device

Elongated cam, self-locking, board straightening device

A board straightening tool able to provide the force to straighten bent boards by simultaneously maintaining a grasping connection to both the joist being used to support the straightening device and the board being fastened to that joist, and maintaining a clearance between the straightening tool and board for the use of an Install the fastening device on the same joist that the tool is using for support is required to obtain the straightest installed boards possible and to maintain the maximum straightness of the deck board after the straightening device is released. The grasping pins are constructed either from a knurled metal for more grasp power or have a smooth surface providing for a reduction of marring of the joist. The tool also provides the force required to maintain consistently spaced gaps between the boards for a more desirable appearance.




device

One-touch chamfering-amount adjustment device for a chamfering machine

The present invention relates to a one-touch chamfering-amount adjustment device for a chamfering machine which specifically carries out a chamfering process on the welding bead surfaces of objects to be processed (such as metal sheet materials and pipes). In the present invention, the moment after a chamfering-amount-adjustment piece has been manipulated so as to rotate, a position-setting pin is inserted into a securing recess in the chamfering-amount-adjustment piece and as this happens the chamfering amount is precisely adjusted in units and at the same time locking to the predetermined chamfering amount is automatically maintained, yet nevertheless the adjustment of the chamfering amount is achieved in a straightforward fashion with one touch, and, when the chamfering-amount-adjustment piece is manipulated, a cutter shaft moves vertically and as it does so the chamfering amount is adjusted in such a way that the chamfering amount can be immediately and rapidly adjusted even during working regardless of any cutter rotating action.




device

Lift device for power tool

A lift device for selectively adjusting a vertical position of a power tool relative to a working surface of a plate of a work bench includes a carriage assembly securable to an underside of the plate. The carriage assembly includes a securement mechanism selectively adjustable for interchangeably securing a plurality of power tools of different cross-sectional dimensions to the carriage assembly. A drive assembly selectively moves the securement mechanism upward and downward relative to the plate to adjust the vertical position of the power tool relative to the working surface when the power tool is secured to the carriage assembly. A drive-locking mechanism selectively locks the drive assembly. The drive-locking mechanism includes a cam lock for selectively engaging the drive shaft to inhibit rotation of the drive shaft.




device

Multi-stage retractable cord winder device

A retractable cord winder device, which has a front cover with center shaft, a spiral spring, a spool with a spool divider with flanged hook dividing the spool chamber into equal halves for efficient and minimal noise cable coiling, oval sliding positioning sliding disc, and a rear cover with concave recess to hold the oval positioning sliding disc with positioning stopper. The front cover is mounted with the rear cover through the center shaft via a center hole of the rear cover where there are symmetrical openings on both ends for cords folded in half to be attached to the flanged hook and retracted upon pulling down.




device

Movable device for holding reels and spools

A device is provided that is adapted for mounting on a vertical support, such as a stud at a construction job site, to hold a spool of wire off the floor, allowing the wire to be dispensed easily, yet providing sufficient drag on the reel to avoid excess unspooling of the wire. The device is adapted for mounting on a stud or comparable vertical support without the use of tools or fasteners so it can be moved quickly from location to location. The device is conveniently disassembled into two smaller assemblies for storage and transport to the job site.




device

Tape device

The present invention relates to a tape guiding mechanism (10) of a tape device (100). The tape device (100) comprises a strip of tape (20) having supply tape (22) and take up tape (24); a spool portion (130); a supply spool (40) disposed at the spool portion (130) for winding the supply tape (22); a take up spool (50) disposed at the spool portion (130) for winding the take up tape (24); an application tip (12); and a spool mechanism (70) for allowing the supply and the take up spools (40 & 50) to rotate such that the tape travels from the supply spool (40), around the applicator tip (120), and to the take up spool (50).




