hy Hard X-ray imaging and tomography at the Biomedical Imaging and Therapy beamlines of Canadian Light Source By journals.iucr.org Published On :: 2024-07-15 The Biomedical Imaging and Therapy facility of the Canadian Light Source comprises two beamlines, which together cover a wide X-ray energy range from 13 keV up to 140 keV. The beamlines were designed with a focus on synchrotron applications in preclinical imaging and veterinary science as well as microbeam radiation therapy. While these remain a major part of the activities of both beamlines, a number of recent upgrades have enhanced the versatility and performance of the beamlines, particularly for high-resolution microtomography experiments. As a result, the user community has been quickly expanding to include researchers in advanced materials, batteries, fuel cells, agriculture, and environmental studies. This article summarizes the beam properties, describes the endstations together with the detector pool, and presents several application cases of the various X-ray imaging techniques available to users. Full Article text
hy BEATS: BEAmline for synchrotron X-ray microTomography at SESAME By journals.iucr.org Published On :: 2024-07-15 The ID10 beamline of the SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) synchrotron light source in Jordan was inaugurated in June 2023 and is now open to scientific users. The beamline, which was designed and installed within the European Horizon 2020 project BEAmline for Tomography at SESAME (BEATS), provides full-field X-ray radiography and microtomography imaging with monochromatic or polychromatic X-rays up to photon energies of 100 keV. The photon source generated by a 2.9 T wavelength shifter with variable gap, and a double-multilayer monochromator system allow versatile application for experiments requiring either an X-ray beam with high intensity and flux, and/or a partially spatial coherent beam for phase-contrast applications. Sample manipulation and X-ray detection systems are designed to allow scanning samples with different size, weight and material, providing image voxel sizes from 13 µm down to 0.33 µm. A state-of-the-art computing infrastructure for data collection, three-dimensional (3D) image reconstruction and data analysis allows the visualization and exploration of results online within a few seconds from the completion of a scan. Insights from 3D X-ray imaging are key to the investigation of specimens from archaeology and cultural heritage, biology and health sciences, materials science and engineering, earth, environmental sciences and more. Microtomography scans and preliminary results obtained at the beamline demonstrate that the new beamline ID10-BEATS expands significantly the range of scientific applications that can be targeted at SESAME. Full Article text
hy Hyperspectral full-field quick-EXAFS imaging at the ROCK beamline for monitoring micrometre-sized heterogeneity of functional materials under process conditions By journals.iucr.org Published On :: 2024-08-23 Full-field transmission X-ray microscopy has been recently implemented at the hard X-ray ROCK–SOLEIL quick-EXAFS beamline, adding micrometre spatial resolution to the second time resolution characterizing the beamline. Benefiting from a beam size versatility due to the beamline focusing optics, full-field hyperspectral XANES imaging has been successfully used at the Fe K-edge for monitoring the pressure-induced spin transition of a 150 µm × 150 µm Fe(o-phen)2(NCS)2 single crystal and the charge of millimetre-sized LiFePO4 battery electrodes. Hyperspectral imaging over 2000 eV has been reported for the simultaneous monitoring of Fe and Cu speciation changes during activation of a FeCu bimetallic catalyst along a millimetre-sized catalyst bed. Strategies of data acquisition and post-data analysis using Jupyter notebooks and multivariate data analysis are presented, and the gain obtained using full-field hyperspectral quick-EXAFS imaging for studies of functional materials under process conditions in comparison with macroscopic information obtained by non-spatially resolved quick-EXAFS techniques is discussed. Full Article text
hy Investigating the missing-wedge problem in small-angle X-ray scattering tensor tomography across real and reciprocal space By journals.iucr.org Published On :: 2024-08-28 Small-angle-scattering tensor tomography is a technique for studying anisotropic nanostructures of millimetre-sized samples in a volume-resolved manner. It requires the acquisition of data through repeated tomographic rotations about an axis which is subjected to a series of tilts. The tilt that can be achieved with a typical setup is geometrically constrained, which leads to limits in the set of directions from which the different parts of the reciprocal space map can be probed. Here, we characterize the impact of this limitation on reconstructions in terms of the missing wedge problem of tomography, by treating the problem of tensor tomography as the reconstruction of a three-dimensional field of functions on the unit sphere, represented by a grid of Gaussian radial basis functions. We then devise an acquisition scheme to obtain complete data by remounting the sample, which we apply to a sample of human trabecular bone. Performing tensor tomographic reconstructions of limited data sets as well as the complete data set, we further investigate and validate the missing wedge problem by investigating reconstruction errors due to data incompleteness across both real and reciprocal space. Finally, we carry out an analysis of orientations and derived scalar quantities, to quantify the impact of this missing wedge problem on a typical tensor tomographic analysis. We conclude that the effects of data incompleteness are consistent with the predicted impact of the missing wedge problem, and that the impact on tensor tomographic analysis is appreciable but limited, especially if precautions are taken. In particular, there is only limited impact on the means and relative anisotropies of the reconstructed reciprocal space maps. Full Article text
