io 1,4-Dimethylpiperazine-2,3-dione By journals.iucr.org Published On :: 2024-10-04 In the title compound, C6H10N2O2, the piperazine-2,3-dione ring adopts a half-chair conformation. In the crystal, the molecules are linked by weak C—H⋯O hydrogen bonds, forming (010) sheets. Full Article text
io Methyl 2-[(Z)-5-methyl-2-oxoindolin-3-ylidene]hydrazinecarbodithioate By journals.iucr.org Published On :: 2024-10-08 The title dithiocarbazate imine, C11H11N3OS2, was obtained from the condensation reaction of S-methyldithiocarbazate (SMDTC) and 5-methylisatin. It shows a Z configuration about the imine C=N bond, which is associated with an intramolecular N—H⋯O hydrogen bond that closes an S(6) ring. In the crystal, inversion dimers linked by pairwise N—H⋯O hydrogen bonds generate R22(8) loops. The extended structure features C—H⋯S contacts as well as reciprocal carbonyl–carbonyl (C=O⋯C=O) interactions. Full Article text
io 3aH,4H,5H,8H,9H,9aH-Cycloocta[d][1,3]dioxole-2-thione By journals.iucr.org Published On :: 2024-11-08 The thionocarbonate of trans-cyclooctenediol, C9H12O2S, crystallizes with a 9/1 disorder in the position of the R,R and S,S-enantiomers. As a result of trans-annulation, both rings adopt a twist conformation. Full Article text
io 2-Amino-5-oxo-4-(thiophen-2-yl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile By journals.iucr.org Published On :: 2024-11-08 The crystal structure of the title compound, C14H12N2O2S, reveals two symmetrically independent molecules within the asymmetric unit. Each molecule contains a chromenone core attached to a 2-thiophene ring, cyano, and amino groups. The 2-thiophene ring of one of the two molecules in the asymmetric unit was found to be disordered over two positions, with the major component having a site occupancy factor of 0.837 (2). The 2-thiophene ring is nearly orthogonal to the fused 4H-pyran ring, with dihedral angles between the two sets of planes being 89.5 (5) and 89.63 (8)°. Intermolecular hydrogen bonding, involving N—H⋯N and N—H⋯O interactions, creates two distinct motifs leading to the formation of a two-dimensional supramolecular network along the crystallographic ac plane. Full Article text
io α-d-2'-Deoxyadenosine, an irradiation product of canonical DNA and a component of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis By journals.iucr.org Published On :: 2024-01-22 α-d-2'-Deoxyribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited. Herein, the single-crystal X-ray structure of α-d-2'-deoxyadenosine (α-dA), C10H13N5O3, and its conformational parameters were determined. In the crystalline state, α-dA forms two conformers in the asymmetric unit which are connected by hydrogen bonds. The sugar moiety of each conformer is arranged in a `clamp'-like fashion with respect to the other conformer, forming hydrogen bonds to its nucleobase and sugar residue. For both conformers, a syn conformation of the nucleobase with respect to the sugar moiety was found. This is contrary to the anti conformation usually preferred by α-nucleosides. The sugar conformation of both conformers is C2'-endo, and the 5'-hydroxyl groups are in a +sc orientation, probably due to the hydrogen bonds formed by the conformers. The formation of the supramolecular assembly of α-dA is controlled by hydrogen bonding and stacking interactions, which was verified by a Hirshfeld and curvedness surface analysis. Chains of hydrogen-bonded nucleobases extend parallel to the b direction and are linked to equivalent chains by hydrogen bonds involving the sugar moieties to form a sheet. A comparison of the solid-state structures of the anomeric 2'-deoxyadenosines revealed significant differences of their conformational parameters. Full Article text
io Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients By journals.iucr.org Published On :: 2024-01-28 The crystal structure of a new 1:1 cocrystal of carbamazepine and S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is orthorhombic with the space group P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3. Full Article text
io Isostructural behaviour in ammonium and potassium salt forms of sulfonated azo dyes By journals.iucr.org Published On :: 2024-02-15 The structures of five ammonium salt forms of monosulfonated azo dyes, derivatives of 4-(2-phenyldiazen-1-yl)benzenesulfonate, with the general formula [NH4][O3S(C6H4)NN(C6H3)RR']·XH2O [R = OH, NH2 or N(C2H4OH)2; R' = H or OH] are presented. All form simple layered structures with alternating hydrophobic (organic) and hydrophilic (cation, solvent and polar groups) layers. To assess for isostructural behaviour of the ammonium cation with M+ ions, the packing of these structures is compared with literature examples. To aid this comparison, the corresponding structures of four potassium salt forms of the monosulfonated azo dyes are also presented herein. Of the five ammonium salts it is found that three have isostructural equivalents. In two cases this equivalent is a potassium salt form and in one case it is a rubidium salt form. The isostructurality of ion packing and of unit-cell symmetry and dimensions tolerates cases where the ammonium ions form somewhat different interaction types with coformer species than do the potassium or rubidium ions. No sodium salt forms are found to be isostructural with any ammonium equivalent. However, similarities in the anion packing within a single hydrophobic layer are found for a group that consists of the ammonium and rubidium salt forms of one azo anion species and the sodium and silver salt forms of a different azo species. Full Article text
io Structure and absolute configuration of natural fungal product beauveriolide I, isolated from Cordyceps javanica, determined by 3D electron diffraction By journals.iucr.org Published On :: 2024-02-27 Beauveriolides, including the main beauveriolide I {systematic name: (3R,6S,9S,13S)-9-benzyl-13-[(2S)-hexan-2-yl]-6-methyl-3-(2-methylpropyl)-1-oxa-4,7,10-triazacyclotridecane-2,5,8,11-tetrone, C27H41N3O5}, are a series of cyclodepsipeptides that have shown promising results in the treatment of Alzheimer's disease and in the prevention of foam cell formation in atherosclerosis. Their crystal structure studies have been difficult due to their tiny crystal size and fibre-like morphology, until now. Recent developments in 3D electron diffraction methodology have made it possible to accurately study the crystal structures of submicron crystals by overcoming the problems of beam sensitivity and dynamical scattering. In this study, the absolute structure of beauveriolide I was determined by 3D electron diffraction. The cyclodepsipeptide crystallizes in the space group I2 with lattice parameters a = 40.2744 (4), b = 5.0976 (5), c = 27.698 (4) Å and β = 105.729 (6)°. After dynamical refinement, its absolute structure was determined by comparing the R factors and calculating the z-scores of the two possible enantiomorphs of beauveriolide I. Full Article text
