aging 11C-(+)-PHNO Trapping Reversibility for Quantitative PET Imaging of Beta-Cell-Mass in Patients with Type-1 Diabetes By jnm.snmjournals.org Published On :: 2020-01-10T04:59:09-08:00 Full Article
aging SUVmax-V for assessing treatment response in FDG-PET Imaging of Patient-Derived Tumor Xenografts involving Triple-Negative Breast Cancer By jnm.snmjournals.org Published On :: 2020-01-10T04:59:09-08:00 Full Article
aging 64Cu-DOTATATE PET/CT for Imaging Patients with Known or Suspected Somatostatin Receptor-Positive Neuroendocrine Tumors: Results of the First US Prospective, Reader-Blinded Clinical Trial By jnm.snmjournals.org Published On :: 2020-01-31T13:36:41-08:00 Studies demonstrate that the investigational 64Cu-DOTATATE radiopharmaceutical may provide diagnostic and logistical benefits over available imaging agents for patients with somatostatin receptor (SSTR)-positive neuroendocrine tumors (NETs). Accordingly, we aimed to prospectively determine the lowest dose of 64Cu-DOTATATE that facilitates diagnostic quality scans and evaluated the diagnostic performance and safety in a phase III study of patients with SSTR-expressing NETs. Methods: A dose-ranging study was conducted in 12 patients divided into 3 dose groups (111 MBq [3.0 mCi], 148 MBq [4.0 mCi], and 185 MBq [5.0 mCi] ± 10%) to determine the lowest dose of 64Cu-DOTATATE that produced diagnostic quality PET/CT images. Using the 64Cu-DOTATATE dose identified in the dose-ranging study, 3 independent nuclear medicine physicians who were blinded to all clinical information read PET/CT scans from 21 healthy volunteers and 42 NET-positive patients to determine those with "Disease" and "No Disease," as well as "Localized" versus "Metastatic" status. Blinded-reader evaluations were compared to a patient-specific standard of truth (SOT), which was established by an independent oncologist who used all previously available pathology, clinical, and conventional imaging data. Diagnostic performance calculated for 64Cu-DOTATATE included sensitivity, specificity, negative predictive value, positive predictive value, and accuracy. Inter- and intra-reader reliability, as well as ability to differentiate between localized and metastatic disease, was also determined. Adverse events (AEs) were recorded from 64Cu-DOTATATE injection through 48 hours post-injection. Results: The dose-ranging study identified 148 MBq (4.0 mCi) as the optimal dose to obtain diagnostic quality PET/CT images. Following database lock, diagnostic performance from an initial majority read of the 3 independent readers showed a significant 90.9% sensitivity (P = 0.0042) and 96.6% specificity (P < 0.0001) for detecting NETs, which translated to a 100.0% sensitivity and 96.8% specificity after correcting for an initial SOT misread. Excellent inter- and intra-reader reliability, as well as ability to distinguish between localized and metastatic disease, was also noted. No AEs were related to 64Cu-DOTATATE, and no serious AEs were observed. Conclusion: 64Cu-DOTATATE PET/CT is a safe imaging technique that provides high-quality and accurate images at a dose of 148 MBq (4.0 mCi) for the detection of somatostatin-expressing NETs. Full Article
aging PET/CT imaging with a 18F-labeled galactodendritic unit in a galectin-1 overexpressing orthotopic bladder cancer model By jnm.snmjournals.org Published On :: 2020-01-31T13:36:41-08:00 Galectins are carbohydrate-binding proteins overexpressed in bladder cancer (BCa) cells. Dendritic galactose moieties have a high affinity for galectin-expressing tumor cells. We radiolabeled a dendritic galactose carbohydrate with fluorine-18 – 18F-labeled galactodendritic unit 4 – and examined its potential in imaging urothelial malignancies. Methods: The 18F-labeled 1st generation galactodendritic unit 4 was obtained from its tosylate precursor. We conducted in vivo studies in galectin-expressing UMUC3 orthotopic BCa model to determine the ability of 18F-labeled galactodendritic unit 4 to image BCa. Results: Intravesical administration of 18F-labeled galactodendritic unit 4 allowed specific accumulation of the carbohydrate radiotracer in galectin-1 overexpressing UMUC3 orthotopic tumors when imaged with PET. The 18F-labeled galactodendritic unit 4 was not found to accumulate in non-tumor murine bladders. Conclusion: The 18F-labeled galactodendritic unit 4 and similar analogs may be clinically relevant and exploitable for PET imaging of galectin-1 overexpressing bladder tumors. Full Article
aging Imaging the Distribution of Gastrin Releasing Peptide Receptors in Cancer By jnm.snmjournals.org Published On :: 2020-02-14T14:01:21-08:00 Targeting tumor-expressed receptors using selective molecules for diagnostic, therapeutic or both diagnostic and therapeutic (theragnostic) purposes is a promising approach in oncological applications. Such approaches have increased significantly over the past decade. Peptides such as gastrin-releasing peptide receptors (GRPR) targeting radiopharmaceuticals are small molecules with fast blood clearance and urinary excretion. They demonstrate good tissue diffusion, low immunogenicity, and highly selective binding to their target cell-surface receptors. They are also easily produced. GRPR, part of the bombesin (BBN) family, are overexpressed in many tumors, including breast and prostate cancer, and therefore represent an attractive target for future development. Full Article
aging Intraoperative 68Gallium-PSMA Cerenkov Luminescence Imaging for surgical margins in radical prostatectomy - a feasibility study By jnm.snmjournals.org Published On :: 2020-02-14T14:01:21-08:00 Objective: To assess the feasibility and accuracy of Cerenkov Luminescence Imaging (CLI) for assessment of surgical margins intraoperatively during radical prostatectomy (RPE). Methods: A single centre feasibility study included 10 patients with high-risk primary prostate cancer (PC). 68Ga-PSMA PET/CT scans were performed followed by RPE and intraoperative CLI of the excised prostate. In addition to imaging the intact prostate, in the first two patients the prostate gland was incised and imaged with CLI to visualise the primary tumour. We compared the tumour margin status on CLI to postoperative histopathology. Measured CLI intensities were determined as tumour to background ratio (TBR). Results: Tumour cells were successfully detected on the incised prostate CLI images as confirmed by histopathology. 3 of 10 men had histopathological positive surgical margins (PSMs), and 2 of 3 PSMs were accurately detected on CLI. Overall, 25 (72%) out of 35 regions of interest (ROIs) proved to visualize a tumour signal according to standard histopathology. The median tumour radiance in these areas was 11301 photons/s/cm2/sr (range 3328 - 25428 photons/s/cm2/sr) and median TBR was 4.2 (range 2.1 – 11.6). False positive signals were seen mainly at the prostate base with PC cells overlaid by benign tissue. PSMA-immunohistochemistry (PSMA-IHC) revealed strong PSMA staining of benign gland tissue, which impacts measured activities. Conclusion: This feasibility showed that 68Ga-PSMA CLI is a new intraoperative imaging technique capable of imaging the entire specimen’s surface to detect PC tissue at the resection margin. Further optimisation of the CLI protocol, or the use of lower-energetic imaging tracers such as 18F-PSMA, are required to reduce false positives. A larger study will be performed to assess diagnostic performance. Full Article
aging Clinical Translation of a 68Ga-labeled Integrin {alpha}v{beta}6-targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer By jnm.snmjournals.org Published On :: 2020-02-21T14:46:23-08:00 The overexpression of integrin αvβ6 in pancreatic cancer makes it a promising target for noninvasive positron emission tomography (PET) imaging. However, currently, most integrin αvβ6-targeting radiotracers are based on linear peptides, which are quickly degraded in the serum by proteinases. Herein, we aimed to develop and assess a 68Ga-labeled integrin αvβ6-targeting cyclic peptide (68Ga-cycratide) for PET imaging of pancreatic cancer. Methods: 68Ga-cycratide was prepared, and its PET imaging profile was compared with that of the linear peptide (68Ga-linear-pep) in an integrin αvβ6-positive BxPC-3 human pancreatic cancer mouse model. Five healthy volunteers (two women and three men) underwent whole-body PET/CT imaging after injection of 68Ga-cycratide, and biodistribution and dosimetry calculations were determined. PET/CT imaging of two patients was performed to investigate the potential role of 68Ga-cycratide in pancreatic cancer diagnosis and treatment monitoring. Results: 68Ga-cycratide exhibited significantly higher tumor uptake than did 68Ga-linear-pep in BxPC-3 tumor-bearing mice, owing—at least in part—to markedly improved in vivo stability. 68Ga-cycratide could sensitively detect the pancreatic cancer lesions in an orthotopic mouse model and was well tolerated in all healthy volunteers. Preliminary PET/CT imaging in patients with pancreatic cancer demonstrated that 68Ga-cycratide was comparable to 18F-fludeoxyglucose for diagnostic imaging and post-surgery tumor relapse monitoring. Conclusion: 68Ga-cycratide is an integrin αvβ6-specific PET radiotracer with favorable pharmacokinetics and dosimetry profile. 68Ga-cycratide is expected to provide an effective noninvasive PET strategy for pancreatic cancer lesion detection and therapy response monitoring. Full Article
