ani Maintaining "Good" Care: An Articulation Work Perspective on Organizational Ethics in the Healthcare Sector By www.newswise.com Published On :: Fri, 08 Nov 2024 09:15:34 EST Full Article
ani This Year's Top 100 Companies See Highest Number of Female Executives By world.kbs.co.kr Published On :: Mon, 11 Nov 2024 18:05:09 +0900 [Domestic] : The number of female executives in the country's top 100 companies has reached a record high. According to global headhunting firm Unico Search on Monday, the number of female executives in South Korea's top 100 companies reached 463 this year, up five-point-five percent, or 24 from last ...[more...] Full Article Domestic
ani US Experts: Uranium Enrichment Facility Images Released by N. Korea Differs from that of 2010 By world.kbs.co.kr Published On :: Thu, 19 Sep 2024 17:55:20 +0900 [Science] : Two U.S. experts who inspected North Korea’s uranium enrichment facility at the Yongbyon nuclear complex in 2010 have analyzed recent images of a similar facility in the North and pointed out differences. Stanford University professor emeritus Siegfried Hecker and Robert Carlin, a scholar at the ...[more...] Full Article Science
ani 10 Largest Companies in the World, Ranked by Market Value By money.howstuffworks.com Published On :: Thu, 15 Aug 2024 10:10:02 -0400 The world’s biggest companies don't just shape the global economy in an abstract sense; they provide the products and services that make modern life more convenient and connected than ever before. They set trends, drive innovation and set the course for smaller companies in every sector from technology to healthcare to finance. Full Article
ani Archangel Roles and Significance in Christianity and Catholicism By people.howstuffworks.com Published On :: Tue, 12 Nov 2024 19:15:03 -0500 In Christian tradition, an archangel is among of the most revered and powerful spiritual beings in the celestial hierarchy. Mentioned directly in both the Old and New Testaments, these angels serve as messengers, protectors and agents of God's divine will. Full Article
ani KBS and 11 Other Organizations to Take Part in K-Content Strategic Fund By world.kbs.co.kr Published On :: Wed, 02 Oct 2024 15:37:04 +0900 [Culture] : To strengthen the global competitiveness of K-contents, eleven organizations will pool their resources to create a strategic fund worth approximately 600 billion won, or over 454 million U.S. dollars. The Ministry of Culture, Sports and Tourism and the Ministry of Science and ICT announced Wednesday that ...[more...] Full Article Culture
ani Pianist Lim Yun-chan Wins Gramophone Award By world.kbs.co.kr Published On :: Thu, 03 Oct 2024 11:28:19 +0900 [Culture] : Pianist Lim Yun-chan has won the prestigious Gramophone Classical Music Award in the piano category. Lim received the award for his album, "Chopin: Etudes" during a ceremony on Wednesday in London, becoming the first South Korean to win the award in the piano category. Lim also won the special award of ...[more...] Full Article Culture
ani Korean Pianist Lim Yunchan Wins Gramophone Classical Music Award By world.kbs.co.kr Published On :: Thu, 03 Oct 2024 14:20:12 +0900 [Culture] : Anchor: South Korean Pianist Lim Yunchan has won the Gramophone Classical Music Award in the piano category. This marks the first time that a Korean pianist has received the prestigious prize, often called the Oscars of the classical music world. Kim Bum-soo has more. Report: [Sound bite: Lim ...[more...] Full Article Culture
ani Quartz vs. Granite: Which Countertops Are More Durable? By home.howstuffworks.com Published On :: Tue, 13 Feb 2024 11:51:51 -0500 If you're in the process of choosing countertop materials for your kitchen or bathroom, you already know two of the most popular options are quartz and granite countertops. Full Article
ani Quartz vs. Granite: Which Countertops Are More Durable? By home.howstuffworks.com Published On :: Mon, 29 Apr 2024 14:16:11 -0400 If you're in the process of choosing countertop materials for your kitchen or bathroom, you already know two of the most popular options are quartz and granite countertops. Full Article
ani A contribution to the crystal chemistry and topology of organic thiosulfates: bis(1-methylpiperazinium)·S2O3·H2O versus 1-methylpiperazinediium·S2O3·3H2O By journals.iucr.org Published On :: Crystal structure and topology of two new thiosulfates formed with mono- and diprotonated species of 1-methylpiperazine is reported. Full Article text
ani Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate By journals.iucr.org Published On :: Incommensurate phase of potassium guaninate monohydrate is the first example of a modulation in purine derivatives and of a high-pressure incommensurate crystal structure to be solved for an organic compound. Full Article text
ani Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate By journals.iucr.org Published On :: 2024-10-08 The crystal structure of the incommensurate modulated phase of potassium guaninate monohydrate has been solved on the basis of high-pressure single-crystal X-ray diffraction data. The modulated structure was described as a `mosaic' sequence of three different local configurations of two neighbouring guaninate rings. In contrast to known examples of incommensurate modulated organic compounds, the modulation functions of all atoms are discontinuous. This is the first example of the experimental detection of an incommensurate modulated crystal structure that can be modelled using the special `soliton mode' modulation function proposed by Aramburu et al. [(1995), J. Phys. Condens. Matter, 7, 6187–6196]. Full Article text