hy Methyl 1-(4-fluorobenzyl)-1H-indazole-3-carboxylate By journals.iucr.org Published On :: 2023-11-23 The title compound, C16H13FN2O2, was synthesized by nucleophilic substitution of the indazole N—H hydrogen atom of methyl 1H-indazole-3-carboxylate with 1-(bromomethyl)-4-fluorobenzene. In the crystal, some hydrogen-bond-like interactions are observed. Full Article text
hy A second crystalline modification of 2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene}hydrazinecarbothioamide By journals.iucr.org Published On :: 2023-11-30 A second crystalline modification of the title compound, C12H19N3S [common name: cis-jasmone thiosemicarbazone] was crystallized from tetrahydrofurane at room temperature. There is one crystallographic independent molecule in the asymmetric unit, showing disorder in the cis-jasmone chain [site-occupancy ratio = 0.590 (14):0.410 (14)]. The thiosemicarbazone entity is approximately planar, with the maximum deviation from the mean plane through the N/N/C/S/N atoms being 0.0463 (14) Å [r.m.s.d. = 0.0324 Å], while for the five-membered ring of the jasmone fragment, the maximum deviation from the mean plane through the carbon atoms amounts to 0.0465 (15) Å [r.m.s.d. = 0.0338 Å]. The molecule is not planar due to the dihedral angle between these two fragments, which is 8.93 (1)°, and due to the sp3-hybridized carbon atoms in the jasmone fragment chain. In the crystal, the molecules are connected by N—H⋯S and C—H⋯S interactions, with graph-set motifs R22(8) and R21(7), building mono-periodic hydrogen-bonded ribbons along [010]. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are H⋯H (67.8%), H⋯S/S⋯H (15.0%), H⋯C/C⋯H (8.5%) and H⋯N/N⋯H (5.6%) [only non-disordered atoms and those with the highest s.o.f. were considered]. This work reports the second crystalline modification of the cis-jasmone thiosemicarbazone structure, the first one being published recently [Orsoni et al. (2020). Int. J. Mol. Sci. 21, 8681–8697] with the crystals obtained in ethanol at 273 K. Full Article text
hy 2-{1-[(6R,S)-3,5,5,6,8,8-Hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl]ethylidene}-N-methylhydrazinecarbothioamide By journals.iucr.org Published On :: 2023-11-30 The reaction between a racemic mixture of (R,S)-fixolide and 4-methylthiosemicarbazide in ethanol with a 1:1 stoichiometric ratio and catalysed with HCl, yielded the title compound, C20H31N3S [common name: (R,S)-fixolide 4-methylthiosemicarbazone]. There is one crystallographically independent molecule in the asymmetric unit, which is disordered over the aliphatic ring [site-occupancy ratio = 0.667 (13):0.333 (13)]. The disorder includes the chiral C atom, the neighbouring methylene group and the methyl H atoms of the methyl group bonded to the chiral C atom. The maximum deviations from the mean plane through the disordered aliphatic ring amount to 0.328 (6) and −0.334 (6) Å [r.m.s.d. = 0.2061 Å], and −0.3677 (12) and 0.3380 (12) Å [r.m.s.d. = 0.2198 Å] for the two different sites. Both fragments show a half-chair conformation. Additionally, the N—N—C(=S)—N entity is approximately planar, with the maximum deviation from the mean plane through the selected atoms being 0.0135 (18) Å [r.m.s.d. = 0.0100 Å]. The molecule is not planar due to the dihedral angle between the thiosemicarbazone entity and the aromatic ring, which amounts to 51.8 (1)°, and due to the sp3-hybridized carbon atoms of the fixolide fragment. In the crystal, the molecules are connected by H⋯S interactions with graph-set motif C(4), forming a mono-periodic hydrogen-bonded ribbon along [100]. The Hirshfeld surface analysis suggests that the major contributions for the crystal cohesion are [(R,S)-isomers considered separately] H⋯H (75.7%), H⋯S/S⋯H (11.6%), H⋯C/C⋯H (8.3% and H⋯N/N⋯H (4.4% for both of them). Full Article text
hy Tetraaqua(ethane-1,2-diamine-κ2N,N')nickel(II) naphthalene-1,5-disulfonate dihydrate By journals.iucr.org Published On :: 2023-12-14 The reaction of ethane-1,2-diamine (en, C2H8N2), the sodium salt of naphthalene-1,5-disulfonic acid (H2NDS, C10H8O6S2), and nickel sulfate in an aqueous solution resulted in the formation of the title salt, [Ni(C2H8N2)(H2O)4](C10H6O6S2)·2H2O or [Ni(en)(H2O)4](NDS)·2H2O. In the asymmetric unit, one half of an [Ni(en)(H2O)4]2+ cation and one half of an NDS2− anion, and one water molecule of crystallization are present. The Ni2+ cation in the complex is positioned on a twofold rotation axis and exhibits a slight tetragonal distortion of the cis-NiO4N2 octahedron, with an Ni—N bond length of 2.0782 (16) Å, and Ni—O bond lengths of 2.1170 (13) Å and 2.0648 (14) Å. The anion is completed by inversion symmetry. In the extended structure, the cations, anions, and non-coordinating water molecules are connected by intermolecular N—H⋯O and O—H⋯O hydrogen bonding, as well as C—H⋯π interactions, forming a three-dimensional network. Full Article text