aging Development and evaluation of interleukin-2 derived radiotracers for PET imaging of T-cells in mice By jnm.snmjournals.org Published On :: 2020-02-28T13:52:17-08:00 Recently, N-(4-18F-fluorobenzoyl)-interleukin-2 (18F-FB-IL2) was introduced as PET tracer for T-cell imaging. However, production is complex and time-consuming. Therefore, we developed two radiolabeled interleukin-2 (IL-2) variants, namely aluminum 18F-fluoride-(restrained complexing agent)-IL-2 (18F-AlF-RESCA-IL2) and 68Ga-gallium-(1,4,7-triazacyclononane-4,7-diacetic acid-1-glutaric acid)-IL-2 (68Ga-Ga-NODAGA-IL2) and compared their in-vitro and in-vivo characteristics with 18F-FB-IL2. Methods: Radiolabeling of 18F-AlF-RESCA-IL2 and 68Ga-Ga-NODAGA-IL2 was optimized and stability was evaluated in human serum. Receptor binding was studied with activated human peripheral blood mononuclear cells (hPBMCs). Ex-vivo tracer biodistribution in immunocompetent BALB/cOlaHsd (BALB/c) mice was performed at 15, 60 and 90 min after tracer injection. In-vivo binding characteristics were studied in severe combined immune-deficient (SCID) mice inoculated with activated hPBMCs in Matrigel. Tracer was injected 15 min after hPBMCs inoculation and a 60-min dynamic PET scan was acquired, followed by ex-vivo biodistribution studies. Specific uptake was determined by co-injection of tracer with unlabeled IL2 and by evaluating uptake in a control group inoculated with Matrigel only. Results: 68Ga-Ga-NODAGA-IL2 and 18F-AlF-RESCA-IL2 were produced with radiochemical purity >95% and radiochemical yield of 13.1±4.7% and 2.4±1.6% within 60 and 90 min, respectively. Both tracers were stable in serum, with >90% being intact tracer after 1h. In-vitro, both tracers displayed preferential binding to activated hPBMCs. Ex-vivo biodistribution studies in BALB/c mice showed higher uptake of 18F-AlF-RESCA-IL2 than 18F-FB-IL2 in liver, kidney, spleen, bone and bone marrow. 68Ga-Ga-NODAGA-IL2 uptake in liver and kidney was higher than 18F-FB-IL2 uptake. In-vivo, all tracers revealed uptake in activated hPBMCs in SCID mice. Low uptake was seen after a blocking dose of IL2 or in the Matrigel control group. In addition, 18F-AlF-RESCA-IL2 yielded highest contrast PET images of target lymph nodes. Conclusion: Production of 18F-AlF-RESCA-IL2 and 68Ga-Ga-NODAGA-IL2 is simpler and faster than 18F-FB-IL2. Both tracers showed good in-vitro and in-vivo characteristics with high uptake in lymphoid tissue and hPBMC xenografts. Full Article
aging Kinetic modeling and test-retest reproducibility of 11C-EKAP and 11C-FEKAP, novel agonist radiotracers for PET imaging of the kappa opioid receptor in humans By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 The kappa opioid receptor (KOR) is implicated in various neuropsychiatric disorders. We previously evaluated an agonist tracer, 11C-GR103545, for PET imaging of KOR in humans. Although 11C-GR103545 showed high brain uptake, good binding specificity, and selectivity to KOR, it displayed slow kinetics and relatively large test-retest variability (TRV) of distribution volume (VT) estimates (15%). Therefore we set out to develop two novel KOR agonist radiotracers, 11C-EKAP and 11C-FEKAP, and in nonhuman primates, both tracers exhibited faster kinetics and comparable binding parameters to 11C-GR103545. The aim of this study was to assess their kinetic and binding properties in humans. Methods: Six healthy subjects underwent 120-min test-retest PET scans with both 11C-EKAP and 11C-FEKAP. Metabolite-corrected arterial input functions were measured. Regional time-activity curves (TACs) were generated for 14 regions of interest. One- and two-tissue compartment models (1TC, 2TC) and the multilinear analysis-1 (MA1) method were applied to the regional TACs to calculate VT. Time-stability of VT values and test-retest reproducibility were evaluated. Levels of specific binding, as measured by the non-displaceable binding potential (BPND) for the three tracers (11C-EKAP, 11C-FEKAP and 11C-GR103545), were compared using a graphical method. Results: For both tracers, regional TACs were fitted well with the 2TC model and MA1 method (t*=20min), but not with the 1TC model. Given unreliably estimated parameters in several fits with the 2TC model and a good match between VT values from MA1 and 2TC, MA1 was chosen as the appropriate model for both tracers. Mean MA1 VT values were highest for 11C-GR103545, followed by 11C-EKAP, then 11C-FEKAP. Minimum scan time for stable VT measurement was 90 and 110min for 11C-EKAP and 11C-FEKAP, respectively, compared with 140min for 11C-GR103545. The mean absolute TRV in MA1 VT estimates was 7% and 18% for 11C-EKAP and 11C-FEKAP, respectively. BPND levels were similar for 11C-FEKAP and 11C-GR103545, but ~25% lower for 11C-EKAP. Conclusion: The two novel KOR agonist tracers showed faster tissue kinetics than 11C-GR103545. Even with slightly lower BPND, 11C-EKAP is judged to be a better tracer for imaging and quantification of KOR in humans, based on the shorter minimum scan time and excellent test-retest. Full Article
aging Design and development of 99mTc labeled FAPI-tracers for SPECT-imaging and 188Re therapy. By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 The majority of epithelial tumors recruits fibroblasts and other non-malignant cells and activates them into cancer-associated fibroblasts. This often leads to overexpression of the membrane serine protease fibroblast-activating protein (FAP). It has already been shown that DOTA-bearing FAP inhibitors (FAPIs) generate high contrast images with PET/CT scans. Since SPECT is a lower cost and more widely available alternative to PET, 99mTc-labeled FAPIs represent attractive tracers for imaging applicable in a larger number of patients. Furthermore, the chemically homologous nuclide 188Re is available from generators, which allows FAP-targeted endoradiotherapy. Methods: For the preparation of 99mTc tricarbonyl complexes, a chelator was selected whose carboxylic acids can easily be converted into various derivatives in the finished product. This enabled a platform strategy based on the original tracer. The obtained 99mTc complexes were investigated in vitro by binding and competition experiments on FAP-transfected HT-1080 (HT-1080-FAP) and/or on mouse FAP expressing (HEK-muFAP) and CD26-expressing (HEKCD26) HEK cells and characterized by planar scintigraphy and organ distribution studies in tumor-bearing mice. Furthermore, a first-in-man application was done in two patients with ovarian and pancreatic cancer, respectively. Results: 99mTc-FAPI-19 showed specific binding to recombinant FAP-expressing cells with high affinity. Unfortunately, liver accumulation, biliary excretion and no tumor uptake were observed in the planar scintigraphy of a HT-1080-FAP xenotranplanted mouse. To improve the pharmacokinetic properties hydrophilic amino acids were attached to the chelator moiety of the compound. The resulting 99mTc-labeled FAPI tracers revealed excellent binding properties (up to 45 % binding; above 95 % internalization), high affinity (IC50 = 6.4 nM to 12.7 nM), and significant tumor uptake (up to 5.4 %ID/g) in biodistribution studies. The lead candidate 99mTc-FAPI-34 was applied for diagnostic scintigraphy and SPECT of patients with metastasized ovarian and pancreatic cancer for follow-up to therapy with 90Y-FAPI-46. 99mTc-FAPI-34 accumulated in the tumor lesions also shown in PET/CT imaging using 68Ga-FAPI-46. Conclusion: 99mTc-FAPI-34 represents a powerful tracer for diagnostic scintigraphy, especially in cases where PET imaging is not available. Additionally, the chelator used in this compound allows labeling with the therapeutic nuclide 188Re which is planned for the near future. Full Article
aging The optimal imaging window for dysplastic colorectal polyp detection using c-Met targeted fluorescence molecular endoscopy By jnm.snmjournals.org Published On :: 2020-03-20T13:59:23-07:00 Rationale: Fluorescence molecular endoscopy (FME) is an emerging technique that has the potential to improve the 22% colorectal polyp detection miss-rate. We determined the optimal dose-to-imaging interval and safety of FME using EMI-137, a c-Met targeted fluorescent peptide, in a population at high-risk for colorectal cancer. Methods: We performed in vivo FME and quantification of fluorescence by multi-diameter single-fiber reflectance, single-fiber fluorescence spectroscopy in 15 patients with a dysplastic colorectal adenoma. EMI-137 was intravenously administered (0.13mg/kg) at a one-, two- or three-hour dose-to-imaging interval (N = 3 patients per cohort). Two cohorts were expanded to six patients based on target-to-background ratios (TBR). Fluorescence was correlated to histopathology and c-Met expression. EMI-137 binding specificity was assessed by fluorescence microscopy and in vitro experiments. Results: FME using EMI-137 appeared to be safe and well tolerated. All dose-to-imaging intervals showed significantly increased fluorescence in the colorectal lesions compared to surrounding tissue, with a TBR of 1.53, 1.66 and 1.74 respectively (mean intrinsic fluorescence (Q·μfa,x) = 0.035 vs. 0.023mm-1, P<0.0003; 0.034 vs. 0.021mm-1, P<0.0001; 0.033 vs. 0.019mm-1, P<0.0001). Fluorescence correlated to histopathology on a macroscopic and microscopic level, with significant c-Met overexpression in dysplastic mucosa. In vitro, a dose-dependent specific binding was confirmed. Conclusion: FME using EMI-137 appeared to be safe and feasible within a one-to-three hour dose-to-imaging interval. No clinically significant differences were observed between the cohorts, although a one-hour dose-to-imaging interval was preferred from a clinical perspective. Future studies will investigate EMI-137 for improved colorectal polyp detection during screening colonoscopies. Full Article