device

Webbing winding device

In a webbing winding device, even when a piston moves toward the other side in a movement direction due to a reaction when the piston moves to a maximum movement position, an engagement surface of a hook portion comes into contact with a subject engagement surface of a subject engagement portion, so that the movement of the piston toward the other side in the movement direction is restricted. Accordingly, the piston is prevented from returning to a standby position, and a pawl is prevented from returning to a lock position. For this reason, a state where a rotation of a locking ring in the pull-out direction is maintained. Accordingly, after the piston moves from the standby position to the maximum movement position, the piston is prevented from returning to the standby position, and the force limiter load is prevented from being changed.




device

Webbing take-up device

A webbing take-up device that is both capable of promoting reductions in size and weight and capable of excellently maintaining coupling strength between a pawl member and a ring portion. A clutch plate and a lock ring of this webbing take-up device are coupled by plural teeth provided at the clutch plate meshing with plural teeth provided at the lock ring. This lock ring is specified to have a lower material strength than the clutch plate. A tooth height H2 of the plural teeth of the lock ring is specified to be lower than a tooth height of the plural teeth of the clutch plate. Thus, when the lock ring and the clutch plate mesh, tooth tips of the plural teeth of the clutch plate come into contact with tooth bottoms of the plural teeth of the lock ring.




device

Remote adjustment of a row unit of an agricultural device

Agricultural devices, row unit adjustment systems, and methods of adjusting a depth of a furrow are provided. In some aspects, an agricultural device is adapted to plant seeds and includes a frame, a furrow opener coupled to the frame and adapted to cut a furrow including a depth, a sensor adapted to sense a characteristic associated with planting seeds and generate a signal associated with the sensed characteristic, and a processing unit receiving the signal associated with the sensed characteristic. The depth of the furrow is adjustable based on the signal associated with the sensed characteristic. Such characteristic may be a characteristic of the soil, a force applied to the agricultural device, or a position of a portion of the agricultural device.




device

Agricultural devices, systems, and methods for determining soil and seed characteristics and analyzing the same

Agricultural seed planting systems are provided. In some aspects, the system includes a processing unit, a frame, a furrow opener coupled to the frame for opening a furrow in soil, and a sensor in communication with the processing unit and adapted to sense a characteristic associated with seed planting. The sensor may generate a signal associated with the sensed characteristic and the processing unit may receive the signal. In some aspects, the sensed characteristic may be either a soil characteristic or a seed characteristic. Information associated with the sensed characteristic can be saved in memory for future use and to assist with more effective planting in the future.




device

Nanogap device and method of processing signal from the nanogap device

A nanogap device includes a first insulation layer having a nanopore formed therein, a first nanogap electrode which may be formed on the first insulation layer and may be divided into two parts with a nanogap interposed between the two parts, the nanogap facing the nanopore, a second insulation layer formed on the first nanogap electrode, a first graphene layer formed on the second insulation layer, a first semiconductor layer formed on the first graphene layer, a first drain electrode formed on the first semiconductor layer, and a first source electrode formed on the first graphene layer such as to be apart from the first semiconductor layer.




device

Sensor cartridge and measuring device

A sensor cartridge for supplying a sensor is used. The sensor cartridge includes a casing within which the plurality of sensors can be arranged, and that allows a sample to be introduced to a sensor located at a preset location, and a connection structure. The connection structure electrically connects an external device and a sensor electrode of the sensor located at the preset location. The casing is formed so as to be held by the external device when the external device and the sensor electrode of the sensor are electrically connected via the connection structure.




device

Rapid-read gated amperometry devices

A sensor system, device, and methods for determining the concentration of an analyte in a sample is described. Input signals including multiple duty cycles of sequential excitation pulses and relaxations are input to the sample. One or more signals output from the sample within 300 ms of the input of an excitation pulse may be correlated with the analyte concentration of the sample to improve the accuracy and/or precision of the analysis. Determining the analyte concentration of the sample from these rapidly measured output values may reduce analysis errors arising from the hematocrit effect, mediator background, and other error sources.




device

Sperm separation devices and associated methods

The present invention provides methods, devices, and kits for separating and selecting top sperm from a sperm sample of a subject. In one aspect, for example, such a method can include removing a portion of negatively charged protein from sperm in the sperm sample, immobilizing the sperm, electrophoretically separating the sperm, and selecting mature sperm based on electromotility properties.