hy 5,6-Dimethylbenzo[d][1,3]oxatellurole By journals.iucr.org Published On :: 2024-01-05 The structure of the title compound, C9H10OTe, at 100 K has orthorhombic (P21212) symmetry with two independent molecules in the asymmetric unit (Z' = 2). The molecules are folded along their Te⋯O axes, with their Te–C–O planes angled at an average of 25.1° with respect to the remaining non-H atoms, which are almost coplanar (average deviation from planarity = 0.04 Å). A Hirshfeld plot shows weak intermolecular interactions between the two Te atoms located in each asymmetric molecule, with a Te⋯Te distance of 3.7191 (4) Å. The structure is strongly pseudosymmetric to the space group Pccn with Z' = 1. The crystal chosen for data collection was found to be was an inversion twin. Full Article text
hy Bis[1,3-bis(2,4,6-trimethylphenyl)imidazolium] bis(μ-cis-1,2-diphenylethene-1,2-dithiolato-κ2S,S':κS)bis[(cis-1,2-diphenylethene-1,2-dithiolato-κ2S,S')iron(III)] dimethyl& By journals.iucr.org Published On :: 2023-12-26 The molecular structure of the solvated title salt, (C21H25N2)2[Fe2(C14H10S2)4]·2C3H7NO reveals that the anion is situated on a crystallographic inversion center in the triclinic space group Poverline{1}. The title compound crystallizes utilizing a network of weak π-stacking interactions of phenyl rings pertaining to the dithiolene unit. Moreover, the acidic imidazolium H atoms [N—C(H)—N] display non-classical hydrogen-bonding interactions of the C—H⋯O type to the oxygen atoms of the N,N-dimethyl formamide solvent, and hydrogen atoms on the backbone of imidazolium rings display weak C—H⋯S interactions with the dithiolene sulfur atoms. Full Article text
hy meso-α,α-5,15-Bis(o-nicotinamidophenyl)-10,20-diphenylporphyrin n-hexane monosolvate By journals.iucr.org Published On :: 2023-12-22 The structure of the title solvated porphyrin, C56H38N8O2·C6H14, is reported. Two porphyrin molecules, one ordered and one disordered n-hexane solvate molecules are present in its asymmetric unit. The porphyrin macrocycle shows a characteristic saddle-shaped distortion, and the maximum deviation from the mean plane for non-hydrogen atoms is 0.48 Å. N—H⋯N, N—H⋯O, and C—H⋯O hydrogen bonds, as well as π–π interactions, are observed in the crystal structure. Full Article text
hy rac-Hydroxyisovaleric acid By journals.iucr.org Published On :: 2024-01-05 The title compound (systematic name: rac-2-hydroxy-3-methylbutanoic acid), C5H10O3, is the constitutional isomer of α-hydroxybutanoic acid. In the crystal, hydrogen bonds involving the alcoholic hydroxyl group give rise to centrosymmetric dimers that are extended to sheets perpendicular to the crystallographic c axis. Full Article text
hy 2-{3-Methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene}-N-phenylhydrazinecarbothioamide. Corrigendum By journals.iucr.org Published On :: 2024-01-31 In the paper by Oliveira et al. [IUCrData (2023), 8, x230971], there was an error in the name of the first author. Full Article text
hy N-Methyl-2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene}hydrazinecarbothioamide By journals.iucr.org Published On :: 2024-01-09 The equimolar and hydrochloric acid-catalysed reaction between cis-jasmone and 4-methylthiosemicarbazide in ethanolic solution yields the title compound, C13H21N3S (common name: cis-jasmone 4-methylthiosemicarbazone). Two molecules with all atoms in general positions are present in the asymmetric unit. In one of them, the carbon chain is disordered [site occupancy ratio = 0.821 (3):0.179 (3)]. The thiosemicarbazone entities [N—N—C(=S)—N] are approximately planar, with the maximum deviation from the mean plane through the selected atoms being −0.0115 (16) Å (r.m.s.d. = 0.0078 Å) for the non-disordered molecule and 0.0052 (14) Å (r.m.s.d. = 0.0031 Å) for the disordered one. The molecules are not planar, since the jasmone groups have a chain with sp3-hybridized carbon atoms and, in addition, the thiosemicarbazone fragments are attached to the respective carbon five-membered rings and the dihedral angles between them for each molecule amount to 8.9 (1) and 6.3 (1)°. In the crystal, the molecules are connected through pairs of N—H⋯S and C—H⋯S interactions into crystallographically independent centrosymmetric dimers, in which rings of graph-set motifs R22(8) and R21(7) are observed. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are from H⋯H (70.6%), H⋯S/S⋯H (16.7%), H⋯C/C⋯H (7.5%) and H⋯N/N⋯H (4.9%) interactions [considering the two crystallographically independent molecules and only the disordered atoms with the highest s.o.f. for the evaluation]. Full Article text
hy trans-Dichloridobis[(S)-(−)-1-(4-methylphenyl)ethylamine-κN]palladium(II) By journals.iucr.org Published On :: 2024-01-12 The title complex, [PdCl2(C9H13N)2], comprises a single molecule in the asymmetric unit. The PdII atom is tetracoordinated by two N atoms from two trans-aligned organic ligands and two Cl ligands, forming a square-planar metal coordination environment. The distances from the ortho-H atoms on the phenyl ring to the central PdII atom fall within the range 4.70–5.30 Å, precluding any significant intramolecular Pd⋯H interactions. Full Article text