aging 11C-PABA as a Novel PET Radiotracer for Functional Renal Imaging: Preclinical and First-in-Human Studies By jnm.snmjournals.org Published On :: 2020-03-20T13:59:23-07:00 para-Aminobenzoic acid (PABA) has been previously used as an exogenous marker to verify completion of 24-hour urine sampling. Therefore, we hypothesized that radiolabeled PABA with 11C could allow high-quality dynamic PET of the kidneys while reducing the radiation exposure due to its short biological and physical half-lives. We evaluated if 11C-PABA could visualize renal anatomy and quantify function in healthy rats, rabbits, and first-in-human studies in healthy volunteers. Methods: Healthy rats and rabbits were injected with 11C-PABA intravenously. Subsequently, a dynamic PET was performed, followed by post-mortem tissue biodistribution studies. 11C-PABA PET was directly compared with the current standard, 99mTc-MAG3 in rats. Three healthy human subjects also underwent dynamic PET after intravenous injection of 11C-PABA. Results: In healthy rats and rabbits, dynamic PET demonstrated a rapid accumulation of 11C-PABA in the renal cortex, followed by rapid excretion through the pelvicalyceal system. In humans, 11C-PABA PET was safe and well tolerated. There were no adverse or clinically detectable pharmacologic effects in any subject. The cortex was delineated on PET, and the activity gradually transited to the medulla and then renal pelvis with high spatiotemporal resolution. Conclusion: 11C-PABA demonstrated fast renal excretion with very low background signal in animals and humans. These results suggest that 11C-PABA could be used as a novel radiotracer for functional renal imaging, providing high-quality spatiotemporal images with low radiation exposure. Full Article
aging 18F-DCFPyL PET/CT in Patients with Subclinical Recurrence of Prostate Cancer: Effect of Lesion Size, Smooth Filter and Partial Volume Correction on Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria By jnm.snmjournals.org Published On :: 2020-03-20T13:59:23-07:00 Purpose: To determine the effect of smooth filter and partial volume correction (PVC) method on measured prostate-specific membrane antigen (PSMA) activity in small metastatic lesions and to determine the impact of these changes on the molecular imaging (mi) PSMA scoring. Materials & Methods: Men with biochemical recurrence of prostate cancer with negative CT and bone scintigraphy were referred for 18F-DCFPyL PET/CT. Examinations were performed on one of 2 PET/CT scanners (GE Discovery 610 or Siemens mCT40). All suspected tumor sites were manually contoured on co-registered CT and PET images, and each was assigned a miPSMA score as per the PROMISE criteria. The PVC factors were calculated for every lesion using the anatomical CT and then applied to the unsmoothed PET images. The miPSMA scores, with and without the corrections, were compared, and a simplified "rule of thumb" (RoT) correction factor (CF) was derived for lesions at various sizes (<4mm, 4-7mm, 7-9mm, 9-12mm). This was then applied to the original dataset and miPSMA scores obtained using the RoT CF were compared to those found using the actual corrections. Results: There were 75 men (median age, 69 years; median serum PSA of 3.69 ug/L) with 232 metastatic nodes < 12 mm in diameter (mean lesion volume of 313.5 ± 309.6 mm3). Mean SUVmax before and after correction was 11.0 ± 9.3 and 28.5 ± 22.8, respectively (p<0.00001). The mean CF for lesions <4mm (n = 22), 4-7mm (n = 140), 7-9mm (n = 50), 9-12 mm (n = 20) was 4 (range: 2.5-6.4), 2.8 (range: 1.6-4.9), 2.3 (range: 1.6-3.3) and 1.8 (range 1.4-2.4), respectively. Overall miPSMA scores were concordant between the corrected dataset and RoT in 205/232 lesions (88.4%). Conclusion: There is a significant effect of smooth filter and partial volume correction on measured PSMA activity in small nodal metastases, impacting the miPSMA score. Full Article
aging A Prospective, Comparative Study of Planar and Single-photon Emission Computed Tomography Ventilation/Perfusion Imaging for Chronic Thromboembolic Pulmonary Hypertension By jnm.snmjournals.org Published On :: 2020-03-20T13:59:23-07:00 Objectives: The study compared the diagnostic performance of Planar Ventilation/perfusion (V/Q) and V/Q Single-photon computed tomography (SPECT), and determined whether combining perfusion scanning with low-dose computed tomography (Q-LDCT) may be equally effective in a prospective study of patients with chronic thromboembolic pulmonary hypertension (CTEPH) patients. Background: V/Q scanning is recommended for excluding CTEPH during the diagnosis of pulmonary hypertension (PH). However, Planar V/Q and V/Q SPECT techniques have yet to be compared in patients with CTEPH. Methods: Patients with suspected PH were eligible for the study. PH attributable to left heart disease or lung disease was excluded, and patients whose PH was confirmed by right heart catheterization and who completed Planar V/Q, V/Q-SPECT, Q-LDCT, and pulmonary angiography were included. V/Q images were interpreted and patients were diagnosed as instructed by the 2009 EANM guidelines, and pulmonary angiography analyses were used as a reference standard. Results: A total of 208 patients completed the study, including 69 with CTEPH confirmed by pulmonary angiography. Planar V/Q, V/Q-SPECT, and Q-LDCT were all highly effective for diagnosing CTEPH, with no significant differences in sensitivity or specificity observed among the three techniques (Planar V/Q [sensitivity/specificity]: 94.20%/92.81%; V/Q-SPECT: 97.10%/91.37%, Q-LCDT: 95.65%/90.65%). However, V/Q-SPECT was significantly more sensitive (V/Q-SPECT: 79.21%; Planar V/Q: 75.84%, P = 0.012; Q-LDCT: 74.91%, p<0.001), and Planar V/Q was significantly more specific (Planar V/Q: 54.14%; V/Q-SPECT 46.05%, p<0.001; Q-LDCT: 46.05%, P = 0.001) than the other two techniques for identifying perfusion defects in individual lung segments. Conclusion: Both Planar V/Q and V/Q-SPECT were highly effective for diagnosing CTEPH, and Q-LDCT may be a reliable alternative method for patients who are unsuitable for ventilation imaging. Full Article
aging Molecular imaging of bone metastases and their response to therapy By jnm.snmjournals.org Published On :: 2020-04-03T15:14:37-07:00 Bone metastases are common, especially in more prevalent malignancies such as breast and prostate cancer. They cause significant morbidity and draw on healthcare resources. Molecular and hybrid imaging techniques, including single photon emission computed tomography with computed tomography (SPECT/CT), positron emission tomography / CT and whole-body MRI with diffusion-weighted imaging (WB-MRI), have improved diagnostic accuracy in staging the skeleton compared to previous standard imaging methods, allowing earlier tailored treatment. With the introduction of several effective treatment options, it is now even more important to detect and monitor response in bone metastases accurately. Conventional imaging, including radiographs, CT, MRI and bone scintigraphy, are recognized as being insensitive and non-specific for response monitoring in a clinically relevant time frame. Early reports of molecular and hybrid imaging techniques, as well as WB-MRI, promise earlier and more accurate prediction of response vs non-response but have yet to be adopted routinely in clinical practice. We summarize the role of new molecular and hybrid imaging methods including SPECT/CT, PET/CT and WB-MRI. These modalities are associated with improvements in diagnostic accuracy for staging and response assessment of skeletal metastases over standard imaging methods, being able to quantify biological processes related to the bone microenvironment as well as tumor cells. The described improvements in the imaging of bone metastases and their response to therapy have led to some being adopted into routine clinical practice in some centers and at the same time provide better methods to assess treatment response of bone metastases in clinical trials. Full Article
aging 3D-Printable Platform for High-Throughput Small-Animal Imaging By jnm.snmjournals.org Published On :: 2020-04-13T14:09:24-07:00 Full Article