device

Electric-field enhanced performance in catalysis and solid-state devices involving gases

Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.




device

Liquid sample measuring device

The present liquid sample measuring device comprises a device body on which a biosensor is detachably mounted, a liquid biological sample being dispensed in drops on the biosensor; a measuring section that measures bioinformation from the liquid biological sample; a motion measuring section that measures motion information of the device body; a motion assessment section that assesses the degree of motion of the device body on the basis of the motion information of the device body measured by the motion measuring section; and a measurement controller that adjusts the measurement time for measuring the bioinformation on the basis of the assessment result of the motion assessment section.




device

Test strip ejector for medical device

A test strip ejector system for receiving and ejecting a fluid testing medical device test strip includes a mechanism assembly supported by the device whereby user actuation of the mechanism assembly induces displacement of the test strip in at least a test strip ejection direction to eject the test strip. The mechanism assembly includes a power source and an electric motor such as a piezo-electric linear micro motor connected to the power source. The electric motor has an armature displaced when the electric motor is energized. A digital display/user interface is provided. Selection of an ejection function presented on the digital display/user interface initiates operation of the electric motor and displacement of the armature thereby displacing the test strip in the ejection direction. An operating system including a microprocessor is connected to the display/user interface. The microprocessor controls direction of operation and operating speed of the motor.




device

Device and method for manufacturing the same

The present invention provides a device that decreases deformation during manufacturing of the device, provides a firm joint without use of an adhesive, and allows chemical modification of a channel during manufacturing of the device. The device includes two joined substrates, and a concavity is formed on at least one of the opposing surfaces of the two substrates so as to make a channel, where the two substrates are joined together by a covalent bond via a crosslinking agent (A), and the crosslinking agent (A) is exposed on an inner wall surface of the channel.




device

Electrostatic coalescing device

The invention concerns an electrostatic coalescing device that includes a vessel or a pipe through which a mixture of fluids flows. At least one metal electrode plate and transformer are arranged inside the pipe/vessel. The electrode plate and transformer are fully enclosed by insulation, and the transformer is energized from an external alternating low voltage source/power supply located outside the vessel/pipe. The transformer includes a first end of a high voltage winding connected electrically to the metal plate within the insulation.




device

Biological sample measuring device

A biological sample measuring device including a mounting portion to which a biological sample measuring sensor is mounted, a voltage application section that applies voltage to a counter electrode of the biological sample measuring sensor mounted to the mounting portion, amplifiers that are selectively connected to a working electrode of the biological sample measuring sensor, and a determination section that is connected to these amplifiers. The determination section has a threshold determination section that determines a voltage value obtained by voltage conversion of the current value of the working electrode, a same determination section that selectively connects the amplifiers to the working electrode depending on the determination of the threshold determination section, and identifies the sample deposited on the biological sample measuring sensor from the output of the selected amplifier, and an output section that outputs a measurement value corresponding to the identified sample.




device

Wrist/arm/hand mounted device for remotely controlling a materials handling vehicle

A supplemental control system for a materials handling vehicle comprises a wearable control device, and a corresponding receiver on the materials handling vehicle. The wearable control device is donned by an operator interacting with the materials handling vehicle, and comprises a wireless transmitter to be worn on the wrist of the operator and a travel control communicably coupled to the wireless transmitter. Actuation of the travel control causes the wireless transmitter to transmit a first type signal designating a request to the vehicle. The receiver is supported by the vehicle for receiving transmissions from the wireless transmitter.




device

Device for improved clean up of holes, and method of using same

A cleanup device having a first board having a first edge, a second board having a first edge, a first hinge attached to the first edge of the first board and the first edge of the second board, an aperture defined by a portion of the first edge of the first board and a portion of the first edge of the second board, a first plate slidably attached to the first board, wherein the first plate is movable from a first, open position where the aperture is open to a second, closed position where the first plate extends over at least a portion of the aperture, and wherein a top surface of the first board is movable towards a top surface of the second board to form a V-shaped surface for directing dirt or soil off of the first board and the second board.