hy Synthesis and structure of trans-bis(4-amino-3-nitrobenzoato-κO)bis(4-amino-3-nitrobenzoic acid-κO)diaquamanganese(II) dihydrate By journals.iucr.org Published On :: 2024-01-19 The manganese title complex, [Mn(C7H5N2O4)2(C7H6N2O4)2(H2O)2]·2H2O, is one of the first 4-amino 3-nitrobenzoic acid (4 A3NBA) monoligand metal complexes to be synthesized. It crystallizes in the centrosymmetric monoclinic space group P21/n with the complex molecules located on inversion centers. Four 4 A3NBA ligand molecules are monodentately coordinated by the Mn2+ ion through the carboxylic oxygen atoms while the other two positions of the inner coordination sphere are occupied by water molecules, giving rise to a distorted octahedron, and two water molecules are in the outer coordination sphere. There are two intramolecular hydrogen bonds in the complex molecule. The first is of the common N—H⋯O=N type, while the second is a rarely occurring very strong hydrogen bond in which a common proton is shared by two uncoordinated oxygen atoms of neighboring carboxylate groups. In the crystal, an intricate system of intermolecular hydrogen bonds links the complex molecules into a three-dimensional-network. Full Article text
hy Bis(2-hydroxy-2,3-dihydro-1H-inden-1-aminium) tetrachloridopalladate(II) hemihydrate By journals.iucr.org Published On :: 2024-01-26 A new square-planar palladium complex salt hydrate, (C9H12NO)2[PdCl4]·0.5H2O, has been characterized. The asymmetric unit of the complex salt comprises two [PdCl4]2− dianions, four 2-hydroxy-2,3-dihydro-1H-inden-1-aminium cations, each derived from (1R,2S)-(+)-1-aminoindan-2-ol, and one water molecule of crystallization. In the crystal, a two-dimensional layer parallel to (001) features a number of O—H⋯O, N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds. Full Article text
hy (4-Butyl-1-ethyl-1,2,4-triazol-5-ylidene)[(1,2,5,6-η)-cycloocta-1,5-diene](triphenylphosphane)rhodium(I) tetrafluoridoborate By journals.iucr.org Published On :: 2024-01-26 In the title triazole-based N-heterocyclic carbene rhodium(I) cationic complex with a tetrafluoridoborate counter-anion, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4, which crystallizes with two cations and two anions in the asymmetric unit, the Rh center has a distorted square-planar coordination geometry with expected bond distances. Several nonclassical C—H⋯F hydrogen-bonding interactions help to consolidate the packing. Two of the F atoms of one of the anions are disordered over adjacent sites in a 0.814 (4):0.186 (4) ratio. Full Article text
hy Bis[2,6-bis(benzimidazol-2-yl)pyridine-κ3N,N',N'']nickel(II) bis(trifluoromethanesulfonate) diethyl ether monosolvate By journals.iucr.org Published On :: 2024-01-31 In the title complex, [Ni(C19H13N5)2](CF3SO3)2·(CH3CH2)2O, the central NiII atom is sixfold coordinated by three nitrogen atoms of each 2,6-bis(2-benzimidazolyl)pyridine ligand in a distorted octahedral geometry with two trifluoromethanesulfonate ions and a molecule of diethyl ether completing the outer coordination sphere of the complex. Hydrogen bonding contributes to the organization of the asymmetric units in columns along the a axis generating a porous supramolecular structure. The structure was refined as a two-component twin with a refined BASF value of 0.4104 (13). Full Article text
hy 1-Ethyl-3,3-dimethylspiro[indoline-2,8'-phenaleno[1,9-fg]chromene] By journals.iucr.org Published On :: 2024-02-13 The title pyrene-fused spiropyran derivative, C30H25NO, crystallizes with two molecules in the asymmetric unit with dihedral angles between their fused-ring sub units of 76.20 (8) and 89.38 (9)°. In the crystal, weak C—H⋯π interactions link the molecules into a three-dimensional network. Full Article text
hy Bis[S-octyl 3-(2-methylpropylidene)dithiocarbazato-κ2N3,S]nickel(II) By journals.iucr.org Published On :: 2024-03-06 The central NiII atom in the title complex, [Ni(C13H25N2S2)2], is located on an inversion center and adopts a roughly square-planar coordination environment defined by two chelating N,S donor sets of two symmetry-related ligands in a trans configuration. The Ni—N and Ni—S bond lenghts are 1.9193 (14) and 2.1788 (5) Å, respectively, with a chelating N—Ni—S bond angle of 86.05 (4)°. These data are compared with those measured for similar dithiocarbazato ligands that bear n-octyl or n-hexyl alkyl chains. Slight differences are observed with respect to the phenylethylidene derivative where the ligands are bound cis relative to one another. Full Article text
hy cis,cis,cis-Dichloridobis(N4,N4-dimethylpyridin-4-amine-κN1)bis(dimethyl sulfoxide-κS)ruthenium(II) By journals.iucr.org Published On :: 2024-03-06 The structure of the title compound, [RuCl2(C7H10N2)2(C2H6OS)2], has monoclinic (P21/n) symmetry. The Ru—N distances of the coordination compound are influenced by the trans chloride or dimethylsulfoxide-κS ligands. The molecular structure exhibits disorder for two of the terminal methyl groups of a dimethyl sulfoxide ligand. Full Article text