ani Structures of Brucella ovis leucine-, isoleucine-, valine-, threonine- and alanine-binding protein reveal a conformationally flexible peptide-binding cavity By journals.iucr.org Published On :: 2024-08-23 Brucella ovis is an etiologic agent of ovine epididymitis and brucellosis that causes global devastation in sheep, rams, goats, small ruminants and deer. There are no cost-effective methods for the worldwide eradication of ovine brucellosis. B. ovis and other protein targets from various Brucella species are currently in the pipeline for high-throughput structural analysis at the Seattle Structural Genomics Center for Infectious Disease (SSGCID), with the aim of identifying new therapeutic targets. Furthermore, the wealth of structures generated are effective tools for teaching scientific communication, structural science and biochemistry. One of these structures, B. ovis leucine-, isoleucine-, valine-, threonine- and alanine-binding protein (BoLBP), is a putative periplasmic amino acid-binding protein. BoLBP shares less than 29% sequence identity with any other structure in the Protein Data Bank. The production, crystallization and high-resolution structures of BoLBP are reported. BoLBP is a prototypical bacterial periplasmic amino acid-binding protein with the characteristic Venus flytrap topology of two globular domains encapsulating a large central cavity containing the peptide-binding region. The central cavity contains small molecules usurped from the crystallization milieu. The reported structures reveal the conformational flexibility of the central cavity in the absence of bound peptides. The structural similarity to other LBPs can be exploited to accelerate drug repurposing. Full Article text
ani Animations, videos and 3D models for teaching space-group symmetry By journals.iucr.org Published On :: Animations, videos and 3D models have been designed to visualize the effects of symmetry operators on selected cases of crystal structures, pointing out the relationship with the diagrams published in International Tables for Crystallography, Vol. A. Full Article text
ani Improving the reliability of small- and wide-angle X-ray scattering measurements of anisotropic precipitates in metallic alloys using sample rotation By journals.iucr.org Published On :: Rotations of small- and wide-angle X-ray scattering samples during acquisition are shown to give a drastic improvement in the reliability of the characterization of anisotropic precipitates in metallic alloys. Full Article text
ani Advanced EXAFS analysis techniques applied to the L-edges of the lanthanide oxides By journals.iucr.org Published On :: The L-edge EXAFS of the entire set of lanthanide oxides were collected and modeled, taking into consideration the aggregation of inequivalent absorbing sites, geometric parameterization of the crystal lattice and multielectron excitation removal. Full Article text
ani Crystal structure and Hirshfeld surface analysis of bis(benzoylacetonato)(ethanol)dioxidouranium(VI) By journals.iucr.org Published On :: In the complex, the ligand binds to the metal through an oxygen atom. The geometry of the seven-coordinate U atom is pentagonal bipyramidal, with the uranyl O atoms in apical positions. Full Article text
ani Animations, videos and 3D models for teaching space-group symmetry By journals.iucr.org Published On :: 2024-10-16 A series of animations, videos and 3D models that were developed, filmed or built to teach the symmetry properties of crystals are described. At first, these resources were designed for graduate students taking a basic crystallography course, coming from different careers, at the National Autonomous University of Mexico. However, the COVID-19 pandemic had the effect of accelerating the generation of didactic material. Besides our experience with postgraduate students, we have noted that 3D models attract the attention of children, and therefore we believe that these models are particularly useful for teaching children about the assembled arrangements of crystal structures. Full Article text
ani Improving the reliability of small- and wide-angle X-ray scattering measurements of anisotropic precipitates in metallic alloys using sample rotation By journals.iucr.org Published On :: 2024-11-04 Nanometric precipitates in metallic alloys often have highly anisotropic shapes. Given the large grain size and non-random texture typical of these alloys, performing small- and wide-angle X-ray scattering (SAXS/WAXS) measurements on such samples for determining their characteristics (typically size and volume fraction) results in highly anisotropic and irreproducible data. Rotations of flat samples during SAXS/WAXS acquisitions are presented here as a solution to these anisotropy issues. Two aluminium alloys containing anisotropic precipitates are used as examples to validate the approach with a −45°/45° angular range. Clear improvements can be seen on the SAXS I(q) fitting and the consistency between the different SAXS/WAXS measurements. This methodology results in more reliable measurements of the precipitate's characteristics, and thus allows for time- and space-resolved measurements with higher accuracy. Full Article text