aging Folate Receptor {beta} Targeted PET Imaging of Macrophages in Autoimmune Myocarditis By jnm.snmjournals.org Published On :: 2020-04-13T14:09:24-07:00 Rationale: Currently available imaging techniques have limited specificity for the detection of active myocardial inflammation. Aluminum fluoride-18-labeled 1,4,7-triazacyclononane-N,N',N''-triacetic acid conjugated folate (18F-FOL) is a positron emission tomography (PET) tracer targeting folate receptor β (FR-β) that is expressed on activated macrophages at sites of inflammation. We evaluated 18F-FOL PET for the detection of myocardial inflammation in rats with autoimmune myocarditis and studied expression of FR-β in human cardiac sarcoidosis specimens. Methods: Myocarditis was induced by immunizing rats (n = 18) with porcine cardiac myosin in complete Freund’s adjuvant. Control rats (n = 6) were injected with Freund’s adjuvant alone. 18F-FOL was intravenously injected followed by imaging with a small animal PET/computed tomography (CT) scanner and autoradiography. Contrast-enhanced high-resolution CT or 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) PET images were used for co-registration. Rat tissue sections and myocardial autopsy samples of 6 patients with cardiac sarcoidosis were studied for macrophages and FR-β. Results: The myocardium of 10 out of 18 immunized rats showed focal macrophage-rich inflammatory lesions with FR-β expression occurring mainly in M1-polarized macrophages. PET images showed focal myocardial 18F-FOL uptake co-localizing with inflammatory lesions (SUVmean, 2.1 ± 1.1), whereas uptake in the remote myocardium of immunized rats and controls was low (SUVmean, 0.4 ± 0.2 and 0.4 ± 0.1, respectively; P < 0.01). Ex vivo autoradiography of tissue sections confirmed uptake of 18F-FOL in myocardial inflammatory lesions. Uptake of 18F-FOL to inflamed myocardium was efficiently blocked by a non-labeled FR-β ligand folate glucosamine in vivo. The myocardium of patients with cardiac sarcoidosis showed many FR-β-positive macrophages in inflammatory lesions. Conclusion: In a rat model of autoimmune myocarditis, 18F-FOL shows specific uptake in inflamed myocardium containing macrophages expressing FR-β, which were also present in human cardiac sarcoid lesions. Imaging of FR-β expression is a potential approach for the detection of active myocardial inflammation. Full Article
aging PET imaging of phosphodiesterase-4 identifies affected dysplastic bone in McCune-Albright syndrome, a genetic mosaic disorder By jnm.snmjournals.org Published On :: 2020-04-13T14:09:24-07:00 McCune-Albright syndrome (MAS) is a mosaic disorder arising from gain-of-function mutations in the GNAS gene, which encodes the 3', 5'-cyclic adenosine monophosphate (cAMP) pathway-associated G-protein, Gsα. Clinical manifestations of MAS in a given individual, including fibrous dysplasia, are determined by the timing and location of the GNAS mutation during embryogenesis, the tissues involved, and the role of Gsα in the affected tissues. The Gsα mutation results in dysregulation of the cAMP signaling cascade, leading to upregulation of phosphodiesterase type 4 (PDE4), which catalyzes the hydrolysis of cAMP. Increased cAMP levels have been found in vitro in both animal models of fibrous dysplasia and in cultured cells from individuals with MAS, but not in humans with fibrous dysplasia. Positron emission tomography (PET) imaging of PDE4 with 11C-(R)-rolipram has been used successfully to study the in vivo activity of the cAMP cascade. To date, it remains unknown whether fibrous dysplasia and other symptoms of MAS, including neuropsychiatric impairments, are associated with increased PDE4 activity in humans. Methods: 11C-(R)-rolipram whole-body and brain PET scans were performed in six individuals with MAS (three for brain scans and six for whole-body scans) and nine healthy controls (seven for brain scans and six for whole-body scans). Results: 11C-(R)-rolipram binding correlated with known locations of fibrous dysplasia in the periphery of individuals with MAS; no uptake was observed in the bones of healthy controls. In peripheral organs and the brain, no difference in 11C-(R)-rolipram uptake was noted between participants with MAS and healthy controls. Conclusion: This study is the first to find evidence for increased cAMP activity in areas of fibrous dysplasia in vivo. No differences in brain uptake between MAS participants and controls were detected, which could be due to several reasons, including the limited anatomic resolution of PET. Nevertheless, the results confirm the usefulness of PET scans with 11C-(R)-rolipram to indirectly measure increased cAMP pathway activation in human disease. Full Article
aging Repurposing Molecular Imaging and Sensing for Cancer Image-Guided Surgery By jnm.snmjournals.org Published On :: 2020-04-17T08:32:41-07:00 Gone are the days when medical imaging was used primarily to visualize anatomical structures. The emergence of molecular imaging, championed by radiolabeled fluorodeoxyglucose positron emission tomography (18FDG PET) has expanded the information content derived from imaging to include pathophysiological and molecular processes. Cancer imaging, in particular, has leveraged advances in molecular imaging agents and technology to improve the accuracy of tumor detection, interrogate tumor heterogeneity, monitor treatment response, focus surgical resection, and enable image-guided biopsy. Surgeons are actively latching on to the incredible opportunities provided by medical imaging for preoperative planning, intraoperative guidance, and postoperative monitoring. From label-free techniques to enabling cancer-selective imaging agents, image-guided surgery provides surgical oncologists and interventional radiologists both macroscopic and microscopic views of cancer in the operating room. This review highlights the current state of molecular imaging and sensing approaches available for surgical guidance. Salient features of nuclear, optical, and multimodal approaches will be discussed, including their strengths, limitations and clinical applications. To address the increasing complexity and diversity of methods available today, this review provides a framework to identify a contrast mechanism, suitable modality, and device. Emerging low cost, portable, and user-friendly imaging systems make the case for adopting some of these technologies as the global standard of care in surgical practice. Full Article
aging MITIGATE-NeoBOMB1, a Phase I/IIa Study to Evaluate Safety, Pharmacokinetics and Preliminary Imaging of 68Ga-NeoBOMB1, a Gastrin-releasing Peptide Receptor Antagonist, in GIST Patients By jnm.snmjournals.org Published On :: 2020-04-24T14:33:41-07:00 Introduction: Gastrin Releasing peptide receptors (GRPRs) are potential molecular imaging targets in a variety of tumors. Recently, a 68Ga-labelled antagonist to GRPRs, NeoBOMB1, was developed for PET. We report on the outcome of a Phase I/IIa clinical trial (EudraCT 2016-002053-38) within the EU-FP7 project Closed-loop Molecular Environment for Minimally Invasive Treatment of Patients with Metastatic Gastrointestinal Stromal Tumours (‘MITIGATE’) (grant agreement number 602306) in patients with oligometastatic gastrointestinal stromal tumors (GIST). Materials and Methods: The main objectives were evaluation of safety, biodistribution, dosimetry and preliminary tumor targeting of 68Ga-NeoBOMB1 in patients with advanced TKI-treated GIST using PET/CT. Six patients with histologically confirmed GIST and unresectable primary or metastases undergoing an extended protocol for detailed pharmacokinetic analysis were included. 68Ga-NeoBOMB1 was prepared using a kit procedure with a licensed 68Ge/68Ga generator. 3 MBq/kg body-weight were injected intravenously and safety parameters were assessed. PET/CT included dynamic imaging at 5 min, 11 min and 19 min as well as static imaging at 1, 2 and 3-4 h p.i. for dosimetry calculations. Venous blood samples and urine were collected for pharmacokinetics. Tumor targeting was assessed on a per-lesion and per-patient basis. Results: 68Ga-NeoBOMB1 (50 µg) was prepared with high radiochemical purity (yield >97%). Patients received 174 ± 28 MBq of the radiotracer, which was well tolerated in all patients over a follow-up period of 4 weeks. Dosimetry calculations revealed a mean adsorbed effective dose of 0.029 ± 0.06 mSv/MBq with highest organ dose to the pancreas (0.274 ± 0.099 mSv/MBq). Mean plasma half-life was 27.3 min with primarily renal clearance (mean 25.7 ± 5.4% of injected dose 4h p.i.). Plasma metabolite analyses revealed high stability, metabolites were only detected in the urine. In three patients a significant uptake with increasing maximum standard uptake values (SUVmax at 2h p.i.: 4.3 to 25.9) over time was found in tumor lesions. Conclusion: This Phase I/IIa study provides safety data for 68Ga-NeoBOMB1, a promising radiopharmaceutical for targeting GRPR-expressing tumors. Safety profiles and pharmacokinetics are suitable for PET imaging and absorbed dose estimates are comparable to other 68Ga-labelled radiopharmaceuticals used in clinical routine. Full Article