hy Methyl N-{(1R)-2-[(methoxycarbonyl)oxy]-1-phenylethyl}carbamate By journals.iucr.org Published On :: 2024-03-21 The title molecule, C12H15NO5, is a methyl carbamate derivative obtained by reacting (R)-2-phenylglycinol and methyl chloroformate, with calcium hydroxide as heterogeneous catalyst. Supramolecular chains are formed in the [100] direction, based on N—H⋯O hydrogen bonds between the amide and carboxylate groups. These chains weakly interact in the crystal, and the phenyl rings do not display significant π–π interactions. Full Article text
hy {N-[1-(2-Oxidophenyl)ethylidene]-dl-alaninato}(pentane-1,5-diyl)silicon(IV) By journals.iucr.org Published On :: 2024-03-19 The title SiIV complex, C16H21NO3Si, is built up by a tridentate dinegative Schiff base ligand bound to a silacyclohexane unit. The coordination geometry of the pentacoordinated SiIV atom is a distorted trigonal bipyramid. The presence of the silacyclohexane ring in the complex leads to an unusual coordination geometry of the SiIV atom with the N atom from the Schiff base ligand and an alkyl-C atom in apical positions of the trigonal bipyramid. There is a disorder of the methyl group at the imine bond with two orientations resolved for the H atoms [major orientation = 0.55 (3)]. In the crystal, C—H⋯O interactions are found within corrugated layers of molecules parallel to the ab plane. Full Article text
hy trans-Dibromidotetrakis(5-methyl-1H-pyrazole-κN2)manganese(II) By journals.iucr.org Published On :: 2024-03-19 The title compound, trans-dibromidotetrakis(5-methyl-1H-pyrazole-κN2)manganese(II), [MnBr2(C4H6N2)4] or [Mn(3-MePzH)4Br2] (1) crystallizes in the triclinic Poverline{1} space group with the cell parameters a = 7.6288 (3), b = 8.7530 (4), c = 9.3794 (4) Å and α = 90.707 (4), β = 106.138 (4), γ = 114.285 (5)°, V = 542.62 (5) Å3, T = 120 K. The asymmetric unit contains only half the molecule with the manganese atom is situated on a crystallographic inversion center. The 3-MePzH ligands are present in an AABB type manner with two methyl groups pointing up and the other two down. The supramolecular architecture is characterized by several intermolecular C—H⋯N, N—H⋯Br, and C—H⋯π interactions. Earlier, a polymorphic structure of [Mn(3-MePzH)4Br2] (2) with a similar geometry and also an AABB arrangement for the pyrazole ligands was described [Reedijk et al. (1971). Inorg. Chem. 10, 2594–2599; a = 8.802 (6), b = 9.695 (5), c = 7.613 (8) Å and α = 105.12 (4), β = 114.98 (4), γ = 92.90 (3)°, V = 558.826 (5) Å3, T = 295 K]. A varying supramolecular pattern was reported, with the structure of 1 featuring a herringbone type pattern while that of structure 2 shows a pillared network type of arrangement along the a axis. A nickel complex [Ni(3-MePzH)4Br2] isomorphic to 1 and the analogous chloro derivatives of FeII, CoII and CuII are also known. Full Article text
hy 4-Fluorobenzyl (Z)-2-(2-oxoindolin-3-ylidene)hydrazine-1-carbodithioate By journals.iucr.org Published On :: 2024-03-19 The title compound, C16H12FN3OS, a fluorinated dithiocarbazate imine derivative, was synthesized by the one-pot, multi-component condensation reaction of hydrazine hydrate, carbon disulfide, 4-fluorobenzyl chloride and isatin. The compound demonstrates near-planarity across much of the molecule in the solid state and a Z configuration for the azomethine C=N bond. The Z form is further stabilized by the presence of an intramolecular N—H⋯O hydrogen bond. In the extended structure, molecules are linked into dimers by N—H⋯O hydrogen bonds and further connected into chains along either [2overline{1}0] or [100] by weak C—H⋯S and C—H⋯F hydrogen bonds, which further link into corrugated sheets and in combination form the overall three-dimensional network. Full Article text
hy Poly[(μ-2,3-diethyl-7,8-dimethylquinoxaline-κ2N:N)(2,3-diethyl-7,8-dimethylquinoxaline-κN)-μ-nitrato-κ2O:O'-nitrato-κ2O,O'-disilver(I)] By journals.iucr.org Published On :: 2024-03-21 The structure of the title compound, [C14H18N2)2Ag2](NO3)2, contains subtle differences in ligand, metal, and counter-anion coordination. One quinoxaline ligand uses one of its quinoxaline N atoms to bond to one silver cation. That silver cation is bound to a second quinoxaline which, in turn, is bound to a second silver atom; thereby using both of its quinoxaline N atoms. A nitrate group bonds with one of its O atoms to the first silver and uses the same oxygen to bond to a silver atom (related by symmetry to the second), thereby forming an extended network. The second nitrate group on the other silver bonds via two nitrate O atoms; one silver cation therefore has a coordination number of three whereas the second has a coordination number of four. One of the quinoxaline ligands has a disordered ethyl group. Full Article text
hy Bis[2,6-bis(1H-benzimidazol-2-yl)pyridine]ruthenium(II) bis(hexafluoridophosphate) diethyl ether trisolvate By journals.iucr.org Published On :: 2024-03-28 The title compound, [Ru(C19H13N5)2](PF6)2·3C4H10O, was obtained from the reaction of Ru(bimpy)Cl3 [bimpy is 2,6-bis(1H-benzimidazol-2-yl)pyridine] and bimpy in refluxing ethanol followed by recrystallization from diethyl ether/acetonitrile. At 125 K the complex has orthorhombic (Pca21) symmetry. It is remarkable that the structure is almost centrosymmetric. However, refinement in space group Pbcn leads to disorder and definitely worse results. It is of interest with respect to potential catalytic reduction of CO2. The structure displays N—H⋯O, N—H⋯F hydrogen bonding and significant π–π stacking and C—H⋯π stacking interactions. Full Article text