ani Stability of inorganic ionic structures: the uniformity approach By journals.iucr.org Published On :: 2024-10-14 The crystal structure uniformity is numerically estimated as the standard deviation of the crystal space quantizer 〈G3〉. This criterion has been applied to explore the uniformity of ionic sublattices in 21465 crystal structures of inorganic ionic compounds. In most cases, at least one kind of sublattice (whole ionic lattice, cationic or anionic sublattice) was found to be highly uniform with a small 〈G3〉 value. Non-uniform structures appeared to be either erroneous or essentially non-ionic. As a result, a set of uniformity criteria is proposed for the estimation of the stability of ionic crystal structures. Full Article text
ani Lattice symmetry relaxation as a cause for anisotropic line broadening and peak shift in powder diffraction By journals.iucr.org Published On :: 2024-10-03 In powder diffraction, lattice symmetry relaxation causes a peak to split into several components which are not resolved if the degree of desymmetrization is small (pseudosymmetry). Here the equations which rule peak splitting are elaborated for the six minimal symmetry transitions, showing that the resulting split peaks are generally broader and asymmetric, and suffer an hkl-dependent displacement with respect to the high-symmetry parent peak. These results will be of help in Rietveld refinement of pseudosymmetric structures where an exact interpretation of peak deformation is required. Full Article text
ani Angle-resolved X-ray emission spectroscopy facility realized by an innovative spectrometer rotation mechanism at SPring-8 BL07LSU By journals.iucr.org Published On :: 2024-02-01 The X-ray emission spectrometer at SPring-8 BL07LSU has recently been upgraded with advanced modifications that enable the rotation of the spectrometer with respect to the scattering angle. This major upgrade allows the scattering angle to be flexibly changed within the range of 45–135°, which considerably simplifies the measurement of angle-resolved X-ray emission spectroscopy. To accomplish the rotation system, a sophisticated sample chamber and a highly precise spectrometer rotation mechanism have been developed. The sample chamber has a specially designed combination of three rotary stages that can smoothly move the connection flange along the wide scattering angle without breaking the vacuum. In addition, the spectrometer is rotated by sliding on a flat metal surface, ensuring exceptionally high accuracy in rotation and eliminating the need for any further adjustments during rotation. A control system that integrates the sample chamber and rotation mechanism to automate the measurement of angle-resolved X-ray emission spectroscopy has also been developed. This automation substantially streamlines the process of measuring angle-resolved spectra, making it far easier than ever before. Furthermore, the upgraded X-ray emission spectrometer can now also be utilized in diffraction experiments, providing even greater versatility to our research capabilities. Full Article text
ani The role of carboxylate ligand orbitals in the breathing dynamics of a metal-organic framework by resonant X-ray emission spectroscopy By journals.iucr.org Published On :: 2024-02-16 Metal-organic frameworks (MOFs) exhibit structural flexibility induced by temperature and guest adsorption, as demonstrated in the structural breathing transition in certain MOFs between narrow-pore and large-pore phases. Soft modes were suggested to entropically drive such pore breathing through enhanced vibrational dynamics at high temperatures. In this work, oxygen K-edge resonant X-ray emission spectroscopy of the MIL-53(Al) MOF was performed to selectively probe the electronic perturbation accompanying pore breathing dynamics at the ligand carboxylate site for metal–ligand interaction. It was observed that the temperature-induced vibrational dynamics involves switching occupancy between antisymmetric and symmetric configurations of the carboxylate oxygen lone pair orbitals, through which electron density around carboxylate oxygen sites is redistributed and metal–ligand interactions are tuned. In turn, water adsorption involves an additional perturbation of π orbitals not observed in the structural change solely induced by temperature. Full Article text
ani X-ray phase-contrast tomography of cells manipulated with an optical stretcher By journals.iucr.org Published On :: 2024-06-11 X-rays can penetrate deeply into biological cells and thus allow for examination of their internal structures with high spatial resolution. In this study, X-ray phase-contrast imaging and tomography is combined with an X-ray-compatible optical stretcher and microfluidic sample delivery. Using this setup, individual cells can be kept in suspension while they are examined with the X-ray beam at a synchrotron. From the recorded holograms, 2D phase shift images that are proportional to the projected local electron density of the investigated cell can be calculated. From the tomographic reconstruction of multiple such projections the 3D electron density can be obtained. The cells can thus be studied in a hydrated or even living state, thus avoiding artifacts from freezing, drying or embedding, and can in principle also be subjected to different sample environments or mechanical strains. This combination of techniques is applied to living as well as fixed and stained NIH3T3 mouse fibroblasts and the effect of the beam energy on the phase shifts is investigated. Furthermore, a 3D algebraic reconstruction scheme and a dedicated mathematical description is used to follow the motion of the trapped cells in the optical stretcher for multiple rotations. Full Article text