io Synthesis, crystal structure and in-silico evaluation of arylsulfonamide Schiff bases for potential activity against colon cancer By journals.iucr.org Published On :: 2024-03-28 This report presents a comprehensive investigation into the synthesis and characterization of Schiff base compounds derived from benzenesulfonamide. The synthesis process, involved the reaction between N-cycloamino-2-sulfanilamide and various substituted o-salicylaldehydes, resulted in a set of compounds that were subjected to rigorous characterization using advanced spectral techniques, including 1H NMR, 13C NMR and FT–IR spectroscopy, and single-crystal X-ray diffraction. Furthermore, an in-depth assessment of the synthesized compounds was conducted through Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis, in conjunction with docking studies, to elucidate their pharmacokinetic profiles and potential. Impressively, the ADMET analysis showcased encouraging drug-likeness properties of the newly synthesized Schiff bases. These computational findings were substantiated by molecular properties derived from density functional theory (DFT) calculations using the B3LYP/6-31G* method within the Jaguar Module of Schrödinger 2023-2 from Maestro (Schrodinger LLC, New York, USA). The exploration of frontier molecular orbitals (HOMO and LUMO) enabled the computation of global reactivity descriptors (GRDs), encompassing charge separation (Egap) and global softness (S). Notably, within this analysis, one Schiff base, namely, 4-bromo-2-{N-[2-(pyrrolidine-1-sulfonyl)phenyl]carboximidoyl}phenol, 20, emerged with the smallest charge separation (ΔEgap = 3.5780 eV), signifying heightened potential for biological properties. Conversely, 4-bromo-2-{N-[2-(piperidine-1-sulfonyl)phenyl]carboximidoyl}phenol, 17, exhibited the largest charge separation (ΔEgap = 4.9242 eV), implying a relatively lower propensity for biological activity. Moreover, the synthesized Schiff bases displayed remarkeable inhibition of tankyrase poly(ADP-ribose) polymerase enzymes, integral in colon cancer, surpassing the efficacy of a standard drug used for the same purpose. Additionally, their bioavailability scores aligned closely with established medications such as trifluridine and 5-fluorouracil. The exploration of molecular electrostatic potential through colour mapping delved into the electronic behaviour and reactivity tendencies intrinsic to this diverse range of molecules. Full Article text
io Absolute structure determination of Berkecoumarin by X-ray and electron diffraction By journals.iucr.org Published On :: 2024-04-10 X-ray and electron diffraction methods independently identify the S-enantiomer of Berkecoumarin [systematic name: (S)-8-hydroxy-3-(2-hydroxypropyl)-6-methoxy-2H-chromen-2-one]. Isolated from Berkeley Pit Lake Penicillium sp., Berkecoumarin is a natural product with a light-atom composition (C13H14O5) that challenges in-house absolute structure determination by anomalous scattering. This study further demonstrates the utility of dynamical refinement of electron-diffraction data for absolute structure determination. Full Article text
io Relationship between synthesis method–crystal structure–melting properties in cocrystals: the case of caffeine–citric acid By journals.iucr.org Published On :: 2024-05-07 The influence of the crystal synthesis method on the crystallographic structure of caffeine–citric acid cocrystals was analyzed thanks to the synthesis of a new polymorphic form of the cocrystal. In order to compare the new form to the already known forms, the crystal structure of the new cocrystal (C8H10N4O2·C6H8O7) was solved by powder X-ray diffraction thanks to synchrotron experiments. The structure determination was performed using `GALLOP', a recently developed hybrid approach based on a local optimization with a particle swarm optimizer, particularly powerful when applied to the structure resolution of materials of pharmaceutical interest, compared to classical Monte-Carlo simulated annealing. The final structure was obtained through Rietveld refinement, and first-principles density functional theory (DFT) calculations were used to locate the H atoms. The symmetry is triclinic with the space group Poverline{1} and contains one molecule of caffeine and one molecule of citric acid per asymmetric unit. The crystallographic structure of this cocrystal involves different hydrogen-bond associations compared to the already known structures. The analysis of these hydrogen bonds indicates that the cocrystal obtained here is less stable than the cocrystals already identified in the literature. This analysis is confirmed by the determination of the melting point of this cocrystal, which is lower than that of the previously known cocrystals. Full Article text
io Molecular structure and selective theophylline complexation by conformational change of diethyl N,N'-(1,3-phenylene)dicarbamate By journals.iucr.org Published On :: 2024-05-07 The receptor ability of diethyl N,N'-(1,3-phenylene)dicarbamate (1) to form host–guest complexes with theophylline (TEO) and caffeine (CAF) by mechanochemistry was evaluated. The formation of the 1–TEO complex (C12H16N2O4·C7H8N4O2) was preferred and involves the conformational change of one of the ethyl carbamate groups of 1 from the endo conformation to the exo conformation to allow the formation of intermolecular interactions. The formation of an N—H⋯O=C hydrogen bond between 1 and TEO triggers the conformational change of 1. CAF molecules are unable to form an N—H⋯O=C hydrogen bond with 1, making the conformational change and, therefore, the formation of the complex impossible. Conformational change and selective binding were monitored by IR spectroscopy, solid-state 13C nuclear magnetic resonance and single-crystal X-ray diffraction. The 1–TEO complex was characterized by IR spectroscopy, solid-state 13C nuclear magnetic resonance, powder X-ray diffraction and single-crystal X-ray diffraction. Full Article text
io Formation of extended polyiodides at large cation templates By journals.iucr.org Published On :: 2024-05-13 By studying the structures of (μ-1,4,10,13-tetrathia-7,16-diazacyclooctadecane)bis[iodidopalladium(II)] diiodide penta(diiodine), [Pd2I2(C12H26N2S4)](I)2·5I2 or [Pd2I2([18]aneN2S4)](I)2·(I2)5, and 4,7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane triiodide iodide hemipenta(diiodine) dichloromethane monosolvate, C18H38N2O62+·I3−·I−·2.5I2·CH2Cl2 or [H2([2.2.2]cryptand)](I3)(I)(I2)2.5·CH2Cl2, we confirm the structural variety of extended polyiodides achievable upon changing the shape, charge and dimensions of the cation template, by altering the synthetic strategy adopted and/or the experimental conditions. Although it is still often difficult to characterize discrete [I2m+n]n− polyiodides higher than I3− on the basis of structural parameters, such as I—I bond distances, FT–Raman spectroscopy appears to identify them as aggregates of I2, I− and (symmetric or slightly asymmetric) I3− building blocks linked by I⋯I interactions of varying strengths. However, because FT–Raman spectroscopy carries no information about the topological features of extended polyiodides, the two techniques should therefore be applied in combination to enhance the analysis of this kind of compounds. Full Article text