hy mer-Bis(quinoline-2-carboxaldehyde 4-ethylthiosemicarbazonato)nickel(II) methanol 0.33-solvate 0.67-hydrate By journals.iucr.org Published On :: 2024-04-26 In the title compound, [Ni(C13H13N4S)2]·0.33CH3OH·0.67H2O, the NiII atom is coordinated by two tridentate quinoline-2-carboxaldehyde 4-ethylthiosemicarbazonate ligands in a distorted octahedral shape. At 100 K, the crystal symmetry is monoclinic (space group P21/n). A mixture of water and methanol crystallizes with the title complex, and one of the ethyl groups in the coordinating ligands is disordered over two positions, with an occupancy ratio of 58:42. There is intermolecular hydrogen bonding between the solvent molecules and the amine and thiolate groups in the ligands. No other significant interactions are present in the crystal packing. Full Article text
hy Poly[3-methylpyridinium [(μ2-dihydrogen phosphito)bis(μ3-hydrogen phosphito)dizinc]] By journals.iucr.org Published On :: 2024-04-26 In the title compound, {(C6H8N)[Zn2(HPO3)2(H2PO3)]}n, the constituent ZnO4, HPO3 and H2PO3 polyhedra of the inorganic component are linked into (010) sheets by Zn—O—P bonds (mean angle = 134.4°) and the layers are reinforced by O—H⋯O hydrogen bonds. The protonated templates are anchored to the inorganic sheets via bifurcated N—H⋯(O,O) hydrogen bonds. Full Article text
hy (SC,RS)-Bromido(N-{4-methyl-1-[(4-methylphenyl)sulfanyl]pentan-2-yl}-N'-(pyridin-2-yl)imidazol-2-ylidene)palladium(II) bromide By journals.iucr.org Published On :: 2024-04-26 The molecule of the title NCNHCS pincer N-heterocyclic carbene palladium(II) complex, [PdBr(C21H25N3S)]Br, exhibits a slightly distorted square-planar coordination at the palladium(II) atom, with the five-membered chelate ring nearly planar. The six-membered chelate ring adopts an envelope conformation. Upon chelation, the sulfur atom becomes a stereogenic centre with an RS configuration induced by the chiral carbon of the precursor imidazolium salt. There are intramolecular C—H⋯Br—Pd hydrogen bonds in the structure. The two interstitial Br atoms, as the counter-anion of the structure, are both located on crystallographic twofold axes and are connected to the complex cations via C—H⋯·Br hydrogen bonds. Full Article text
hy 4-(1H-2,3-Dihydronaphtho[1,8-de][1,3,2]diazaborinin-2-yl)-1-ethylpyridin-1-ium iodide By journals.iucr.org Published On :: 2024-04-26 The title compound, C17H17BN3I, is a type of diazaborinane featuring substitution at the 1, 2, and 3 positions of the nitrogen–boron six-membered heterocycle. The organic molecule has a planar structure, the dihedral angle between the pyridyl ring and the fused ring system being 3.46 (4)°. In the crystal, molecules are stacked in a head-to-tail manner. The iodide ion makes close contacts with three organic molecules and supports the alternating stack. Full Article text
hy 4-(1H-2,3-Dihydronaphtho[1,8-de][1,3,2]diazaborinin-2-yl)-1-ethylpyridin-1-ium iodide monohydrate By journals.iucr.org Published On :: 2024-04-26 The cation of the title hydrated salt, C17H17BN3+·I−·H2O, is a diazaborinane featuring substitution at the 1, 2, and 3 positions in the nitrogen–boron six-membered heterocycle. The cation is approximately planar with a dihedral angle between the pyridyl ring and the diazaborinane ring system of 5.40 (5)°. In the crystal, the cations stack along [100] in an alternating head-to-tail manner, while the iodide ion and water molecule form one-dimensional hydrogen-bonded chains beside the cation stack. The cation stacks and I−–water chains are crosslinked by N—H⋯I and N—H⋯O hydrogen bonds. Full Article text
hy Methyl 2-hydroxy-4-iodobenzoate By journals.iucr.org Published On :: 2024-05-17 The structure of the title compound, C8H7IO3, at 90 K has monoclinic (P21/c) symmetry. The extended structure is layered and displays intermolecular and intramolecular hydrogen bonding arising from the same OH group. Full Article text
hy (5-Fluoro-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-1-ido-κN1)(1,4,8,11-tetraazacyclotetradecane-κ4N)zinc(II) perchlorate By journals.iucr.org Published On :: 2024-05-21 In the structure of the title complex, [Zn(C4H2FN2O2)(C10H24N4)]ClO4, the zinc(II) ion forms coordination bonds with the four nitrogen atoms of cyclam (1,4,8,11-tetraazacyclotetradecane or [14]aneN4) as well as with the nitrogen atom of a deprotonated 5-fluorouracil ion (FU−). Cyclam adopts a trans-I type conformation within this structure. The coordination structure of the zinc(II) ion is a square pyramid with a distorted base plane formed by the four nitrogen atoms of the cyclam. FU− engages in intermolecular hydrogen bonding with neighboring FU− molecules and with the cyclam molecule. Full Article text
hy Chlorido(2-{(2-hydroxyethyl)[tris(hydroxymethyl)methyl]amino}ethanolato-κ5N,O,O',O'',O''')copper(II) By journals.iucr.org Published On :: 2024-05-24 The title complex, [Cu(C8H18NO5)Cl] or [Cu(H4bis-tris)Cl], was obtained starting from the previously reported [Cu(H5bis-tris)Cl]Cl compound. The deprotonation of the aminopolyol ligand H5bis-tris {[bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane, C8H19NO5} promotes the formation of a very strong O—H⋯O intermolecular hydrogen bond, characterized by an H⋯O separation of 1.553 (19) Å and an O—H⋯O angle of 178 (4)°. The remaining hydroxy groups are also engaged in hydrogen bonds, forming R22(8), R44(16), R44(20) and R44(22) ring motifs, which stabilize the triperiodic supramolecular network. Full Article text