ani {N-[1-(2-Oxidophenyl)ethylidene]-dl-alaninato}(pentane-1,5-diyl)silicon(IV) By journals.iucr.org Published On :: 2024-03-19 The title SiIV complex, C16H21NO3Si, is built up by a tridentate dinegative Schiff base ligand bound to a silacyclohexane unit. The coordination geometry of the pentacoordinated SiIV atom is a distorted trigonal bipyramid. The presence of the silacyclohexane ring in the complex leads to an unusual coordination geometry of the SiIV atom with the N atom from the Schiff base ligand and an alkyl-C atom in apical positions of the trigonal bipyramid. There is a disorder of the methyl group at the imine bond with two orientations resolved for the H atoms [major orientation = 0.55 (3)]. In the crystal, C—H⋯O interactions are found within corrugated layers of molecules parallel to the ab plane. Full Article text
ani 2-(10-Bromoanthracen-9-yl)-N-phenylaniline By journals.iucr.org Published On :: 2024-05-31 In the title compound, C26H18BrN, the central benzene ring makes dihedral angles with its adjacent anthracene ring system and pendant benzene ring of 87.49 (13) and 62.01 (17)°, respectively. The N—H moiety is sterically blocked from forming a hydrogen bond, but weak C—H⋯π interactions occur in the extended structure. Full Article text
ani Tetrakis(2,4,6-trimethylanilido)tin(IV) By journals.iucr.org Published On :: 2024-05-31 Transamination of Sn(NMe2)4 with H2NMes (Mes is 2,4,6-trimethylphenyl, C9H11) led to the formation of the title compound, [Sn(C9H12N)4] or Sn(NHMes)4, which crystallizes in the tetragonal space group Poverline{4}21c, with four formula units per unit cell. The molecular structure consists of a central tin(IV) atom, which is surrounded by four NHMes groups. Sn(NHMes)4 possesses crystallographically imposed overline{4} symmetry. The SnN4 coordination polyhedron is best described as a compressed bisphenoid. Full Article text
ani Dichloridotetrakis(3-methoxyaniline)nickel(II) By journals.iucr.org Published On :: 2024-08-13 The reaction of nickel(II) chloride with 3-methoxyaniline yielded dichloridotetrakis(3-methoxyaniline)nickel(II), [NiCl2(C7H9NO)4], as yellow crystals. The NiII ion is pseudo-octahedral with the chloride ions trans to each other. The four 3-methoxyaniline ligands differ primarily due to different conformations about the Ni—N bond, which also affect the hydrogen bonding. Intermolecular N—H⋯ Cl hydrogen bonds and short Cl⋯Cl contacts between molecules link them into chains parallel to the b axis. Full Article text
ani Poly[tris(2-aminobutan-1-ol)copper(II) [hexakis-μ2-cyanido-κ12C:N-tetracopper(I)] bis(2-aminobutan-1-olato)aquacopper(II) monohydrate] By journals.iucr.org Published On :: 2024-08-30 The title structure, {[Cu(C4H11NO)3][Cu4(CN)6]·[Cu(C4H10NO)2(H2O)]·H2O}n, is made up of diperiodic honeycomb CuICN networks built from [Cu4(CN)6]2− units, together with two independent CuII complexes: six-coordinate [Cu(CH3CH2CH(NH2)CH2OH)3]2+ cations, and five-coordinate [Cu(CH3CH2CH(NH2)CH2O)2·H2O] neutral species. The two CuII complexes are not covalently bonded to the CuICN networks. Strong O—H⋯O hydrogen bonds link the CuII complexes into pairs and the pairs are hydrogen bonded into chains along the crystallographic b axis via the hydrate water molecule. In addition, O—H⋯(CN) and N—H⋯(CN) hydrogen bonds link the cations to the CuCN network. In the honeycomb polymeric moiety, all bridging cyanido ligands are disordered over two orientations, head-to-tail and tail-to-head, with occupancies for C and N atoms varying for each CN group. Full Article text
ani (Z)-N-(2,6-Diisopropylphenyl)-1-[(2-methoxyphenyl)amino]methanimine oxide By journals.iucr.org Published On :: 2024-10-21 The molecular structure of the title compound, C20H26N2O2 reveals non-co-planarity between the central formamidine backbone and each of the outer methoxy- and i-propyl- substituted benzene rings with dihedral angles of 7.88 (15) and 81.17 (15)°, respectively, indicating significant twists in the molecule. In the crystal, intermolecular C—H⋯O interactions, forming an R34(30) graph set, occur within a two-dimensional layer that extends along the ac plane. Full Article text
ani (Z)-N-(2,6-Dimethylphenyl)-1-[(2-methoxyphenyl)amino]methanimine oxide methanol monosolvate By journals.iucr.org Published On :: 2024-10-21 In the title solvate, C16H18N2O2·CH4O, the dihedral angles between the formamidine backbone and the pendant 2-methoxyphenyl and 2,6-dimethylphenyl groups are 14.84 (11) and 81.61 (12)°, respectively. In the crystal, the components are linked by C—H⋯O, O—H⋯O and C—H⋯ π hydrogen bonds, generating a supramolecular chain that extends along the crystallographic a-axis direction. Full Article text