io Synthesis, characterization and structural analysis of complexes from 2,2':6',2''-terpyridine derivatives with transition metals By journals.iucr.org Published On :: 2024-05-16 The synthesis and structural characterization of three families of coordination complexes synthesized from 4'-phenyl-2,2':6',2''-terpyridine (8, Ph-TPY), 4'-(4-chlorophenyl)-2,2':6',2''-terpyridine (9, ClPh-TPY) and 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (10, MeOPh-TPY) ligands with the divalent metals Co2+, Fe2+, Mn2+ and Ni2+ are reported. The compounds were synthesized from a 1:2 mixture of the metal and ligand, resulting in a series of complexes with the general formula [M(R-TPY)2](ClO4)2 (where M = Co2+, Fe2+, Mn2+ and Ni2+, and R-TPY = Ph-TPY, ClPh-TPY and MeOPh-TPY). The general formula and structural and supramolecular features were determinated by single-crystal X-ray diffraction for bis(4'-phenyl-2,2':6',2''-terpyridine)nickel(II) bis(perchlorate), [Ni(C21H15N3)2](ClO4)2 or [Ni(Ph-TPY)2](ClO4)2, bis[4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine]manganese(II) bis(perchlorate), [Mn(C22H17N3O)2](ClO4)2 or [Mn(MeOPh-TPY)2](ClO4)2, and bis(4'-phenyl-2,2':6',2''-terpyridine)manganese(II) bis(perchlorate), [Mn(C21H15N3)2](ClO4)2 or [Mn(Ph-TPY)2](ClO4)2. In all three cases, the complexes present distorted octahedral coordination polyhedra and the crystal packing is determined mainly by weak C—H⋯π interactions. All the compounds (except for the Ni derivatives, for which FT–IR, UV–Vis and thermal analysis are reported) were fully characterized by spectroscopic (FT–IR, UV–Vis and NMR spectroscopy) and thermal (TGA–DSC, thermogravimetric analysis–differential scanning calorimetry) methods. Full Article text
io Using cocrystals as a tool to study non-crystallizing molecules: crystal structure, Hirshfeld surface analysis and computational study of the 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine and acetic By journals.iucr.org Published On :: 2024-07-05 Using a 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π interactions. The cocrystal crystallizes in the triclinic space group P1. Through crystallographic analysis and computational studies, we reveal the molecular arrangement within this cocrystal, demonstrating the presence of hydrogen bonding between the acetic acid molecule and the pyridyl group, along with π–π interactions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π interactions without necessitating full halogenation of the aromatic ring. Full Article text
io Crystal structure elucidation of a geminal and vicinal bis(trifluoromethanesulfonate) ester By journals.iucr.org Published On :: 2024-06-14 Geminal and vicinal bis(trifluoromethanesulfonate) esters are highly reactive alkylene synthons used as potent electrophiles in the macrocyclization of imidazoles and the transformation of bypyridines to diquat derivatives via nucleophilic substitution reactions. Herein we report the crystal structures of methylene (C3H2F6O6S2) and ethylene bis(trifluoromethanesulfonate) (C4H4F6O6S2), the first examples of a geminal and vicinal bis(trifluoromethanesulfonate) ester characterized by single-crystal X-ray diffraction (SC-XRD). With melting points slightly below ambient temperature, both reported bis(trifluoromethanesulfonate)s are air- and moisture-sensitive oils and were crystallized at 277 K to afford two-component non-merohedrally twinned crystals. The dominant interactions present in both compounds are non-classical C—H⋯O hydrogen bonds and intermolecular C—F⋯F—C interactions between trifluoromethyl groups. Molecular electrostatic potential (MEP) calculations by DFT-D3 helped to quantify the polarity between O⋯H and F⋯F contacts to rationalize the self-sorting of both bis(trifluoromethanesulfonate) esters in polar (non-fluorous) and non-polar (fluorous) domains within the crystal structure. Full Article text
io Data collection is your last experiment By journals.iucr.org Published On :: 2024-06-14 Full Article text
io TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic molecules By journals.iucr.org Published On :: 2024-06-27 3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered l-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X—H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for l-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering. Full Article text
io Crystal structure and cryomagnetic study of a mononuclear erbium(III) oxamate inclusion complex By journals.iucr.org Published On :: 2024-07-10 The synthesis, crystal structure and magnetic properties of an oxamate-containing erbium(III) complex, namely, tetrabutylammonium aqua[N-(2,4,6-trimethylphenyl)oxamato]erbium(III)–dimethyl sulfoxide–water (1/3/1.5), (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O or n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), are reported. The crystal structure of 1 reveals the occurrence of an erbium(III) ion, which is surrounded by four N-phenyl-substituted oxamate ligands and one water molecule in a nine-coordinated environment, together with one tetrabutylammonium cation acting as a counter-ion, and one water and three dimethyl sulfoxide (DMSO) molecules of crystallization. Variable-temperature static (dc) and dynamic (ac) magnetic measurements were carried out for this mononuclear complex, revealing that it behaves as a field-induced single-ion magnet (SIM) below 5.0 K. Full Article text
io Synthesis, spectroscopic and crystallographic characterization of various cymantrenyl thioethers [Mn{C5HxBry(SMe)z}(PPh3)(CO)2] By journals.iucr.org Published On :: 2024-07-05 Starting from [Mn(C5H4Br)(PPh3)(CO)2] (1a), the cymantrenyl thioethers [Mn(C5H4SMe)(PPh3)(CO)2] (1b) and [Mn{C5H4–nBr(SMe)n}(PPh3)(CO)2] (n = 1 for compound 2, n = 2 for 3 and n = 3 for 4) were obtained, using either n-butyllithium (n-BuLi), lithium diisopropylamide (LDA) or lithium tetramethylpiperidide (LiTMP) as base, followed by electrophilic quenching with MeSSMe. Stepwise consecutive reaction of [Mn(C5Br5)(PPh3)(CO)2] with n-BuLi and MeSSMe led finally to [Mn{C5(SMe)5}(PPh3)(CO)2] (11), only the fifth complex to be reported containing a perthiolated cyclopentadienyl ring. The molecular and crystal structures of 1b, 3, 4 and 11 were determined and were studied for the occurrence of S⋯S and S⋯Br interactions. It turned out that although some interactions of this type occurred, they were of minor importance for the arrangement of the molecules in the crystal. Full Article text