hy Tetrakis(2,4,6-trimethylanilido)tin(IV) By journals.iucr.org Published On :: 2024-05-31 Transamination of Sn(NMe2)4 with H2NMes (Mes is 2,4,6-trimethylphenyl, C9H11) led to the formation of the title compound, [Sn(C9H12N)4] or Sn(NHMes)4, which crystallizes in the tetragonal space group Poverline{4}21c, with four formula units per unit cell. The molecular structure consists of a central tin(IV) atom, which is surrounded by four NHMes groups. Sn(NHMes)4 possesses crystallographically imposed overline{4} symmetry. The SnN4 coordination polyhedron is best described as a compressed bisphenoid. Full Article text
hy (S)-2-Carboxyethyl l-cysteinyl sulfone By journals.iucr.org Published On :: 2024-05-31 The title compound {systematic name: (2S)-2-azaniumyl-3-[(2-carboxyethane)sulfonyl]propanoate}, C6H11NO6S, forms enantiopure crystals in the monoclinic space group P21 and exists as a zwitterion, with a protonated α-amino group and a deprotonated α-carboxyl group. Both the carboxyl groups and the amino group are involved in an extensive multicentered intermolecular hydrogen-bonding scheme. In the crystal, the diperiodic network of hydrogen bonds propagates parallel to (101) and involves interconnected heterodromic R43(10) rings. Electrostatic forces are major contributors to the structure energy, which was estimated by DFT calculations as Etotal = −333.5 kJ mol−1. Full Article text
hy Poly[[{μ2-5-[(dimethylamino)(thioxo)methoxy]benzene-1,3-dicarboxylato-κ4O1,O1':O3,O3'}(μ2-4,4'-dipyridylamine-κ2N4:N4')cobalt(II)] dimethylformamide hemisolvate monohydrate] By journals.iucr.org Published On :: 2024-06-04 In the crystal structure of the title compound, {[Co(C11H9NSO5)(C10H9N3)]0.5C3H7NO·H2O}n or {[Co(dmtb)(dpa)]·0.5DMF·H2O}n (dmtb2– = 5-[(dimethylamino)thioxomethoxy]-1,3-benzenedicarboxylate and dpa = 4,4'-dipyridylamine), an assembly of periodic [Co(C11H9NSO5)(C10H9N3)]n layers extending parallel to the bc plane is present. Each layer is constituted by distorted [CoO4N2] octahedra, which are connected through the μ2-coordination modes of both dmtb2– and dpa ligands. Occupationally disordered water and dimethylformamide (DMF) solvent molecules are located in the voids of the network to which they are connected through hydrogen-bonding interactions. Full Article text
hy 2-Oxo-2H-chromen-4-yl 3,3-dimethylbutanoate By journals.iucr.org Published On :: 2024-05-31 In the crystal of the title compound, C15H16O4, the molecules are connected through C—H⋯O hydrogen bonds, generating [100] chains, which are crosslinked by weak π–π stacking interactions. Full Article text
hy (2,5-Dimethylimidazole){N,N',N'',N'''-[porphyrin-5,10,15,20-tetrayltetra(2,1-phenylene)]tetrakis(pyridine-3-carboxamide)}manganese(II) chlorobenzene disolvate By journals.iucr.org Published On :: 2024-06-04 In the title compound, [Mn(C68H44N12O4)(C5H8N2)]·2C6H5Cl, the central MnII ion is coordinated by four pyrrole N atoms of the porphyrin core in the basal sites and one N atom of the 2,5-dimethylimidazole ligand in the apical site. Two chlorobenzene solvent molecules are also present in the asymmetric unit. Due to the apical imidazole ligand, the Mn atom is displaced out of the 24-atom porphyrin mean plane by 0.66 Å. The average Mn—Np (p = porphyrin) bond length is 2.143 (8) Å, and the axial Mn—NIm (Im = 2,5-dimethylimidazole) bond length is 2.171 (8) Å. The structure displays intermolecular and intramolecular N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonding. The crystal studied was refined as a two-component inversion twin. Full Article text
hy (4-Butyl-1-ethyl-1,2,4-triazol-5-ylidene)[(1,2,5,6-η)-cycloocta-1,5-diene](triphenylphosphane)iridium(I) tetrafluoridoborate By journals.iucr.org Published On :: 2024-06-07 The title compound, [Ir(C8H12)(C8H15N3)(C18H15P)]BF4, a new triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetrafluoridoborate counter-anion, crystallizes with two cations and two anions in the asymmetric unit of space group Pc. The Ir centers of the cations have distorted square-planar conformations, formed by a bidentate (η2 + η2) cycloocta-1,5-diene (COD) ligand, an N-heterocyclic carbene and a triphenylphosphane ligand with the NHC carbon atom and P atom being cis. In the extended structure, non-classical C–H⋯F hydrogen bonds, one of which is notably short (H⋯F = 2.21 Å), link the cations and anions. The carbon atoms of one of the COD ligands are disordered over adjacent sites in a 0.62:0.38 ratio. Full Article text
hy Triacetonitrile(1,4,7-trimethyl-1,4,7-triazacyclononane)cobalt(II) bis(tetraphenylborate) By journals.iucr.org Published On :: 2024-06-11 The title cobalt(II) complex, [Co(C2H3N)3(C9H21N3)](C24H20B)2 or [(tacn)Co(NCMe)3][BPh4]2, has been characterized by single-crystal X-ray diffraction. It incorporates the well-known macrocyclic tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) ligand, which is coordinated facially to the metal center. The complex crystallizes in space group P21/c with Z = 4. The divalent cobalt ion exhibits a six-coordinate octahedral geometry by one tacn and three acetonitrile ligands. Two non-coordinating tetraphenylborate (BPh4−) anions are also present. Full Article text