device

TFT array substrate, manufacturing method of the same and display device

According to embodiments of the invention, a TFT array substrate, a manufacturing method of the TFT array substrate and a display device are provided. The method comprises: depositing a metal film on a substrate, and forming a gate electrode and a gate line; forming a gate insulating layer and a passivation layer on the substrate; depositing a transparent conductive layer, a first source/drain metal layer and a first ohmic contact layer, and forming a drain electrode, a pixel electrode, a data line, and a first ohmic contact layer pattern provided on the drain electrode; and depositing a semiconductor layer, a second ohmic contact layer and a second source/drain metal layer, and forming a source electrode, a second ohmic contact layer pattern provided below the source electrode, and a semiconductor channel between the source electrode and the drain electrode.




device

Group III nitride based quantum well light emitting device structures with an indium containing capping structure

Group III nitride based light emitting devices and methods of fabricating Group III nitride based light emitting devices are provided. The emitting devices include an n-type Group III nitride layer, a Group III nitride based active region on the n-type Group III nitride layer and comprising at least one quantum well structure, a Group III nitride layer including indium on the active region, a p-type Group III nitride layer including aluminum on the Group III nitride layer including indium, a first contact on the n-type Group III nitride layer and a second contact on the p-type Group III nitride layer. The Group III nitride layer including indium may also include aluminum.




device

Organic EL device

An organic EL device includes a first substrate including a cathode layer (a first electrode layer), an organic layer formed on the cathode layer, an anode layer (a second electrode layer) formed on the organic layer, and a second substrate joined to the anode layer by an adhesive layer. The anode layer is provided so as to extend to an outer peripheral side of a region where the organic layer is present, the second substrate and the adhesive layer are not present in a portion which faces a region at an outer peripheral side of the extended anode layer, and the cathode layer and the extended anode layer are exposed from the second substrate to constitute a cathode taking-out portion and an anode taking-out portion, respectively.




device

Semiconductor device

An object is to provide a semiconductor device using an oxide semiconductor having stable electric characteristics and high reliability. A transistor including the oxide semiconductor film in which a top surface portion of the oxide semiconductor film is provided with a metal oxide film containing a constituent similar to that of the oxide semiconductor film and functioning as a channel protective film is provided. In addition, the oxide semiconductor film used for an active layer of the transistor is an oxide semiconductor film highly purified to be electrically i-type (intrinsic) by heat treatment in which impurities such as hydrogen, moisture, a hydroxyl group, or a hydride are removed from the oxide semiconductor and oxygen which is a major constituent of the oxide semiconductor and is reduced concurrently with a step of removing impurities is supplied.




device

Light emitting device package

A light emitting device package is provided comprising a light emitting device including at least one light emitting diode and a body including a first lead frame on which the light emitting device is mounted and a second lead frame spaced apart from the first lead frame, wherein at least one of the first and second lead frames is extending to a bending region in a first direction by a predetermined length on the basis of an outer surface of the body and is bent in a second direction intersecting the first direction.




device

Organic light emitting display device and method for fabricating the same

An organic light emitting display device includes a light shield layer formed on a substrate and a buffer layer formed on an entire surface of the substrate, an oxide semiconductor layer and first electrode formed on the buffer layer, a gate insulation film and gate electrode formed on the oxide semiconductor layer while being deposited to expose both edges of the oxide semiconductor layer, an interlayer insulation film formed to expose both the exposed edges of the oxide semiconductor layer and the first electrode, source and drain electrodes connected with one edge and the other edge of the oxide semiconductor layer, respectively, and a protective film formed to cover the source and drain electrodes while exposing a region of the first electrode so as to define a luminescent region and a non-luminescent region.




device

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Display device and electronic device including the same