ani Structure and absolute configuration of natural fungal product beauveriolide I, isolated from Cordyceps javanica, determined by 3D electron diffraction By journals.iucr.org Published On :: 2024-02-27 Beauveriolides, including the main beauveriolide I {systematic name: (3R,6S,9S,13S)-9-benzyl-13-[(2S)-hexan-2-yl]-6-methyl-3-(2-methylpropyl)-1-oxa-4,7,10-triazacyclotridecane-2,5,8,11-tetrone, C27H41N3O5}, are a series of cyclodepsipeptides that have shown promising results in the treatment of Alzheimer's disease and in the prevention of foam cell formation in atherosclerosis. Their crystal structure studies have been difficult due to their tiny crystal size and fibre-like morphology, until now. Recent developments in 3D electron diffraction methodology have made it possible to accurately study the crystal structures of submicron crystals by overcoming the problems of beam sensitivity and dynamical scattering. In this study, the absolute structure of beauveriolide I was determined by 3D electron diffraction. The cyclodepsipeptide crystallizes in the space group I2 with lattice parameters a = 40.2744 (4), b = 5.0976 (5), c = 27.698 (4) Å and β = 105.729 (6)°. After dynamical refinement, its absolute structure was determined by comparing the R factors and calculating the z-scores of the two possible enantiomorphs of beauveriolide I. Full Article text
ani Crystal structures, electron spin resonance, and thermogravimetric analysis of three mixed-valence copper cyanide polymers By journals.iucr.org Published On :: 2024-05-01 The crystal structures of three mixed-valence copper cyanide alkanolamine polymers are presented, together with thermogravimetric analysis (TGA) and electron spin resonance (ESR) data. In all three structures, a CuII moiety on a crystallographic center of symmetry is coordinated by two alkanolamines and links two CuICN chains via cyanide bridging groups to form diperiodic sheets. The sheets are linked together by cuprophilic CuI–CuI interactions to form a three-dimensional network. In poly[bis(μ-3-aminopropanolato)tetra-μ-cyanido-dicopper(I)dicopper(II)], [Cu4(CN)4(C3H8NO)2]n, 1, propanolamine bases have lost their hydroxyl H atoms and coordinate as chelates to two CuII atoms to form a dimeric CuII moiety bridged by the O atoms of the bases with CuII atoms in square-planar coordination. The ESR spectrum is very broad, indicating exchange between the two CuII centers. In poly[bis(2-aminopropanol)tetra-μ-cyanido-dicopper(I)copper(II)], [Cu3(CN)4(C3H9NO)2]n, 2, and poly[bis(2-aminoethanol)tetra-μ-cyanido-dicopper(I)copper(II)], [Cu3(CN)4(CH7NO)2]n, 3, a single CuII atom links the CuICN chains together via CN bridges. The chelating alkanolamines are not ionized, and the OH groups form rather long bonds in the axial positions of the octahedrally coordinated CuII atoms. The coordination geometries of CuII in 2 and 3 are almost identical, except that the Cu—O distances are longer in 2 than in 3, which may explain their somewhat different ESR spectra. Thermal decomposition in 2 and 3, but not in 1, begins with the loss of HCN(g), and this can be correlated with the presence of OH protons on the ligands in 2 and 3, which are not present in 1. Full Article text
ani Using cocrystals as a tool to study non-crystallizing molecules: crystal structure, Hirshfeld surface analysis and computational study of the 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine and acetic By journals.iucr.org Published On :: 2024-07-05 Using a 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π interactions. The cocrystal crystallizes in the triclinic space group P1. Through crystallographic analysis and computational studies, we reveal the molecular arrangement within this cocrystal, demonstrating the presence of hydrogen bonding between the acetic acid molecule and the pyridyl group, along with π–π interactions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π interactions without necessitating full halogenation of the aromatic ring. Full Article text
ani TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic molecules By journals.iucr.org Published On :: 2024-06-27 3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered l-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X—H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for l-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering. Full Article text
ani Concerning the structures of Lewis base adducts of titanium(IV) hexafluoroisopropoxide By journals.iucr.org Published On :: 2024-08-13 The reaction of titanium(IV) chloride with sodium hexafluoroisopropoxide, carried out in hexafluoroisopropanol, produces titanium(IV) hexafluoroisopropoxide, which is a liquid at room temperature. Recrystallization from coordinating solvents, such as acetonitrile or tetrahydrofuran, results in the formation of bis-solvate complexes. These compounds are of interest as possible Ziegler–Natta polymerization catalysts. The acetonitrile complex had been structurally characterized previously and adopts a distorted octahedral structure in which the nitrile ligands adopt a cis configuration, with nitrogen lone pairs coordinated to the metal. The low-melting tetrahydrofuran complex has not provided crystals suitable for single-crystal X-ray analysis. However, the structure of chloridotris(hexafluoroisopropoxido-κO)bis(tetrahydrofuran-κO)titanium(IV), [Ti(C3HF6O)3Cl(C4H8O)2], has been obtained and adopts a distorted octahedral coordination geometry, with a facial arrangement of the alkoxide ligands and adjacent tetrahydrofuran ligands, coordinated by way of metal–oxygen polar coordinate interactions. Full Article text