hy Bis{(S)-(−)-N-[(2-biphenyl)methylidene]-1-(4-methoxyphenyl)ethylamine-κN}dichloridopalladium(II) By journals.iucr.org Published On :: 2024-06-16 The PdII complex bis{(S)-(−)-N-[(biphenyl-2-yl)methylidene]1-(4-methoxyphenyl)ethanamine-κN}dichloridopalladium(II), [PdCl2(C22H21NO)2], crystallizes in the monoclinic Sohncke space group P21 with a single molecule in the asymmetric unit. The coordination environment around the palladium is slightly distorted square planar. The N—Pd—Cl bond angles are 91.85 (19), 88.10 (17), 89.96 (18), and 90.0 (2)°, while the Pd—Cl and Pd—N bond lengths are 2.310 (2) and 2.315 (2) Å and 2.015 (2) and 2.022 (6) Å, respectively. The crystal structure features intermolecular N—H⋯Cl and intramolecular C—H⋯Pd interactions, which lead to the formation of a supramolecular framework structure. Full Article text
hy Bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate By journals.iucr.org Published On :: 2024-06-18 The interaction between 8-hydroxyquinoline (8HQ, C9H7NO) and naphthalene-1,5-disulfonic acid (H2NDS, C10H8O6S2) in aqueous media results in the formation of the salt hydrate bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate, 2C9H8NO+·C10H6O6S22−·4H2O. The asymmetric unit comprises one protonated 8HQ+ cation, half of an NDS2– dianion symmetrically disposed around a center of inversion, and two water molecules. Within the crystal structure, these components are organized into chains along the [010] and [10overline{1}] directions through O—H⋯O and N—H⋯O hydrogen-bonding interactions, forming a di-periodic network parallel to (101). Additional stabilizing interactions such as C—H⋯O, C—H⋯π, and π–π interactions extend this arrangement into a tri-periodic network structure Full Article text
hy 6-[4-(tert-Butyldimethylsilyloxy)phenyl]-1-oxaspiro[2.5]heptane By journals.iucr.org Published On :: 2024-06-21 The title compound, C19H30O2Si, has triclinic (Poverline{1}) symmetry at 100 K. The O atom of the epoxide group has a pseudoaxial orientation and the dihedral angle between the cyclohexyl and benzene rings is 85.80 (8)°. The C—O—Si—Ct (t = tert-butyl) torsion angle is −177.40 (14)°. In the crystal, pairwise C—H⋯O links connect the molecules into inversion dimers featuring R22(8) loops. Full Article text
hy 2-(Pyridin-4-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine By journals.iucr.org Published On :: 2024-06-28 The title compound, C15H12BN3, is a type of diazaborinane featuring substitution at 1, 2, and 3 positions in the nitrogen–boron six-membered heterocycle. It is comprised of two almost planar units, the pyridyl ring and the Bdan (dan = 1,8-diaminonaphtho) group, which subtend a dihedral angle of 24.57 (5)°. In the crystal, the molecules are linked into R44(28) hydrogen-bonding networks around the fourfold inversion axis, giving cyclic tetramers. The molecules form columnar stacks along the c axis. Full Article text
hy trans-Diaquatetrakis(tetrahydrofuran-κO)iron(II) μ-carbonyl-tetradecacarbonyltetrachlorido-μ-dimethylsilanediolato-tetragalliumtetrairon(7 Ga–Fe)(Fe–Fe) tetrahydro By journals.iucr.org Published On :: 2024-06-28 The title compound, [Fe(C4H8O)4(H2O)2][Fe4Ga4(C2H6O2Si)Cl4(CO)15]·4C4H8O, consists of an iron(II) cation octahedrally coordinated by two water molecules (trans) with four tetrahydrofurans (THF) at equatorial sites. Two additional THF molecules are hydrogen bonded to each of the water molecules. The dianion of the title compound is an organometallic butterfly complex with a dimethyl siloxane core and two iron-gallium fragments. The lengths of the iron to gallium metal–metal bonds range from 2.3875 (6) to 2.4912 (6) Å. Full Article text
hy Bis(ethylenediammonium) μ-ethylenediaminetetraacetato-1κ3O,N,O':2κ3O'',N',O'''-bis[trioxidomolybdate(VI)] tetrahydrate By journals.iucr.org Published On :: 2024-07-12 The title compound, (C2H10N2)2[(C10H12N2O8)(MoO3)2]·4H2O, which crystallizes in the monoclinic C2/c space group, was obtained by mixing molybdenum oxide, ethylenediamine and ethylenediaminetetraacetic acid (H4edta) in a 2:4:1 ratio. The complex anion contains two MoO3 units bridged by an edta4− anion. The midpoint of the central C—C bond of the edta4− anion is located on a crystallographic inversion centre. The independent Mo atom is tridentately coordinated by a nitrogen atom and two carboxylate groups of the edta4− ligand, together with the three oxo ligands, producing a distorted octahedral coordination environment. In the three-dimensional supramolecular crystal structure, the dinuclear anions, the organoammonium counter-ions and the solvent water molecules are linked by N—H⋯Ow, N—H⋯Oedta and O—H⋯O hydrogen bonds. Full Article text
hy Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I) By journals.iucr.org Published On :: 2024-07-23 A new neutral triazole-based N-heterocyclic carbene rhodium(I) complex [RhCl(C8H12)(C8H15N3)], has been synthesized and structurally characterized. The complex crystallizes with two molecules in the asymmetric unit. The central rhodium(I) atom has a distorted square-planar coordination environment, formed by a cycloocta-1,5-diene (COD) ligand, an N-heterocyclic carbene (NHC) ligand, and a chlorido ligand. The bond lengths are unexceptional. A weak intermolecular non-standard hydrogen-bonding interaction exists between the chlorido and NHC ligands. Full Article text