A display device includes a pixel portion including a plurality of pixels each including a first transistor, a second transistor, and a light-emitting element, in which a gate of the first transistor is electrically connected to a scan line, one of a source and a drain of the first transistor is electrically connected to a signal line, and the other of them is electrically connected to a gate of the second transistor; one of a source and a drain of the second transistor is electrically connected to a power supply line and the other of them is electrically connected to the light-emitting element, and the first transistor includes an oxide semiconductor layer. A period when the display device displays a still image includes a period in which output of a signal to all the scan lines in the pixel portion is stopped.




device

Semiconductor light-emitting device

A semiconductor light-emitting device includes a lamination of semiconductor layers including a first layer of a first conductivity type, an active layer, and a second layer of a second conductivity type; a transparent conductive film formed on a principal surface of the lamination and having an opening; a pad electrode formed on part the opening; and a wiring electrode connected with the pad electrode, formed on another part of the opening while partially overlapping the transparent conductive film; wherein contact resistance between the transparent conductive film and the lamination is larger than contact resistance between the wiring electrode and the lamination. Field concentration at the wiring electrode upon application of high voltage is mitigated by the overlapping transparent conductive film.




device

Film for flip chip type semiconductor back surface, dicing tape-integrated film for semiconductor back surface, process for producing semiconductor device, and flip chip type semiconductor device

The present invention relates to a film for flip chip type semiconductor back surface to be formed on a back surface of a semiconductor element flip chip-connected to an adherend, the film for flip chip type semiconductor back surface containing an inorganic filler in an amount within a range of 70% by weight to 95% by weight based on the whole of the film for flip chip type semiconductor back surface.




device

Substrate for mounting light-emitting element and light-emitting device

There is provided a substrate for light-emitting element, including a mounting surface on which a light-emitting element is to be mounted, the mounting surface being one of two opposed main surfaces of the substrate. The substrate of the present invention is provided with a protection element for the light-emitting element, the protection element comprising a voltage-dependent resistive layer embedded in a body of the substrate, and comprising a first electrode and a second electrode each of which is in connection with the voltage-dependent resistive layer wherein the light-emitting element is to be mounted such that it is positioned in an overlapping relation with the voltage-dependent resistive layer.




device

Semiconductor device and method for manufacturing the same

An object is to manufacture a semiconductor device with high reliability by providing the semiconductor device including an oxide semiconductor with stable electric characteristics. In a transistor including an oxide semiconductor layer, a gallium oxide film is used for a gate insulating layer and made in contact with an oxide semiconductor layer. Further, gallium oxide films are provided so as to sandwich the oxide semiconductor layer, whereby reliability is increased. Furthermore, the gate insulating layer may have a stacked structure of a gallium oxide film and a hafnium oxide film.




device

Transistor including an oxide semiconductor and display device using the same

The band tail state and defects in the band gap are reduced as much as possible, whereby optical absorption of energy which is in the vicinity of the band gap or less than or equal to the band gap is reduced. In that case, not by merely optimizing conditions of manufacturing an oxide semiconductor film, but by making an oxide semiconductor to be a substantially intrinsic semiconductor or extremely close to an intrinsic semiconductor, defects on which irradiation light acts are reduced and the effect of light irradiation is reduced essentially. That is, even in the case where light with a wavelength of 350 nm is delivered at 1×1013 photons/cm2·sec, a channel region of a transistor is formed using an oxide semiconductor, in which the absolute value of the amount of the variation in the threshold voltage is less than or equal to 0.65 V.




device

Semiconductor light emitting device

According to one embodiment, a semiconductor light emitting device includes a stacked structure body, a first electrode, a second electrode, and a dielectric body part. The stacked structure body includes a first semiconductor layer, having a first portion and a second portion juxtaposed with the first portion, a light emitting layer provided on the second portion, a second semiconductor layer provided on the light emitting layer. The first electrode includes a contact part provided on the first portion and contacting the first layer. The second electrode includes a first part provided on the second semiconductor layer and contacting the second layer, and a second part electrically connected with the first part and including a portion overlapping with the contact part when viewed from the first layer toward the second layer. The dielectric body part is provided between the contact part and the second part.




device

Semiconductor device, semiconductor wafer and manufacturing method of semiconductor device