io 3-[(Benzo-1,3-dioxol-5-yl)amino]-4-methoxycyclobut-3-ene-1,2-dione: polymorphism and twinning of a precursor to an antimycobacterial squaramide By journals.iucr.org Published On :: 2024-07-05 The title compound, 3-[(benzo-1,3-dioxol-5-yl)amino]-4-methoxycyclobut-3-ene-1,2-dione, C12H9NO5 (3), is a precursor to an antimycobacterial squaramide. Block-shaped crystals of a monoclinic form (3-I, space group P21/c, Z = 8, Z' = 2) and needle-shaped crystals of a triclinic form (3-II, space group P-1, Z = 4, Z' = 2) were found to crystallize concomitantly. In both crystal forms, R22(10) dimers assemble through N—H⋯O=C hydrogen bonds. These dimers are formed from crystallographically unique molecules in 3-I, but exhibit crystallographic Ci symmetry in 3-II. Twinning by pseudomerohedry was encountered in the crystals of 3-II. The conformations of 3 in the solid forms 3-I and 3-II are different from one another but are similar for the unique molecules in each polymorph. Density functional theory (DFT) calculations on the free molecule of 3 indicate that a nearly planar conformation is preferred. Full Article text
io A brief review on computer simulations of chalcopyrite surfaces: structure and reactivity By journals.iucr.org Published On :: 2024-08-08 Chalcopyrite, the world's primary copper ore mineral, is abundant in Latin America. Copper extraction offers significant economic and social benefits due to its strategic importance across various industries. However, the hydrometallurgical route, considered more environmentally friendly for processing low-grade chalcopyrite ores, remains challenging, as does its concentration by froth flotation. This limited understanding stems from the poorly understood structure and reactivity of chalcopyrite surfaces. This study reviews recent contributions using density functional theory (DFT) calculations with periodic boundary conditions and slab models to elucidate chalcopyrite surface properties. Our analysis reveals that reconstructed surfaces preferentially expose S atoms at the topmost layer. Furthermore, some studies report the formation of disulfide groups (S22−) on pristine sulfur-terminated surfaces, accompanied by the reduction of Fe3+ to Fe2+, likely due to surface oxidation. Additionally, Fe sites are consistently identified as favourable adsorption locations for both oxygen (O2) and water (H2O) molecules. Finally, the potential of computer modelling for investigating collector–chalcopyrite surface interactions in the context of selective froth flotation is discussed, highlighting the need for further research in this area. Full Article text
io Synthesis of organotin(IV) heterocycles containing a xanthenyl group by a Barbier approach via ultrasound activation: synthesis, crystal structure and Hirshfeld surface analysis By journals.iucr.org Published On :: 2024-07-25 A series of organotin heterocycles of general formula [{Me2C(C6H3CH2)2O}SnR2] [R = methyl (Me, 4), n-butyl (n-Bu, 5), benzyl (Bn, 6) and phenyl (Ph, 7)] was easily synthesized by a Barbier-type reaction assisted by the sonochemical activation of metallic magnesium. The 119Sn{1H} NMR data for all four compounds confirm the presence of a central Sn atom in a four-coordinated environment in solution. Single-crystal X-ray diffraction studies for 17,17-dimethyl-7,7-diphenyl-15-oxa-7-stannatetracyclo[11.3.1.05,16.09,14]heptadeca-1,3,5(16),9(14),10,12-hexaene, [Sn(C6H5)2(C17H16O)], 7, at 100 and 295 K confirmed the formation of a mononuclear eight-membered heterocycle, with a conformation depicted as boat–chair, resulting in a weak Sn⋯O interaction. The Sn and O atoms are surrounded by hydrophobic C—H bonds. A Hirshfeld surface analysis of 7 showed that the eight-membered heterocycles are linked by weak C—H⋯π, π–π and H⋯H noncovalent interactions. The pairwise interaction energies showed that the cohesion between the heterocycles are mainly due to dispersion forces. Full Article text
io Occupational modulation in the (3+1)-dimensional incommensurate structure of (2S,3S)-2-amino-3-hydroxy-3-methyl-4-phenoxybutanoic acid dihydrate By journals.iucr.org Published On :: 2024-08-08 The incommensurately modulated structure of (2S,3S)-2-amino-3-hydroxy-3-methyl-4-phenoxybutanoic acid dihydrate (C11H15NO4·2H2O or I·2H2O) is described in the (3+1)-dimensional superspace group P212121(0β0)000 (β = 0.357). The loss of the three-dimensional periodicity is ascribed to the occupational modulation of one positionally disordered solvent water molecule, where the two positions are related by a small translation [ca 0.666 (9) Å] and ∼168 (5)° rotation about one of its O—H bonds, with an average 0.624 (3):0.376 (3) occupancy ratio. The occupational modulation of this molecule arises due to the competition between the different hydrogen-bonding motifs associated with each position. The structure can be very well refined in the average approximation (all satellite reflections disregarded) in the space group P212121, with the water molecule refined as disordered over two positions in a 0.625 (16):0.375 (16) ratio. The refinement in the commensurate threefold supercell approximation in the space group P1121 is also of high quality, with the six corresponding water molecules exhibiting three different occupancy ratios averaging 0.635:0.365. Full Article text
io Further evaluation of the shape of atomic Hirshfeld surfaces: M⋯H contacts and homoatomic bonds By journals.iucr.org Published On :: 2024-08-08 It is well known that Hirshfeld surfaces provide an easy and straightforward way of analysing intermolecular interactions in the crystal environment. The use of atomic Hirshfeld surfaces has also demonstrated that such surfaces carry information related to chemical bonds which allow a deeper evaluation of the structures. Here we briefly summarize the approach of atomic Hirshfeld surfaces while further evaluating the kind of information that can be retrieved from them. We show that the analysis of the metal-centre Hirshfeld surfaces from structures refined via Hirshfeld Atom Refinement (HAR) allow accurate evaluation of contacts of type M⋯H, and that such contacts can be related to the overall shape of the surfaces. The compounds analysed were tetraaquabis(3-carboxypropionato)metal(II), [M(C4H3O4)2(H2O)4], for metal(II)/M = manganese/Mn, cobalt/Co, nickel/Ni and zinc/Zn. We also evaluate the sensitivity of the surfaces by an investigation of seemingly flat surfaces through analysis of the curvature functions in the direction of C—C bonds. The obtained values not only demonstrate variations in curvature but also show a correlation with the hybridization of the C atoms involved in the bond. Full Article text