ani Salt forms of amides: protonation of acetanilide By journals.iucr.org Published On :: 2024-08-06 Treating the amide acetanilide (N-phenylacetamide, C8H9NO) with aqueous strong acids allowed the structures of five hemi-protonated salt forms of acetanilide to be elucidated. N-(1-Hydroxyethylidene)anilinium chloride–N-phenylacetamide (1/1), [(C8H9NO)2H][Cl], and the bromide, [(C8H9NO)2H][Br], triiodide, [(C8H9NO)2H][I3], tetrafluoroborate, [(C8H9NO)2H][BF4], and diiodobromide hemi(diiodine), [(C8H9NO)2H][I2Br]·0.5I2, analogues all feature centrosymmetric dimeric units linked by O—H⋯O hydrogen bonds that extend into one-dimensional hydrogen-bonded chains through N—H⋯X interactions, where X is the halide atom of the anion. Protonation occurs at the amide O atom and results in systematic lengthening of the C=O bond and a corresponding shortening of the C—N bond. The size of these geometric changes is similar to those found for hemi-protonated paracetamol structures, but less than those in fully protonated paracetamol structures. The bond angles of the amide fragments are also found to change on protonation, but these angular changes are also influenced by conformation, namely, whether the amide group is coplanar with the phenyl ring or twisted out of plane. Full Article text
ani On the importance of crystal structures for organic thin film transistors By journals.iucr.org Published On :: 2024-09-04 Historically, knowledge of the molecular packing within the crystal structures of organic semiconductors has been instrumental in understanding their solid-state electronic properties. Nowadays, crystal structures are thus becoming increasingly important for enabling engineering properties, understanding polymorphism in bulk and in thin films, exploring dynamics and elucidating phase-transition mechanisms. This review article introduces the most salient and recent results of the field. Full Article text
ani Crystal clear: the impact of crystal structure in the development of high-performance organic semiconductors By journals.iucr.org Published On :: 2024-10-31 Full Article text
ani The crystal structure of mycothiol disulfide reductase (Mtr) provides mechanistic insight into the specific low-molecular-weight thiol reductase activity of Actinobacteria By journals.iucr.org Published On :: 2024-02-19 Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development. Full Article text
ani Protonation of histidine rings using quantum-mechanical methods By journals.iucr.org Published On :: 2024-07-25 Histidine can be protonated on either or both of the two N atoms of the imidazole moiety. Each of the three possible forms occurs as a result of the stereochemical environment of the histidine side chain. In an atomic model, comparing the possible protonation states in situ, looking at possible hydrogen bonding and metal coordination, it is possible to predict which is most likely to be correct. A more direct method is described that uses quantum-mechanical methods to calculate, also in situ, the minimum geometry and energy for comparison, and therefore to more accurately identify the most likely protonation state. Full Article text
ani Crystal structure of vancomycin bound to the resistance determinant d-alanine-d-serine By journals.iucr.org Published On :: 2024-01-26 Vancomycin is a glycopeptide antibiotic that for decades has been a mainstay of treatment for persistent bacterial infections. However, the spread of antibiotic resistance threatens its continued utility. In particular, vancomycin-resistant enterococci (VRE) have become a pressing clinical challenge. Vancomycin acts by binding and sequestering the intermediate Lipid II in cell-wall biosynthesis, specifically recognizing a d-alanine-d-alanine dipeptide motif within the Lipid II molecule. VRE achieve resistance by remodeling this motif to either d-alanine-d-lactate or d-alanine-d-serine; the former substitution essentially abolishes recognition by vancomycin of Lipid II, whereas the latter reduces the affinity of the antibiotic by roughly one order of magnitude. The complex of vancomycin bound to d-alanine-d-serine has been crystallized, and its 1.20 Å X-ray crystal structure is presented here. This structure reveals that the d-alanine-d-serine ligand is bound in essentially the same position and same pose as the native d-alanine-d-alanine ligand. The serine-containing ligand appears to be slightly too large to be comfortably accommodated in this way, suggesting one possible contribution to the reduced binding affinity. In addition, two flexible hydroxyl groups – one from the serine side chain of the ligand, and the other from a glucose sugar on the antibiotic – are locked into single conformations in the complex, which is likely to contribute an unfavorable entropic component to the recognition of the serine-containing ligand. Full Article text
