virginia's Old Dominion University will be awarded $110,999 to develop a tool to help seagrass restorers predict which places will be the best for planting seagrasses, the Virginia Sea Grant has announced.

The post Environmental Research Center to help with Chesapeake Bay seagrass restoration appeared first on Smithsonian Insider.




est

Skeletal casts of early hominin ancestor from Africa donated to National Museum of Natural History

A. sediba was discovered in 2008 in the Malapa Cave at the Cradle of Humankind World Heritage Site located outside Johannesburg.

The post Skeletal casts of early hominin ancestor from Africa donated to National Museum of Natural History appeared first on Smithsonian Insider.




est

New archaeological evidence reveals California’s Channel Islands as North America’s earliest seafaring economy

Evidence for a diversified sea-based economy among North American inhabitants dating from 12,200 to 11,400 years ago is emerging from three sites on California's Channel Islands.

The post New archaeological evidence reveals California’s Channel Islands as North America’s earliest seafaring economy appeared first on Smithsonian Insider.




est

Alarming number of fledgling, suburban catbirds fall prey to domestic cats, study finds

Smithsonian scientists report fledgling catbirds in suburban habitats are at their most vulnerable stage of life, with almost 80 percent killed by predators before they reach adulthood. Almost half of the deaths were connected to domestic cats.

The post Alarming number of fledgling, suburban catbirds fall prey to domestic cats, study finds appeared first on Smithsonian Insider.