A semiconductor device includes wiring layers formed over a semiconductor wafer, a via-layer between the wiring layers, conductive films in the wiring layers, and a via-plug in the via-layer connecting the conductive films of the wiring layers above and below, a scribe region at an outer periphery of a chip region along an edge of the semiconductor substrate and including a pad region in the vicinity of the edge, the pad region overlapping the conductive films of the plurality of wiring layers in the plan view, the plurality of wiring layers including first second wiring layers, the conductive film of the first wiring layer includes a first conductive pattern formed over an entire surface of said pad region in a plan view, and the conductive film of the second wiring layer includes a second conductive pattern formed in a part of the pad region in a plan view.




device

Light emitting device and lighting system with the same

A light emitting device including a light emitting structure having a first conduction type semiconductor layer, an active layer, and a second conduction type semiconductor layer, a transparent conductive layer disposed on the light emitting structure, a metal filter having an irregular pattern disposed between the light emitting structure and the transparent conductive layer, and openings disposed between the irregular patterns in the metal filter.




device

Compact device package

Various embodiments related to a compact device package are disclosed herein. In some arrangements, a flexible substrate can be coupled to a carrier having walls angled relative to one another. The substrate can be shaped to include two bends. First and second integrated device dies can be mounted on opposite sides of the substrate between the two bends in various arrangements.




device

Semiconductor device

It is an object to provide a transistor having a new multigate structure in which operating characteristics and reliability are improved. In a transistor having a multigate structure, which includes two gate electrodes electrically connected to each other and a semiconductor layer including two channel regions connected in series formed between a source region and a drain region, and a high concentration impurity region is formed between the two channel regions; the channel length of the channel region adjacent to the source region is longer than the channel length of the channel region adjacent to the drain region.




device

Defect mitigation structures for semiconductor devices

A method and a semiconductor device for incorporating defect mitigation structures are provided. The semiconductor device comprises a substrate, a defect mitigation structure comprising a combination of layers of doped or undoped group IV alloys and metal or non-metal nitrides disposed over the substrate, and a device active layer disposed over the defect mitigation structure. The defect mitigation structure is fabricated by depositing one or more defect mitigation layers comprising a substrate nucleation layer disposed over the substrate, a substrate intermediate layer disposed over the substrate nucleation layer, a substrate top layer disposed over the substrate intermediate layer, a device nucleation layer disposed over the substrate top layer, a device intermediate layer disposed over the device nucleation layer, and a device top layer disposed over the device intermediate layer. The substrate intermediate layer and the device intermediate layer comprise a distribution in their compositions along a thickness coordinate.




device

Display device having light emitting elements with red color filters

A display device comprising TFT elements having satisfactory characteristics and being easy to assemble. In the display device, a pixel emitting red light comprises a red color filter. The red color filter forms a light shielding film for the TFT elements in a driver circuit portion or in a pixel portion.




device

Three-dimensional nonvolatile memory devices including interposed floating gates

Provided are three-dimensional nonvolatile memory devices and methods of fabricating the same. The memory devices include semiconductor pillars penetrating interlayer insulating layers and conductive layers alternately stacked on a substrate and electrically connected to the substrate and floating gates selectively interposed between the semiconductor pillars and the conductive layers. The floating gates are formed in recesses in the conductive layers.




device

Semiconductor light emitting device

According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a light emitting unit, a second semiconductor layer, a reflecting electrode, an oxide layer and a nitrogen-containing layer. The first semiconductor layer is of a first conductivity type. The light emitting unit is provided on the first semiconductor layer. The second semiconductor layer is provided on the light emitting unit and is of a second conductivity type. The reflecting electrode is provided on the second semiconductor layer and includes Ag. The oxide layer is provided on the reflecting electrode. The oxide layer is insulative and has a first opening. The nitrogen-containing layer is provided on the oxide layer. The nitrogen-containing layer is insulative and has a second opening communicating with the first opening.




device

Semiconductor devices with heterojunction barrier regions and methods of fabricating same