aging CXCR4-targeted positron emission tomography imaging of central nervous system B-cell lymphoma By jnm.snmjournals.org Published On :: 2020-04-24T14:33:41-07:00 C-X-C chemokine receptor 4 is a transmembrane chemokine receptor involved in growth, survival, and dissemination of cancer, including aggressive B-cell lymphoma. Magnetic resonance imaging (MRI) is the standard imaging technology for central nervous system involvement of B-cell lymphoma and provides high sensitivity but moderate specificity. Therefore, novel molecular and functional imaging strategies are urgently required. Methods: In this proof-of-concept study, 11 patients with lymphoma of the CNS (CNSL, n = 8 primary and n = 3 secondary involvement) were imaged with the CXCR4-directed positron emission tomography (PET) tracer 68Ga-Pentixafor. To evaluate the predictive value of this imaging modality, treatment response, as determined by MRI, was correlated with quantification of CXCR4 expression by 68Ga-Pentixafor PET in vivo before initiation of treatment in 7 of 11 patients. Results: 68Ga-Pentixafor-PET showed excellent contrast characteristics to the surrounding brain parenchyma in all patients with active disease. Furthermore, initial CXCR4 uptake determined by PET correlated with subsequent treatment response as assessed by MRI. Conclusion: 68Ga-Pentixafor-PET represents a novel diagnostic tool for central nervous system lymphoma with potential implications for theranostic approaches as well as response and risk assessment. Full Article
aging PET imaging quantifying 68Ga-PSMA-11 uptake in metastatic colorectal cancer By jnm.snmjournals.org Published On :: 2020-05-01T11:16:57-07:00 At diagnosis 22% of colorectal cancer (CRC) patients have metastases and 50% later develop metastasis. Peptide receptor radionuclide therapy (PRRT) with lutetium-177 (177Lu)-PSMA-617 is employed to treat metastatic prostate cancer (PC). 177Lu-PSMA-617 targets Prostate Specific Membrane Antigen (PSMA) a cell surface protein enriched in PC and the neovasculature of other solid tumors including CRC. We performed gallium-68 (68Ga)-PSMA-11 PET-CT imaging of ten metastatic CRC patients to assess metastasis avidity. Eight patients had lesions lacking avidity and two had solitary metastases exhibiting very low avidity. Despite expression of PSMA in CRC neovasculature, none of the patients exhibited tumor avidity sufficient to be considered for 177Lu-PSMA-617 PRRT. Full Article
aging Molecular imaging of PD-L1 expression and dynamics with the adnectin-based PET tracer 18F-BMS-986192 By jnm.snmjournals.org Published On :: 2020-05-01T11:16:57-07:00 18F-BMS-986192, an adnectin-based human programmed cell death ligand 1 (PD-L1) tracer, was developed to non-invasively determine whole-body PD-L1 expression by positron emission tomography (PET). We evaluated usability of 18F-BMS-986192 PET to detect different PD-L1 expression levels and therapy-induced changes of PD-L1 expression in tumors. Methods: In vitro binding assays with 18F-BMS-986192 were performed in human tumor cell lines with different total cellular and membrane PD-L1 protein expression levels. Subsequently, PET imaging was executed in immunodeficient mice xenografted with these cell lines. Mice were treated with interferon gamma (IFN) intraperitoneally for 3 days or with the mitogen-activated protein kinase kinase (MEK1/2) inhibitor selumetinib by oral gavage for 24 hours. Thereafter 18F-BMS-986192 was administered intravenously, followed by a 60-minute dynamic PET scan. Tracer uptake was expressed as percentage injected dose per gram tissue (%ID/g). Tissues were collected to evaluate ex vivo tracer biodistribution and to perform flow cytometric, Western blot, and immunohistochemical tumor analyses. Results: 18F-BMS-986192 uptake reflected PD-L1 membrane levels in tumor cell lines, and tumor tracer uptake in mice was associated with PD-L1 expression measured immunohistochemically. In vitro IFN treatment increased PD-L1 expression in the tumor cell lines and caused up to 12-fold increase in tracer binding. In vivo, IFN did neither affect PD-L1 tumor expression measured immunohistochemically nor 18F-BMS-986192 tumor uptake. In vitro, selumetinib downregulated cellular and membrane levels of PD-L1 of tumor cells by 50% as measured by Western blotting and flow cytometry. In mice, selumetinib lowered cellular, but not membrane PD-L1 levels of tumors and consequently no treatment-induced change in 18F-BMS-986192 tumor uptake was observed. Conclusion: 18F-BMS-986192 PET imaging allows detection of membrane-expressed PD-L1, as soon as 60 minutes after tracer injection. The tracer can discriminate a range of tumor cell PD-L1 membrane expression levels. Full Article
aging The effects of monosodium glutamate on PSMA radiotracer uptake in men with recurrent prostate cancer: a prospective, randomized, double-blind, placebo-controlled intra-individual imaging study. By jnm.snmjournals.org Published On :: 2020-05-08T13:18:58-07:00 The prostate-specific membrane antigen (PSMA) is an excellent target for theranostic applications in prostate cancer (PCa). However, PSMA-targeted radioligand therapy can cause undesirable effects due to high accumulation of PSMA radiotracers in salivary glands and kidneys. This study assessed orally administered monosodium glutamate (MSG) as a potential means of reducing kidney and salivary gland radiation exposure using a PSMA targeting radiotracer. Methods: This prospective, double-blind, placebo-controlled study enrolled 10 biochemically recurrent PCa patients. Each subject served as his own control. [18F]DCFPyl PET/CT imaging sessions were performed 3 – 7 days apart, following oral administration of either 12.7 g of MSG or placebo. Data from the two sets of images were analyzed by placing regions of interest on lacrimal, parotid and submandibular glands, left ventricle, liver, spleen, kidneys, bowel, urinary bladder, gluteus muscle and malignant lesions. The results from MSG and placebo scans were compared by paired analysis of the ROI data. Results: A total of 142 pathological lesions along with normal tissues were analyzed. As hypothesized a priori, there was a significant decrease in maximal standardized uptake values corrected for lean body mass (SULmax) on images obtained following MSG administration in the parotids (24 ± 14%, P = 0.001), submandibular glands (35 ± 11%, P<0.001) and kidneys (23 ± 26%, P = 0.014). Significant decreases were also observed in lacrimal glands (49 ± 13%, P<0.001), liver (15 ± 6%, P<0.001), spleen (28 ± 13%, P = 0.001) and bowel (44 ± 13%, P<0.001). Mildly lower blood pool SULmean was observed after MSG administration (decrease of 11 ± 13%, P = 0.021). However, significantly lower radiotracer uptake in terms of SULmean, SULpeak, and SULmax was observed in malignant lesions on scans performed after MSG administration compared to the placebo studies (SULmax median decrease 33%, range -1 to 75%, P<0.001). No significant adverse events occurred and vital signs were stable following placebo or MSG administration. Conclusion: Orally administered MSG significantly decreased salivary gland, kidney and other normal organ PSMA radiotracer uptake in human subjects, using [18F]DCFPyL as an exemplar. However, MSG caused a corresponding reduction in tumor uptake, which may limit the benefits of this approach for diagnostic and therapeutic applications. Full Article
aging Mass spectrometry imaging and LC-MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice [Research Articles] By feedproxy.google.com Published On :: 2020-05-05T13:30:26-07:00 Niemann-Pick disease, type C1 (NPC1) is a lipid storage disorder in which cholesterol and glycosphingolipids accumulate in late endosomal/lysosomal compartments because of mutations in the NPC1 gene. A hallmark of NPC1 is progressive neurodegeneration of the cerebellum as well as visceral organ damage; however, the mechanisms driving this disease pathology are not fully understood. Phosphoinositides are phospholipids that play distinct roles in signal transduction and vesicle trafficking. Here, we utilized consensus spectra analysis of MS imaging datasets and orthogonal LC–MS analyses to evaluate the spatial distribution of phosphoinositides and quantify them in cerebellar tissue from Npc1-null mice. Our results suggest significant depletion of multiple phosphoinositide species, including phosphatidylinositol (PI), phosphatidylinositol monophosphate (PIP), and bisphosphate (PIP2), in the cerebellum of the Npc1-null mice in both whole-tissue lysates and myelin-enriched fractions. Additionally, we observed altered levels of the regulatory enzyme phosphatidylinositol 4-kinase type 2 α (PI4K2A) in Npc1-null mice. In contrast, the levels of related kinases, phosphatases, and transfer proteins were unaltered in the Npc1-null mouse model as observed by Western blot analysis. Our discovery of phosphoinositide lipid biomarkers for NPC1 opens new perspectives on the pathophysiology underlying this fatal neurodegenerative disease. Full Article
aging Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases. Full Article
aging Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of {alpha}-crystallin: Implications for lens aging and presbyopia [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein–cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin–γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens–epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone–client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone–client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin–client complexes could contribute to lens aging and presbyopia. Full Article