ani Cocrystals of a coumarin derivative: an efficient approach towards anti-leishmanial cocrystals against MIL-resistant Leishmania tropica By journals.iucr.org Published On :: 2024-03-01 Leishmaniasis is a neglected parasitic tropical disease with numerous clinical manifestations. One of the causative agents of cutaneous leishmaniasis (CL) is Leishmania tropica (L. tropica) known for causing ulcerative lesions on the skin. The adverse effects of the recommended available drugs, such as amphotericin B and pentavalent antimonial, and the emergence of drug resistance in parasites, mean the search for new safe and effective anti-leishmanial agents is crucial. Miltefosine (MIL) was the first recommended oral medication, but its use is now limited because of the rapid emergence of resistance. Pharmaceutical cocrystallization is an effective method to improve the physicochemical and biological properties of active pharmaceutical ingredients (APIs). Herein, we describe the cocrystallization of coumarin-3-carboxylic acid (CU, 1a; 2-oxobenzopyrane-3-carboxylic acid, C10H6O4) with five coformers [2-amino-3-bromopyridine (1b), 2-amino-5-(trifluoromethyl)-pyridine (1c), 2-amino-6-methylpyridine (1d), p-aminobenzoic acid (1e) and amitrole (1f)] in a 1:1 stoichiometric ratio via the neat grinding method. The cocrystals 2–6 obtained were characterized via single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis, as well as Fourier transform infrared spectroscopy. Non-covalent interactions, such as van der Waals, hydrogen bonding, C—H⋯π and π⋯π interactions contribute significantly towards the packing of a crystal structure and alter the physicochemical and biological activity of CU. In this research, newly synthesized cocrystals were evaluated for their anti-leishmanial activity against the MIL-resistant L. tropica and cytotoxicity against the 3T3 (normal fibroblast) cell line. Among the non-cytotoxic cocrystals synthesized (2–6), CU:1b (2, IC50 = 61.83 ± 0.59 µM), CU:1c (3, 125.7 ± 1.15 µM) and CU:1d (4, 48.71 ± 0.75 µM) appeared to be potent anti-leishmanial agents and showed several-fold more anti-leishmanial potential than the tested standard drug (MIL, IC50 = 169.55 ± 0.078 µM). The results indicate that cocrystals 2–4 are promising anti-leishmanial agents which require further exploration. Full Article text
ani KINNTREX: a neural network to unveil protein mechanisms from time-resolved X-ray crystallography By journals.iucr.org Published On :: 2024-04-25 Here, a machine-learning method based on a kinetically informed neural network (NN) is introduced. The proposed method is designed to analyze a time series of difference electron-density maps from a time-resolved X-ray crystallographic experiment. The method is named KINNTREX (kinetics-informed NN for time-resolved X-ray crystallography). To validate KINNTREX, multiple realistic scenarios were simulated with increasing levels of complexity. For the simulations, time-resolved X-ray data were generated that mimic data collected from the photocycle of the photoactive yellow protein. KINNTREX only requires the number of intermediates and approximate relaxation times (both obtained from a singular valued decomposition) and does not require an assumption of a candidate mechanism. It successfully predicts a consistent chemical kinetic mechanism, together with difference electron-density maps of the intermediates that appear during the reaction. These features make KINNTREX attractive for tackling a wide range of biomolecular questions. In addition, the versatility of KINNTREX can inspire more NN-based applications to time-resolved data from biological macromolecules obtained by other methods. Full Article text
ani Structural insights into the molecular mechanism of phytoplasma immunodominant membrane protein By journals.iucr.org Published On :: 2024-04-24 Immunodominant membrane protein (IMP) is a prevalent membrane protein in phytoplasma and has been confirmed to be an F-actin-binding protein. However, the intricate molecular mechanisms that govern the function of IMP require further elucidation. In this study, the X-ray crystallographic structure of IMP was determined and insights into its interaction with plant actin are provided. A comparative analysis with other proteins demonstrates that IMP shares structural homology with talin rod domain-containing protein 1 (TLNRD1), which also functions as an F-actin-binding protein. Subsequent molecular-docking studies of IMP and F-actin reveal that they possess complementary surfaces, suggesting a stable interaction. The low potential energy and high confidence score of the IMP–F-actin binding model indicate stable binding. Additionally, by employing immunoprecipitation and mass spectrometry, it was discovered that IMP serves as an interaction partner for the phytoplasmal effector causing phyllody 1 (PHYL1). It was then shown that both IMP and PHYL1 are highly expressed in the S2 stage of peanut witches' broom phytoplasma-infected Catharanthus roseus. The association between IMP and PHYL1 is substantiated through in vivo immunoprecipitation, an in vitro cross-linking assay and molecular-docking analysis. Collectively, these findings expand the current understanding of IMP interactions and enhance the comprehension of the interaction of IMP with plant F-actin. They also unveil a novel interaction pathway that may influence phytoplasma pathogenicity and host plant responses related to PHYL1. This discovery could pave the way for the development of new strategies to overcome phytoplasma-related plant diseases. Full Article text
ani Solvent organization in the ultrahigh-resolution crystal structure of crambin at room temperature By journals.iucr.org Published On :: 2024-08-27 Ultrahigh-resolution structures provide unprecedented details about protein dynamics, hydrogen bonding and solvent networks. The reported 0.70 Å, room-temperature crystal structure of crambin is the highest-resolution ambient-temperature structure of a protein achieved to date. Sufficient data were collected to enable unrestrained refinement of the protein and associated solvent networks using SHELXL. Dynamic solvent networks resulting from alternative side-chain conformations and shifts in water positions are revealed, demonstrating that polypeptide flexibility and formation of clathrate-type structures at hydrophobic surfaces are the key features endowing crambin crystals with extraordinary diffraction power. Full Article text