io Formation of a diiron–(μ-η1:η1-CN) complex from acetonitrile solution By journals.iucr.org Published On :: 2024-08-08 The activation of C—C bonds by transition-metal complexes is of continuing interest and acetonitrile (MeCN) has attracted attention as a cyanide source with comparatively low toxicity for organic cyanation reactions. A diiron end-on μ-η1:η1-CN-bridged complex was obtained from a crystallization experiment of an open-chain iron–NHC complex, namely, μ-cyanido-κ2C:N-bis{[(acetonitrile-κN)[3,3'-bis(pyridin-2-yl)-1,1'-(methylidene)bis(benzimidazol-2-ylidene)]iron(II)} tris(hexafluorophosphate), [Fe2(CN)(C2H3N)2(C25H18N6)2](PF6)3. The cyanide appears to originate from the MeCN solvent by C—C bond cleavage or through carbon–hydrogen oxidation. Full Article text
io 2,4-Diarylpyrroles: synthesis, characterization and crystallographic insights By journals.iucr.org Published On :: 2024-08-08 Three 2,4-diarylpyrroles were synthesized starting from 4-nitrobutanones and the crystal structures of two derivatives were analysed. These are 4-(4-methoxyphenyl)-2-(thiophen-2-yl)-1H-pyrrole, C15H13NOS, and 3-(4-bromophenyl)-2-nitroso-5-phenyl-1H-pyrrole, C16H11BrN2O. Although pyrroles without substituents at the α-position with respect to the N atom are very air sensitive and tend to polymerize, we succeeded in growing an adequate crystal for X-ray diffraction analysis. Further derivatization using sodium nitrite afforded a nitrosyl pyrrole derivative, which crystallized in the triclinic space group Poverline{1} with Z = 6. Thus, herein we report the first crystal structure of a nitrosyl pyrrole. Interestingly, the co-operative hydrogen bonds in this NO-substituted pyrrole lead to a trimeric structure with bifurcated halogen bonds at the ends, forming a two-dimensional (2D) layer with interstitial voids having a radius of 5 Å, similar to some reported macrocyclic porphyrins. Full Article text
io Salt forms of amides: protonation of acetanilide By journals.iucr.org Published On :: 2024-08-06 Treating the amide acetanilide (N-phenylacetamide, C8H9NO) with aqueous strong acids allowed the structures of five hemi-protonated salt forms of acetanilide to be elucidated. N-(1-Hydroxyethylidene)anilinium chloride–N-phenylacetamide (1/1), [(C8H9NO)2H][Cl], and the bromide, [(C8H9NO)2H][Br], triiodide, [(C8H9NO)2H][I3], tetrafluoroborate, [(C8H9NO)2H][BF4], and diiodobromide hemi(diiodine), [(C8H9NO)2H][I2Br]·0.5I2, analogues all feature centrosymmetric dimeric units linked by O—H⋯O hydrogen bonds that extend into one-dimensional hydrogen-bonded chains through N—H⋯X interactions, where X is the halide atom of the anion. Protonation occurs at the amide O atom and results in systematic lengthening of the C=O bond and a corresponding shortening of the C—N bond. The size of these geometric changes is similar to those found for hemi-protonated paracetamol structures, but less than those in fully protonated paracetamol structures. The bond angles of the amide fragments are also found to change on protonation, but these angular changes are also influenced by conformation, namely, whether the amide group is coplanar with the phenyl ring or twisted out of plane. Full Article text
io Coordination variety of phenyltetrazolato and dimethylamido ligands in dimeric Ti, Zr, and Ta complexes By journals.iucr.org Published On :: 2024-08-23 Three structurally diverse 5-phenyltetrazolato (Tz) Ti, Zr, and Ta complexes, namely, (C2H8N)[Ti2(C7H5N4)5(C2H6N)4]·1.45C6H6 or (Me2NH2)[Ti2(NMe2)4(2,3-μ-Tz)3(2-η1-Tz)2]·1.45C6H6, (1·1.45C6H6), [Zr2(C7H5N4)6(C2H6N)2(C2H7N)2]·1.12C6H6·0.382CH2Cl2 or [Zr2(Me2NH)2(NMe2)2(2,3-μ-Tz)3(2-η1-Tz)2(1,2-η2-Tz)]·1.12C6H6·0.38CH2Cl2 (2·1.12C6H6·0.38CH2Cl2), and (C2H8N)2[Ta2(C7H5N4)8(C2H6N)2O]·0.25C7H8 or (Me2NH2)2[Ta2(NMe2)2(2,3-μ-Tz)2(2-η1-Tz)6O]·0.25C7H8 (3·0.25C7H8), where TzH is 5-phenyl-1H-tetrazole, have been synthesized and structurally characterized. All three complexes are dinuclear; the Ti center in 1 is six-coordinate, whereas the Zr and Ta atoms in 2 and 3 are seven-coordinate. The coordination environments of the Ti centers in 1 are similar, and so are the ligations of the Ta centers in 3. In contrast, the two Zr centers in 2 bear a different number of ligands, one of which is a bidentate η2-5-phenyltetrazolato ligand that has not been observed previously for d-block elements. The dimethylamido ligand, present in the starting materials, remained unchanged, or was converted to dimethylamine and dimethylammonium during the synthesis. Dimethylamine coordinates as a neutral ligand, whereas dimethylammonium is retained as a hydrogen-bonded entity bridging Tz ligands. Full Article text
io Coordination structure and intermolecular interactions in copper(II) acetate complexes with 1,10-phenanthroline and 2,2'-bipyridine By journals.iucr.org Published On :: 2024-08-23 The crystal structures of two coordination compounds, (acetato-κO)(2,2'-bipyridine-κ2N,N')(1,10-phenanthroline-κ2N,N')copper(II) acetate hexahydrate, [Cu(C2H3O2)(C10H8N2)(C12H8N2)](C2H3O2)·6H2O or [Cu(bipy)(phen)Ac]Ac·6H2O, and (acetato-κO)bis(2,2'-bipyridine-κ2N,N')copper(II) acetate–acetic acid–water (1/1/3), [Cu(C2H3O2)(C10H8N2)2](C2H3O2)·C2H4O2·3H2O or [Cu(bipy)2Ac]Ac·HAc·3H2O, are reported and compared with the previously published structure of [Cu(phen)2Ac]Ac·7H2O (phen is 1,10-phenanthroline, bipy for 2,2'-bipyridine, ac is acetate and Hac is acetic acid). The geometry around the metal centre is pentacoordinated, but highly distorted in all three cases. The coordination number and the geometric distortion are both discussed in detail, and all complexes belong to the space group Poverline{1}. The analysis of the geometric parameters and the Hirshfeld surface properties dnorm and curvedness provide information about the metal–ligand interactions in these complexes and allow comparison with similar systems. Full Article text
io 3D electron diffraction studies of synthetic rhabdophane (DyPO4·nH2O) By journals.iucr.org Published On :: 2024-09-04 In this study, we report the results of continuous rotation electron diffraction studies of single DyPO4·nH2O (rhabdophane) nanocrystals. The diffraction patterns can be fit to a trigonal lattice (P3121) with lattice parameters a = 7.019 (5) and c = 6.417 (5) Å. However, there is also a set of diffuse background scattering features present that are associated with a disordered superstructure that is double these lattice parameters and fits with an arrangement of water molecules present in the structure pore. Pair distribution function (PDF) maps based on the diffuse background allowed the extent of the water correlation to be estimated, with 2–3 nm correlation along the c axis and ∼5 nm along the a/b axis. Full Article text