aging Lamin C Counteracts Glucose Intolerance in Aging, Obesity, and Diabetes Through {beta}-Cell Adaptation By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 Aging-dependent changes in tissue function are associated with the development of metabolic diseases. However, the molecular connections linking aging, obesity, and diabetes remain unclear. Lamin A, lamin C, and progerin, products of the Lmna gene, have antagonistic functions on energy metabolism and life span. Lamin C, albeit promoting obesity, increases life span, suggesting that this isoform is crucial for maintaining healthy conditions under metabolic stresses. Because β-cell loss during obesity or aging leads to diabetes, we investigated the contribution of lamin C to β-cell function in physiopathological conditions. We demonstrate that aged lamin C only–expressing mice (LmnaLCS/LCS) become obese but remain glucose tolerant due to adaptive mechanisms including increased β-cell mass and insulin secretion. Triggering diabetes in young mice revealed that LmnaLCS/LCS animals normalize their fasting glycemia by both increasing insulin secretion and regenerating β-cells. Genome-wide analyses combined to functional analyses revealed an increase of mitochondrial biogenesis and global translational rate in LmnaLCS/LCS islets, two major processes involved in insulin secretion. Altogether, our results demonstrate for the first time that the sole expression of lamin C protects from glucose intolerance through a β-cell–adaptive transcriptional program during metabolic stresses, highlighting Lmna gene processing as a new therapeutic target for diabetes treatment. Full Article
aging Managing multimorbidity in primary care By feeds.bmj.com Published On :: Fri, 23 Jan 2015 11:56:24 +0000 Multimorbidity presents a number of different challenges, for the patients living with the conditions, but also for the health professionals caring for them in systems that often are not designed with these more complex needs in mind. Emma Wallace, general practice lecturer, and Susan Smith, a professor of general practice at the Royal College of... Full Article
aging Unexpected findings, with uncertain implications, in research imaging By feeds.bmj.com Published On :: Fri, 13 Nov 2015 16:20:27 +0000 When healthy volunteers are scanned as part of a research project, unexpected findings, with uncertain implications, can be thrown up. Joanna Wardlaw, professor of applied neuroimaging and honorary consultant neuroradiologist at the University of Edinburgh, joins us to discuss how her group deals with these incidental findings, and what... Full Article
aging Talk evidence - TIAs, aging in Japan and women in medicine By feeds.bmj.com Published On :: Wed, 23 Jan 2019 10:16:29 +0000 In this EBM round-up, Carl Heneghan, Helen Macdonald and Duncan Jarvies are back to give you an update Dual vs single therapy for prevention of TIA or minor stroke - how does the advice that dual work better translate in the UK? Carl explains why Japan can teach us to get active and, how GPs can use that information to "drop a decade" in... Full Article
aging Bell names likely starting 5, staging 'pen battles By mlb.mlb.com Published On :: Thu, 14 Feb 2019 19:11:35 EDT Unlike recent Reds Spring Trainings, much of the drama about who would comprise the rotation was already removed on the first day of camp. That's when manager David Bell revealed the starting five would likely be -- in no particular order -- Sonny Gray, Tanner Roark, Alex Wood, Luis Castillo and Anthony DeSclafani. Full Article
aging Stop mismanaging our country By jamaica-gleaner.com Published On :: Fri, 08 May 2020 00:11:36 -0500 THE EDITOR, Madam: TO THE Jamaican Government: there are no trade laws that say you have to buy poison – foreign chicken, beef, produce and other agricultural staples are poisonous. They are chock-full of hormones, antibiotics, fillers, excess... Full Article
aging Fossil Fuels Expert Roundtable: Managing Disputes and Arbitrations Involving the Extractive Sector in Africa By feedproxy.google.com Published On :: Mon, 01 Sep 2014 14:00:02 +0000 Invitation Only Research Event 30 September 2014 - 5:00pm to 6:30pm Chatham House, London Event participants Paula Hodges QC, Partner; Head, Global Arbitration Practice, Herbert Smith FreehillsStéphane Brabant, Partner; Chairman, Africa Practice Group, Herbert Smith Freehills Disputes between international companies and national governments commonly arise in the extractive industry where high expectations from producer countries often run alongside emotive issues of ‘ownership’ and ‘exploitation’. In 2013, Chatham House published the report Conflict and Coexistence in the Extractives Industries, examining the rising occurrence of long-running and expensive company-government disputes. Continuing the conversation, the speakers will share their personal insights regarding doing business in Africa's oil and gas sector and preparing for crisis situations. They will outline why they believe the effective management of any crisis is critical to achieving an early settlement and why arbitration is the best formal mechanism for resolving disputes in Africa. They will also discuss what the preconditions of success are, and how companies must adjust to new commercial and political realities when engaging with national companies. Attendance at this event is by invitation only. Department/project Energy, Environment and Resources Programme, Conflict or co-existence in extractive industries Owen Grafham Manager, Energy, Environment and Resources Programme +44 (0)20 7957 5708 Email Full Article
aging Reversibility of 68Ga-FAPI-2 Trapping Might Prove an Asset for PET Quantitative Imaging By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 Full Article
aging Multimodality Imaging of Inflammation and Ventricular Remodeling in Pressure-Overload Heart Failure By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 Inflammation contributes to ventricular remodeling after myocardial ischemia, but its role in nonischemic heart failure is poorly understood. Local tissue inflammation is difficult to assess serially during pathogenesis. Although 18F-FDG accumulates in inflammatory leukocytes and thus may identify inflammation in the myocardial microenvironment, it remains unclear whether this imaging technique can isolate diffuse leukocytes in pressure-overload heart failure. We aimed to evaluate whether inflammation with 18F-FDG can be serially imaged in the early stages of pressure-overload–induced heart failure and to compare the time course with functional impairment assessed by cardiac MRI. Methods: C57Bl6/N mice underwent transverse aortic constriction (TAC) (n = 22), sham surgery (n = 12), or coronary ligation as an inflammation-positive control (n = 5). MRI assessed ventricular geometry and contractile function at 2 and 8 d after TAC. Immunostaining identified the extent of inflammatory leukocyte infiltration early in pressure overload. 18F-FDG PET scans were acquired at 3 and 7 d after TAC, under ketamine-xylazine anesthesia to suppress cardiomyocyte glucose uptake. Results: Pressure overload evoked rapid left ventricular dilation compared with sham (end-systolic volume, day 2: 40.6 ± 10.2 μL vs. 23.8 ± 1.7 μL, P < 0.001). Contractile function was similarly impaired (ejection fraction, day 2: 40.9% ± 9.7% vs. 59.2% ± 4.4%, P < 0.001). The severity of contractile impairment was proportional to histology-defined myocardial macrophage density on day 8 (r = –0.669, P = 0.010). PET imaging identified significantly higher left ventricular 18F-FDG accumulation in TAC mice than in sham mice on day 3 (10.5 ± 4.1 percentage injected dose [%ID]/g vs. 3.8 ± 0.9 %ID/g, P < 0.001) and on day 7 (7.8 ± 3.7 %ID/g vs. 3.0 ± 0.8 %ID/g, P = 0.006), though the efficiency of cardiomyocyte suppression was variable among TAC mice. The 18F-FDG signal correlated with ejection fraction (r = –0.75, P = 0.01) and ventricular volume (r = 0.75, P < 0.01). Western immunoblotting demonstrated a 60% elevation of myocardial glucose transporter 4 expression in the left ventricle at 8 d after TAC, indicating altered glucose metabolism. Conclusion: TAC induces rapid changes in left ventricular geometry and contractile function, with a parallel modest infiltration of inflammatory macrophages. Metabolic remodeling overshadows inflammatory leukocyte signal using 18F-FDG PET imaging. More selective inflammatory tracers are requisite to identify the diffuse local inflammation in pressure overload. Full Article