An electronic device includes a silicon carbide layer including an n-type drift region therein, a contact forming a junction, such as a Schottky junction, with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a P-N heterojunction with the drift region, and the p-type junction barrier region is electrically connected to the contact. Related methods are also disclosed.




device

Semiconductor device and method for manufacturing the same

An object is to provide a semiconductor device including an oxide semiconductor film, which has stable electrical characteristics and high reliability. A stack of first and second material films is formed by forming the first material film (a film having a hexagonal crystal structure) having a thickness of 1 nm to 10 nm over an insulating surface and forming the second material film having a hexagonal crystal structure (a crystalline oxide semiconductor film) using the first material film as a nucleus. As the first material film, a material film having a wurtzite crystal structure (e.g., gallium nitride or aluminum nitride) or a material film having a corundum crystal structure (α-Al2O3, α-Ga2O3, In2O3, Ti2O3, V2O3, Cr2O3, or α-Fe2O3) is used.




device

Semiconductor device and method of manufacturing semiconductor device

A semiconductor device, includes a semiconductor substrate, a first interconnect layer formed over the semiconductor substrate, a gate electrode formed in the first interconnect layer, a gate insulating film formed over the gate electrode, a second interconnect layer formed over the gate insulating film, an oxide semiconductor layer formed in the second interconnect layer, and a via formed in the second interconnect layer and connected to the oxide semiconductor layer. The gate electrode, the gate insulating film and the oxide semiconductor layer overlap in a plan view.




device

Semiconductor devices including a stressor in a recess and methods of forming the same

Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a trench in an active region and the trench may include a notched portion of the active region. The methods may also include forming an embedded stressor in the trench. The embedded stressor may include a lower semiconductor layer and an upper semiconductor layer, which has a width narrower than a width of the lower semiconductor layer. A side of the upper semiconductor layer may not be aligned with a side of the lower semiconductor layer and an uppermost surface of the upper semiconductor layer may be higher than an uppermost surface of the active region.




device

Semiconductor device and method for manufacturing the same

It is an object to manufacture a highly reliable semiconductor device including a thin film transistor whose electric characteristics are stable. An insulating layer which covers an oxide semiconductor layer of the thin film transistor contains a boron element or an aluminum element. The insulating layer containing a boron element or an aluminum element is formed by a sputtering method using a silicon target or a silicon oxide target containing a boron element or an aluminum element. Alternatively, an insulating layer containing an antimony (Sb) element or a phosphorus (P) element instead of a boron element covers the oxide semiconductor layer of the thin film transistor.




device

Semiconductor device and manufacturing method thereof

A semiconductor device which includes a thin film transistor having an oxide semiconductor layer and excellent electrical characteristics is provided. Further, a method for manufacturing a semiconductor device in which plural kinds of thin film transistors of different structures are formed over one substrate to form plural kinds of circuits and in which the number of steps is not greatly increased is provided. After a metal thin film is formed over an insulating surface, an oxide semiconductor layer is formed thereover. Then, oxidation treatment such as heat treatment is performed to oxidize the metal thin film partly or entirely. Further, structures of thin film transistors are different between a circuit in which emphasis is placed on the speed of operation, such as a logic circuit, and a matrix circuit.




device

Light-emitting element, light-emitting device, and electronic device

A light-emitting element includes a first electrode, a first light-emitting layer formed over the first electrode, a second light-emitting layer formed on and in contact with the first light-emitting layer to be in contact therewith, and a second electrode formed over the second light-emitting layer. The first light-emitting layer includes a first light-emitting substance and a hole-transporting organic compound, and the second light-emitting layer includes a second light-emitting substance and an electron-transporting organic compound. Substances are selected such that a difference in LUMO levels between the first light-emitting substance, the second light-emitting substance, and the electron-transporting organic compound is 0.2 eV or less, a difference in HOMO levels between the hole-transporting organic compound, the first light-emitting substance, and the second light-emitting substance is 0.2 eV or less, and a difference in LUMO levels between the hole-transporting organic compound and the first light-emitting substance is greater than 0.3 eV.