io The TR-icOS setup at the ESRF: time-resolved microsecond UV–Vis absorption spectroscopy on protein crystals By journals.iucr.org Published On :: 2024-01-01 The technique of time-resolved macromolecular crystallography (TR-MX) has recently been rejuvenated at synchrotrons, resulting in the design of dedicated beamlines. Using pump–probe schemes, this should make the mechanistic study of photoactive proteins and other suitable systems possible with time resolutions down to microseconds. In order to identify relevant time delays, time-resolved spectroscopic experiments directly performed on protein crystals are often desirable. To this end, an instrument has been built at the icOS Lab (in crystallo Optical Spectroscopy Laboratory) at the European Synchrotron Radiation Facility using reflective focusing objectives with a tuneable nanosecond laser as a pump and a microsecond xenon flash lamp as a probe, called the TR-icOS (time-resolved icOS) setup. Using this instrument, pump–probe spectra can rapidly be recorded from single crystals with time delays ranging from a few microseconds to seconds and beyond. This can be repeated at various laser pulse energies to track the potential presence of artefacts arising from two-photon absorption, which amounts to a power titration of a photoreaction. This approach has been applied to monitor the rise and decay of the M state in the photocycle of crystallized bacteriorhodopsin and showed that the photocycle is increasingly altered with laser pulses of peak fluence greater than 100 mJ cm−2, providing experimental laser and delay parameters for a successful TR-MX experiment. Full Article text
io A web-based dashboard for RELION metadata visualization By journals.iucr.org Published On :: 2024-01-24 Cryo-electron microscopy (cryo-EM) has witnessed radical progress in the past decade, driven by developments in hardware and software. While current software packages include processing pipelines that simplify the image-processing workflow, they do not prioritize the in-depth analysis of crucial metadata, limiting troubleshooting for challenging data sets. The widely used RELION software package lacks a graphical native representation of the underlying metadata. Here, two web-based tools are introduced: relion_live.py, which offers real-time feedback on data collection, aiding swift decision-making during data acquisition, and relion_analyse.py, a graphical interface to represent RELION projects by plotting essential metadata including interactive data filtration and analysis. A useful script for estimating ice thickness and data quality during movie pre-processing is also presented. These tools empower researchers to analyse data efficiently and allow informed decisions during data collection and processing. Full Article text
io Investigation of how gate residues in the main channel affect the catalytic activity of Scytalidium thermophilum catalase By journals.iucr.org Published On :: 2024-01-24 Catalase is an antioxidant enzyme that breaks down hydrogen peroxide (H2O2) into molecular oxygen and water. In all monofunctional catalases the pathway that H2O2 takes to the catalytic centre is via the `main channel'. However, the structure of this channel differs in large-subunit and small-subunit catalases. In large-subunit catalases the channel is 15 Å longer and consists of two distinct parts, including a hydrophobic lower region near the heme and a hydrophilic upper region where multiple H2O2 routes are possible. Conserved glutamic acid and threonine residues are located near the intersection of these two regions. Mutations of these two residues in the Scytalidium thermophilum catalase had no significant effect on catalase activity. However, the secondary phenol oxidase activity was markedly altered, with kcat and kcat/Km values that were significantly increased in the five variants E484A, E484I, T188D, T188I and T188F. These variants also showed a lower affinity for inhibitors of oxidase activity than the wild-type enzyme and a higher affinity for phenolic substrates. Oxidation of heme b to heme d did not occur in most of the studied variants. Structural changes in solvent-chain integrity and channel architecture were also observed. In summary, modification of the main-channel gate glutamic acid and threonine residues has a greater influence on the secondary activity of the catalase enzyme, and the oxidation of heme b to heme d is predominantly inhibited by their conversion to aliphatic and aromatic residues. Full Article text
io AlphaFold-assisted structure determination of a bacterial protein of unknown function using X-ray and electron crystallography By journals.iucr.org Published On :: 2024-03-07 Macromolecular crystallography generally requires the recovery of missing phase information from diffraction data to reconstruct an electron-density map of the crystallized molecule. Most recent structures have been solved using molecular replacement as a phasing method, requiring an a priori structure that is closely related to the target protein to serve as a search model; when no such search model exists, molecular replacement is not possible. New advances in computational machine-learning methods, however, have resulted in major advances in protein structure predictions from sequence information. Methods that generate predicted structural models of sufficient accuracy provide a powerful approach to molecular replacement. Taking advantage of these advances, AlphaFold predictions were applied to enable structure determination of a bacterial protein of unknown function (UniProtKB Q63NT7, NCBI locus BPSS0212) based on diffraction data that had evaded phasing attempts using MIR and anomalous scattering methods. Using both X-ray and micro-electron (microED) diffraction data, it was possible to solve the structure of the main fragment of the protein using a predicted model of that domain as a starting point. The use of predicted structural models importantly expands the promise of electron diffraction, where structure determination relies critically on molecular replacement. Full Article text
io The crystal structure of mycothiol disulfide reductase (Mtr) provides mechanistic insight into the specific low-molecular-weight thiol reductase activity of Actinobacteria By journals.iucr.org Published On :: 2024-02-19 Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development. Full Article text
io Characterization of novel mevalonate kinases from the tardigrade Ramazzottius varieornatus and the psychrophilic archaeon Methanococcoides burtonii By journals.iucr.org Published On :: 2024-02-27 Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases. Full Article text