aging 18F-Fluorocholine PET/CT in Primary Hyperparathyroidism: Superior Diagnostic Performance to Conventional Scintigraphic Imaging for Localization of Hyperfunctioning Parathyroid Glands By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 Primary hyperparathyroidism (PHPT) is a common endocrine disorder, definitive treatment usually requiring surgical removal of the offending parathyroid glands. To perform focused surgical approaches, it is necessary to localize all hyperfunctioning glands. The aim of the study was to compare the efficiency of established conventional scintigraphic imaging modalities with emerging 18F-fluorocholine PET/CT imaging in preoperative localization of hyperfunctioning parathyroid glands in a larger series of PHPT patients. Methods: In total, 103 patients with PHPT were imaged preoperatively with 18F-fluorocholine PET/CT and conventional scintigraphic imaging methods, consisting of 99mTc-sestamibi SPECT/CT, 99mTc-sestamibi/pertechnetate subtraction imaging, and 99mTc-sestamibi dual-phase imaging. The results of histologic analysis, as well as intact parathyroid hormone and serum calcium values obtained 1 d after surgery and on follow-up, served as the standard of truth for evaluation of imaging results. Results: Diagnostic performance of 18F-fluorocholine PET/CT surpassed conventional scintigraphic methods (separately or combined), with calculated sensitivity of 92% for PET/CT and 39%–56% for conventional imaging (65% for conventional methods combined) in the entire patient group. Subgroup analysis, differentiating single and multiple hyperfunctioning parathyroid glands, showed PET/CT to be most valuable in the group with multiple hyperfunctioning glands, with sensitivity of 88%, whereas conventional imaging was significantly inferior, with sensitivity of 22%–34% (44% combined). Conclusion: 18F-fluorocholine PET/CT is a diagnostic modality superior to conventional imaging methods in patients with PHPT, allowing for accurate preoperative localization. Full Article
aging PET Imaging of Pancreatic Dopamine D2 and D3 Receptor Density with 11C-(+)-PHNO in Type 1 Diabetes By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 Type 1 diabetes mellitus (T1DM) has traditionally been characterized by a complete destruction of β-cell mass (BCM); however, there is growing evidence of possible residual BCM present in T1DM. Given the absence of in vivo tools to measure BCM, routine clinical measures of β-cell function (e.g., C-peptide release) may not reflect BCM. We previously demonstrated the potential utility of PET imaging with the dopamine D2 and D3 receptor agonist 3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol (11C-(+)-PHNO) to differentiate between healthy control (HC) and T1DM individuals. Methods: Sixteen individuals participated (10 men, 6 women; 9 HCs, 7 T1DMs). The average duration of diabetes was 18 ± 6 y (range, 14–30 y). Individuals underwent PET/CT scanning with a 120-min dynamic PET scan centered on the pancreas. One- and 2-tissue-compartment models were used to estimate pancreas and spleen distribution volume. Reference region approaches (spleen as reference) were also investigated. Quantitative PET measures were correlated with clinical outcome measures. Immunohistochemistry was performed to examine colocalization of dopamine receptors with endocrine hormones in HC and T1DM pancreatic tissue. Results: C-peptide release was not detectable in any T1DM individuals, whereas proinsulin was detectable in 3 of 5 T1DM individuals. Pancreas SUV ratio minus 1 (SUVR-1) (20–30 min; spleen as reference region) demonstrated a statistically significant reduction (–36.2%) in radioligand binding (HCs, 5.6; T1DMs, 3.6; P = 0.03). Age at diagnosis correlated significantly with pancreas SUVR-1 (20–30 min) (R2 = 0.67, P = 0.025). Duration of diabetes did not significantly correlate with pancreas SUVR-1 (20–30 min) (R2 = 0.36, P = 0.16). Mean acute C-peptide response to arginine at maximal glycemic potentiation did not significantly correlate with SUVR-1 (20–30 min) (R2 = 0.57, P = 0.05), nor did mean baseline proinsulin (R2 = 0.45, P = 0.10). Immunohistochemistry demonstrated colocalization of dopamine D3 receptor and dopamine D2 receptor in HCs. No colocalization of the dopamine D3 receptor or dopamine D2 receptor was seen with somatostatin, glucagon, or polypeptide Y. In a separate T1DM individual, no immunostaining was seen with dopamine D3 receptor, dopamine D2 receptor, or insulin antibodies, suggesting that loss of endocrine dopamine D3 receptor and dopamine D2 receptor expression accompanies loss of β-cell functional insulin secretory capacity. Conclusion: Thirty-minute scan durations and SUVR-1 provide quantitative outcome measures for 11C-(+)-PHNO, a dopamine D3 receptor–preferring agonist PET radioligand, to differentiate BCM in T1DM and HCs. Full Article
aging Appropriate Use Criteria for Imaging Evaluation of Biochemical Recurrence of Prostate Cancer After Definitive Primary Treatment By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 Full Article
aging Prostate-Specific Membrane Antigen PET/CT Combined with Sentinel Node Biopsy for Primary Lymph Node Staging in Prostate Cancer By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 Our objective was to determine the diagnostic capabilities of combined prostate-specific membrane antigen (PSMA) PET/CT and sentinel node (SN) biopsy in PSMA PET/CT–negative patients for primary lymph node (LN) staging in prostate cancer (PCa) patients. Methods: Between January 2017 and March 2019, retrospectively, all consecutive patients with diagnosed intermediate- or high-risk primary PCa who underwent preoperative PSMA PET/CT (68Ga or 18F-DCFPyL) followed by robot-assisted radical prostatectomy and extended pelvic LN dissection (ePLND) were included. All patients without suspected LN metastases on PSMA PET/CT were considered candidates for SN biopsy with indocyanine green–99mTc-nanocolloid or 99mTc-nanocolloid with free indocyanine green used as tracers. The ePLND was used as a reference standard. Results: Of 53 patients, 22 had positive PSMA PET/CT results and 31 underwent subsequent SN biopsy after negative PSMA PET/CT results. In total, 23 patients (43%) were pN1, of whom 6 (26%) had negative PSMA PET/CT results and underwent subsequent SN biopsy. The combined use of SN biopsy and PSMA PET/CT identified all pN1 patients (100% sensitivity; 95% confidence interval, 86%–100%) and performed correct nodal staging in 50 of 53 patients (94% diagnostic accuracy; 95% confidence interval, 84%–99%). SN biopsy identified significantly smaller LN metastases (median diameter, 2.0 mm; interquartile range, 1.0–3.8 mm) than PSMA PET/CT (median diameter, 5.5 mm; interquartile range, 2.6–9.3 mm; P = 0.007). Conclusion: Combining both modalities led to a 94% accuracy for nodal staging in diagnosed intermediate- and high-risk primary PCa. Adding SN biopsy in patients with negative PSMA PET/CT results increased the combined sensitivity to 100% for detecting nodal metastases at ePLND. This diagnostic accuracy may provide valuable information for directing further treatment in PCa patients, such as the use of PSMA PET/CT and SN biopsy rather than ePLND as the preferred approach for staging before radiotherapy. Full Article
aging Head-to-Head Comparison of 68Ga-PSMA-11 with 18F-PSMA-1007 PET/CT in Staging Prostate Cancer Using Histopathology and Immunohistochemical Analysis as a Reference Standard By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 18F-PSMA-1007 is a novel prostate-specific membrane antigen (PSMA)–based radiopharmaceutical for imaging prostate cancer (PCa). The aim of this study was to compare the diagnostic accuracy of 18F-PSMA-1007 with 68Ga-PSMA-11 PET/CT in the same patients presenting with newly diagnosed intermediate- or high-risk PCa. Methods: Sixteen patients with intermediate- or high-risk PCa underwent 18F-PSMA-1007 and 68Ga-PSMA-11 PET/CT within 15 d. PET findings were compared between the 2 radiotracers and with reference-standard pathologic specimens obtained from radical prostatectomy. The Cohen -coefficient was used to assess the concordance between 18F-PSMA-1007 and 68Ga-PSMA-11 for detection of intraprostatic lesions. The McNemar test was used to assess agreement between intraprostatic PET/CT findings and histopathologic findings. Sensitivity, specificity, positive predictive value, and negative predictive value were reported for each radiotracer. SUVmax was measured for all lesions, and tumor-to-background activity was calculated. Areas under receiver-operating-characteristic curves were calculated for discriminating diseased from nondiseased prostate segments, and optimal SUV cutoffs were calculated using the Youden index for each radiotracer. Results: PSMA-avid lesions in the prostate were identified in all 16 patients with an almost perfect concordance between the 2 tracers ( ranged from 0.871 to 1). Aside from the dominant intraprostatic lesion, similarly detected by both radiotracers, a second less intense positive focus was detected in 4 patients only with 18F-PSMA-1007. Three of these secondary foci were confirmed as Gleason grade 3 lesions, whereas the fourth was shown on pathologic examination to represent chronic prostatitis. Conclusion: This pilot study showed that both 18F-PSMA-1007 and 68Ga-PSMA-11 identify all dominant prostatic lesions in patients with intermediate- or high-risk PCa at staging. 18F-PSMA-1007, however, may detect additional low-grade lesions of limited clinical relevance. Full Article