ani Tuning structural modulation and magnetic properties in metal–organic coordination polymers [CH3NH3]CoxNi1−x(HCOO)3 By journals.iucr.org Published On :: 2024-09-24 Three solid solutions of [CH3NH3]CoxNi1−x(HCOO)3, with x = 0.25 (1), x = 0.50 (2) and x = 0.75 (3), were synthesized and their nuclear structures and magnetic properties were characterized using single-crystal neutron diffraction and magnetization measurements. At room temperature, all three compounds crystallize in the Pnma orthorhombic space group, akin to the cobalt and nickel end series members. On cooling, each compound undergoes a distinct series of structural transitions to modulated structures. Compound 1 exhibits a phase transition to a modulated structure analogous to the pure Ni compound [Cañadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodríguez-Carvajal, J. & Petricek, V. (2020). Inorg. Chem. 59, 17896–17905], whereas compound 3 maintains the behaviour observed in the pure Co compound reported previously [Canadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodriguez-Velamazan, J. A. & Rodriguez-Carvajal, J. (2019). IUCrJ, 6, 105–115], although in both cases the temperatures at which the phase transitions occur differ slightly from the pure phases. Monochromatic neutron diffraction measurements showed that the structural evolution of 2 diverges from that of either parent compound, with competing hydrogen bond interactions that drive the modulation throughout the series, producing a unique sequence of phases. It involves two modulated phases below 96 (3) and 59 (3) K, with different q vectors, similar to the pure Co compound (with modulated phases below 128 and 96 K); however, it maintains the modulated phase below magnetic order [at 22.5 (7) K], resembling the pure Ni compound (which presents magnetic order below 34 K), resulting in an improper modulated magnetic structure. Despite these large-scale structural changes, magnetometry data reveal that the bulk magnetic properties of these solid solutions form a linear continuum between the end members. Notably, doping of the metal site in these solid solutions allows for tuning of bulk magnetic properties, including magnetic ordering temperature, transition temperatures and the nature of nuclear phase transitions, through adjustment of metal ratios. Full Article text
ani Elastic and inelastic strain in submicron-thick ZnO epilayers grown on r-sapphire substrates by metal–organic vapour phase deposition By journals.iucr.org Published On :: 2024-02-13 A significant part of the present and future of optoelectronic devices lies on thin multilayer heterostructures. Their optical properties depend strongly on strain, being essential to the knowledge of the stress level to optimize the growth process. Here the structural and microstructural characteristics of sub-micron a-ZnO epilayers (12 to 770 nm) grown on r-sapphire by metal–organic chemical vapour deposition are studied. Morphological and structural studies have been made using scanning electron microscopy and high-resolution X-ray diffraction. Plastic unit-cell distortion and corresponding strain have been determined as a function of film thickness. A critical thickness has been observed as separating the non-elastic/elastic states with an experimental value of 150–200 nm. This behaviour has been confirmed from ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy measurements. An equation that gives the balance of strains is proposed as an interesting method to experimentally determine this critical thickness. It is concluded that in the thinnest films an elongation of the Zn—O bond takes place and that the plastic strained ZnO films relax through nucleation of misfit dislocations, which is a consequence of three-dimensional surface morphology. Full Article text
ani Synthesis and characterization of an organic–inorganic hybrid crystal: 2[Co(en)3](V4O13)·4H2O By journals.iucr.org Published On :: 2024-09-03 Organic–inorganic hybrid crystals have diverse functionalities, for example in energy storage and luminescence, due to their versatile structures. The synthesis and structural characterization of a new cobalt–vanadium-containing compound, 2[Co(en)3]3+(V4O13)6−·4H2O (1) is presented. The crystal structure of 1, consisting of [Co(en)3]3+ complexes and chains of corner-sharing (VO4) tetrahedra, was solved by single-crystal X-ray diffraction in the centrosymmetric space group P1. Phase purity of the bulk material was confirmed by infrared spectroscopy, scanning electron microscopy, elemental analysis and powder X-ray diffraction. The volume expansion of 1 was found to be close to 1% in the reported temperature range from 100 to 300 K, with a volume thermal expansion coefficient of 56 (2) × 10−6 K−1. The electronic band gap of 1 is 2.30 (1) eV, and magnetic susceptibility measurements showed that the compound exhibits a weak paramagnetic response down to 1.8 K, probably due to minor CoII impurities (<1%) on the CoIII site. Full Article text