io Advanced exploitation of unmerged reflection data during processing and refinement with autoPROC and BUSTER By journals.iucr.org Published On :: 2024-02-27 The validation of structural models obtained by macromolecular X-ray crystallography against experimental diffraction data, whether before deposition into the PDB or after, is typically carried out exclusively against the merged data that are eventually archived along with the atomic coordinates. It is shown here that the availability of unmerged reflection data enables valuable additional analyses to be performed that yield improvements in the final models, and tools are presented to implement them, together with examples of the results to which they give access. The first example is the automatic identification and removal of image ranges affected by loss of crystal centering or by excessive decay of the diffraction pattern as a result of radiation damage. The second example is the `reflection-auditing' process, whereby individual merged data items showing especially poor agreement with model predictions during refinement are investigated thanks to the specific metadata (such as image number and detector position) that are available for the corresponding unmerged data, potentially revealing previously undiagnosed instrumental, experimental or processing problems. The third example is the calculation of so-called F(early) − F(late) maps from carefully selected subsets of unmerged amplitude data, which can not only highlight the location and extent of radiation damage but can also provide guidance towards suitable fine-grained parametrizations to model the localized effects of such damage. Full Article text
io EMinsight: a tool to capture cryoEM microscope configuration and experimental outcomes for analysis and deposition By journals.iucr.org Published On :: 2024-03-26 The widespread adoption of cryoEM technologies for structural biology has pushed the discipline to new frontiers. A significant worldwide effort has refined the single-particle analysis (SPA) workflow into a reasonably standardized procedure. Significant investments of development time have been made, particularly in sample preparation, microscope data-collection efficiency, pipeline analyses and data archiving. The widespread adoption of specific commercial microscopes, software for controlling them and best practices developed at facilities worldwide has also begun to establish a degree of standardization to data structures coming from the SPA workflow. There is opportunity to capitalize on this moment in the maturation of the field, to capture metadata from SPA experiments and correlate the metadata with experimental outcomes, which is presented here in a set of programs called EMinsight. This tool aims to prototype the framework and types of analyses that could lead to new insights into optimal microscope configurations as well as to define methods for metadata capture to assist with the archiving of cryoEM SPA data. It is also envisaged that this tool will be useful to microscope operators and facilities looking to rapidly generate reports on SPA data-collection and screening sessions. Full Article text
io Structural determination and modeling of ciliary microtubules By journals.iucr.org Published On :: 2024-03-07 The axoneme, a microtubule-based array at the center of every cilium, has been the subject of structural investigations for decades, but only recent advances in cryo-EM and cryo-ET have allowed a molecular-level interpretation of the entire complex to be achieved. The unique properties of the nine doublet microtubules and central pair of singlet microtubules that form the axoneme, including the highly decorated tubulin lattice and the docking of massive axonemal complexes, provide opportunities and challenges for sample preparation, 3D reconstruction and atomic modeling. Here, the approaches used for cryo-EM and cryo-ET of axonemes are reviewed, while highlighting the unique opportunities provided by the latest generation of AI-guided tools that are transforming structural biology. Full Article text
io Tomo Live: an on-the-fly reconstruction pipeline to judge data quality for cryo-electron tomography workflows By journals.iucr.org Published On :: 2024-03-21 Data acquisition and processing for cryo-electron tomography can be a significant bottleneck for users. To simplify and streamline the cryo-ET workflow, Tomo Live, an on-the-fly solution that automates the alignment and reconstruction of tilt-series data, enabling real-time data-quality assessment, has been developed. Through the integration of Tomo Live into the data-acquisition workflow for cryo-ET, motion correction is performed directly after each of the acquired tilt angles. Immediately after the tilt-series acquisition has completed, an unattended tilt-series alignment and reconstruction into a 3D volume is performed. The results are displayed in real time in a dedicated remote web platform that runs on the microscope hardware. Through this web platform, users can review the acquired data (aligned stack and 3D volume) and several quality metrics that are obtained during the alignment and reconstruction process. These quality metrics can be used for fast feedback for subsequent acquisitions to save time. Parameters such as Alignment Accuracy, Deleted Tilts and Tilt Axis Correction Angle are visualized as graphs and can be used as filters to export only the best tomograms (raw data, reconstruction and intermediate data) for further processing. Here, the Tomo Live algorithms and workflow are described and representative results on several biological samples are presented. The Tomo Live workflow is accessible to both expert and non-expert users, making it a valuable tool for the continued advancement of structural biology, cell biology and histology. Full Article text
io Efficient in situ screening of and data collection from microcrystals in crystallization plates By journals.iucr.org Published On :: 2024-03-15 A considerable bottleneck in serial crystallography at XFEL and synchrotron sources is the efficient production of large quantities of homogenous, well diffracting microcrystals. Efficient high-throughput screening of batch-grown microcrystals and the determination of ground-state structures from different conditions is thus of considerable value in the early stages of a project. Here, a highly sample-efficient methodology to measure serial crystallography data from microcrystals by raster scanning within standard in situ 96-well crystallization plates is described. Structures were determined from very small quantities of microcrystal suspension and the results were compared with those from other sample-delivery methods. The analysis of a two-dimensional batch crystallization screen using this method is also described as a useful guide for further optimization and the selection of appropriate conditions for scaling up microcrystallization. Full Article text