aging First-in-Humans Imaging with 89Zr-Df-IAB22M2C Anti-CD8 Minibody in Patients with Solid Malignancies: Preliminary Pharmacokinetics, Biodistribution, and Lesion Targeting By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 Immunotherapy is becoming the mainstay for treatment of a variety of malignancies, but only a subset of patients responds to treatment. Tumor-infiltrating CD8-positive (CD8+) T lymphocytes play a central role in antitumor immune responses. Noninvasive imaging of CD8+ T cells may provide new insights into the mechanisms of immunotherapy and potentially predict treatment response. We are studying the safety and utility of 89Zr-IAB22M2C, a radiolabeled minibody against CD8+ T cells, for targeted imaging of CD8+ T cells in patients with cancer. Methods: The initial dose escalation phase of this first-in-humans prospective study included 6 patients (melanoma, 1; lung, 4; hepatocellular carcinoma, 1). Patients received approximately 111 MBq (3 mCi) of 89Zr-IAB22M2C (at minibody mass doses of 0.2, 0.5, 1.0, 1.5, 5, or 10 mg) as a single dose, followed by PET/CT scans at approximately 1–2, 6–8, 24, 48, and 96–144 h after injection. Biodistribution in normal organs, lymph nodes, and lesions was evaluated. In addition, serum samples were obtained at approximately 5, 30, and 60 min and later at the times of imaging. Patients were monitored for safety during infusion and up to the last imaging time point. Results: 89Zr-IAB22M2C infusion was well tolerated, with no immediate or delayed side effects observed after injection. Serum clearance was typically biexponential and dependent on the mass of minibody administered. Areas under the serum time–activity curve, normalized to administered activity, ranged from 1.3 h/L for 0.2 mg to 8.9 h/L for 10 mg. Biodistribution was dependent on the minibody mass administered. The highest uptake was always in spleen, followed by bone marrow. Liver uptake was more pronounced with higher minibody masses. Kidney uptake was typically low. Prominent uptake was seen in multiple normal lymph nodes as early as 2 h after injection, peaking by 24–48 h after injection. Uptake in tumor lesions was seen on imaging as early as 2 h after injection, with most 89Zr-IAB22M2C–positive lesions detectable by 24 h. Lesions were visualized early in patients receiving treatment, with SUV ranging from 5.85 to 22.8 in 6 target lesions. Conclusion: 89Zr-IAB22M2C imaging is safe and has favorable kinetics for early imaging. Biodistribution suggests successful targeting of CD8+ T-cell–rich tissues. The observed targeting of tumor lesions suggests this may be informative for CD8+ T-cell accumulation within tumors. Further evaluation is under way. Full Article
aging 18F-FET PET Imaging in Differentiating Glioma Progression from Treatment-Related Changes: A Single-Center Experience By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 In glioma patients, differentiation between tumor progression (TP) and treatment-related changes (TRCs) remains challenging. Difficulties in classifying imaging alterations may result in a delay or an unnecessary discontinuation of treatment. PET using O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) has been shown to be a useful tool for detecting TP and TRCs. Methods: We retrospectively evaluated 127 consecutive patients with World Health Organization grade II–IV glioma who underwent 18F-FET PET imaging to distinguish between TP and TRCs. 18F-FET PET findings were verified by neuropathology (40 patients) or clinicoradiologic follow-up (87 patients). Maximum tumor-to-brain ratios (TBRmax) of 18F-FET uptake and the slope of the time–activity curves (20–50 min after injection) were determined. The diagnostic accuracy of 18F-FET PET parameters was evaluated by receiver-operating-characteristic analysis and 2 testing. The prognostic value of 18F-FET PET was estimated using the Kaplan–Meier method. Results: TP was diagnosed in 94 patients (74%) and TRCs in 33 (26%). For differentiating TP from TRCs, receiver-operating-characteristic analysis yielded an optimal 18F-FET TBRmax cutoff of 1.95 (sensitivity, 70%; specificity, 71%; accuracy, 70%; area under the curve, 0.75 ± 0.05). The highest accuracy was achieved by a combination of TBRmax and slope (sensitivity, 86%; specificity, 67%; accuracy, 81%). However, accuracy was poorer when tumors harbored isocitrate dehydrogenase (IDH) mutations (91% in IDH-wild-type tumors, 67% in IDH-mutant tumors, P < 0.001). 18F-FET PET results correlated with overall survival (P < 0.001). Conclusion: In our neurooncology department, the diagnostic performance of 18F-FET PET was convincing but slightly inferior to that of previous reports. Full Article
aging Congressional Briefing: Diagnostic Imaging and Alzheimer Disease By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 Full Article
aging Prognosis of unrecognised myocardial infarction determined by electrocardiography or cardiac magnetic resonance imaging: systematic review and meta-analysis By feeds.bmj.com Published On :: Thursday, May 7, 2020 - 11:41 Full Article
aging Virtual Breakfast: Engaging with the EU From the Outside: A Perspective From Norway By feedproxy.google.com Published On :: Tue, 07 Apr 2020 14:45:01 +0000 Invitation Only Research Event 24 April 2020 - 8:30am to 9:30am Event participants Niels Engelschiøn, Director-General, Department for European Affairs, Norwegian Ministry of Foreign AffairsChair: Dr Robin Niblett, Director; Chief Executive, Chatham House Please note this an online-only event.Norway is one of the few European countries that remains outside of the European Union. After the country’s population rejected the prospect of joining the EU twice, Norway’s relationship with the Union has been based on its membership of the European Economic Area (EEA), alongside Iceland and Liechtenstein.The ‘Norway Model’ was often mentioned in the run up to the Brexit vote as a possible basis for Britain’s future relationship with the bloc, not least because it offers the least disruption to the current arrangement. Equally, Norway is not subject to the EU fisheries policy - an anticipated major issue in the next phase of Brexit talks. Nor is it part of the EU Customs Union.Even though Prime Minister Johnson has now ruled out the type of deep economic and regulatory integration with the EU that Norway enjoys through its EEA membership, the country’s experience can still offer valuable lessons for the UK as it prepares to exit the transition period at the end of 2020.In this session, the speaker will share Norway’s experience as a long-standing EEA member and discuss the challenges of engaging with the EU from the outside. What lessons can Norway offer the UK ahead of the negotiations on the future of UK-EU relations? What are the limits of its current arrangement with the EU? And is there any appetite among the Norwegian population to revisit it? Department/project Europe Programme, Britain and Europe: The Post-Referendum Agenda Alina Lyadova Europe Programme Coordinator Email Full Article
aging Negative Emissions and Managing Climate Risks Scenarios By feedproxy.google.com Published On :: Thu, 31 Oct 2019 18:15:01 +0000 Research Event 4 July 2019 - 1:30pm to 5:00pm Chatham House | 10 St James's Square | London | SW1Y 4LE This half-day strategic workshop, organized by Chatham House and E3G, brought together key climate experts, policymakers and influential actors, especially in Europe, for a focused and facilitated discussion on the roles, risks and potentials of negative emissions technologies (NETs). An interactive scenario exercise will be conducted, drawing on a climate simulation tool developed by Climate Interactive, to consider the potential roles and risks of different NETs deployments to meet the Paris Agreement targets and to consider the international co-operation required to manage the pathway to net-zero emissions. Participants will explore the political opportunities, discuss different scenarios and risks and identify areas of interventions and collective action.The meeting is part of a series of events being held at Chatham House as part of London Climate Action Week (LCAW). Department/project Energy, Environment and Resources Programme, Bioenergy, Carbon Capture and Storage (BECCS) Full Article
aging Development through Diversity: Engaging Armenia’s New and Old Diaspora By www.migrationpolicy.org Published On :: Wed, 23 Mar 2016 11:26:58 -0400 The Armenian diaspora, which significantly exceeds the country's resident population, has played an instrumental role in Armenia's political and economic development since independence in 1991. Yet a picture emerges of divergent currents within the diaspora, often seen from above as a unified entity. Delve into differences in engagement among Armenia's "old" and "new" diasporas with this feature article. Full Article
aging Staging Presymptomatic Type 1 Diabetes: A Scientific Statement of JDRF, the Endocrine Society, and the American Diabetes Association By care.diabetesjournals.org Published On :: 2015-10-01 Richard A. InselOct 1, 2015; 38:1964-1974Scientific Statement Full Article
aging Diabetes and Aging: Unique Considerations and Goals of Care By care.diabetesjournals.org Published On :: 2017-04-01 Rita R. KalyaniApr 1, 2017; 40:440-443Emerging Science and Concepts for Management of Diabetes and Aging Full Article