io STOPGAP: an open-source package for template matching, subtomogram alignment and classification By journals.iucr.org Published On :: 2024-04-12 Cryo-electron tomography (cryo-ET) enables molecular-resolution 3D imaging of complex biological specimens such as viral particles, cellular sections and, in some cases, whole cells. This enables the structural characterization of molecules in their near-native environments, without the need for purification or separation, thereby preserving biological information such as conformational states and spatial relationships between different molecular species. Subtomogram averaging is an image-processing workflow that allows users to leverage cryo-ET data to identify and localize target molecules, determine high-resolution structures of repeating molecular species and classify different conformational states. Here, STOPGAP, an open-source package for subtomogram averaging that is designed to provide users with fine control over each of these steps, is described. In providing detailed descriptions of the image-processing algorithms that STOPGAP uses, this manuscript is also intended to serve as a technical resource to users as well as for further community-driven software development. Full Article text
io A database overview of metal-coordination distances in metalloproteins By journals.iucr.org Published On :: 2024-04-29 Metalloproteins are ubiquitous in all living organisms and take part in a very wide range of biological processes. For this reason, their experimental characterization is crucial to obtain improved knowledge of their structure and biological functions. The three-dimensional structure represents highly relevant information since it provides insight into the interaction between the metal ion(s) and the protein fold. Such interactions determine the chemical reactivity of the bound metal. The available PDB structures can contain errors due to experimental factors such as poor resolution and radiation damage. A lack of use of distance restraints during the refinement and validation process also impacts the structure quality. Here, the aim was to obtain a thorough overview of the distribution of the distances between metal ions and their donor atoms through the statistical analysis of a data set based on more than 115 000 metal-binding sites in proteins. This analysis not only produced reference data that can be used by experimentalists to support the structure-determination process, for example as refinement restraints, but also resulted in an improved insight into how protein coordination occurs for different metals and the nature of their binding interactions. In particular, the features of carboxylate coordination were inspected, which is the only type of interaction that is commonly present for nearly all metals. Full Article text
io Identifying and avoiding radiation damage in macromolecular crystallography By journals.iucr.org Published On :: 2024-04-30 Radiation damage remains one of the major impediments to accurate structure solution in macromolecular crystallography. The artefacts of radiation damage can manifest as structural changes that result in incorrect biological interpretations being drawn from a model, they can reduce the resolution to which data can be collected and they can even prevent structure solution entirely. In this article, we discuss how to identify and mitigate against the effects of radiation damage at each stage in the macromolecular crystal structure-solution pipeline. Full Article text
io New insights into the domain of unknown function (DUF) of EccC5, the pivotal ATPase providing the secretion driving force to the ESX-5 secretion system By journals.iucr.org Published On :: 2024-05-28 Type VII secretion (T7S) systems, also referred to as ESAT-6 secretion (ESX) systems, are molecular machines that have gained great attention due to their implications in cell homeostasis and in host–pathogen interactions in mycobacteria. The latter include important human pathogens such as Mycobacterium tuberculosis (Mtb), the etiological cause of human tuberculosis, which constitutes a pandemic accounting for more than one million deaths every year. The ESX-5 system is exclusively found in slow-growing pathogenic mycobacteria, where it mediates the secretion of a large family of virulence factors: the PE and PPE proteins. The secretion driving force is provided by EccC5, a multidomain ATPase that operates using four globular cytosolic domains: an N-terminal domain of unknown function (EccC5DUF) and three FtsK/SpoIIIE ATPase domains. Recent structural and functional studies of ESX-3 and ESX-5 systems have revealed EccCDUF to be an ATPase-like fold domain with potential ATPase activity, the functionality of which is essential for secretion. Here, the crystal structure of the MtbEccC5DUF domain is reported at 2.05 Å resolution, which reveals a nucleotide-free structure with degenerated cis-acting and trans-acting elements involved in ATP binding and hydrolysis. This crystallographic study, together with a biophysical assessment of the interaction of MtbEccC5DUF with ATP/Mg2+, supports the absence of ATPase activity proposed for this domain. It is shown that this degeneration is also present in DUF domains from other ESX and ESX-like systems, which are likely to exhibit poor or null ATPase activity. Moreover, based on an in silico model of the N-terminal region of MtbEccC5DUF, it is hypothesized that MtbEccC5DUF is a degenerated ATPase domain that may have retained the ability to hexamerize. These observations draw attention to DUF domains as structural elements with potential implications in the opening and closure of the membrane pore during the secretion process via their involvement in inter-protomer interactions. Full Article text
io Pillar data-acquisition strategies for cryo-electron tomography of beam-sensitive biological samples By journals.iucr.org Published On :: 2024-06-03 For cryo-electron tomography (cryo-ET) of beam-sensitive biological specimens, a planar sample geometry is typically used. As the sample is tilted, the effective thickness of the sample along the direction of the electron beam increases and the signal-to-noise ratio concomitantly decreases, limiting the transfer of information at high tilt angles. In addition, the tilt range where data can be collected is limited by a combination of various sample-environment constraints, including the limited space in the objective lens pole piece and the possible use of fixed conductive braids to cool the specimen. Consequently, most tilt series are limited to a maximum of ±70°, leading to the presence of a missing wedge in Fourier space. The acquisition of cryo-ET data without a missing wedge, for example using a cylindrical sample geometry, is hence attractive for volumetric analysis of low-symmetry structures such as organelles or vesicles, lysis events, pore formation or filaments for which the missing information cannot be compensated by averaging techniques. Irrespective of the geometry, electron-beam damage to the specimen is an issue and the first images acquired will transfer more high-resolution information than those acquired last. There is also an inherent trade-off between higher sampling in Fourier space and avoiding beam damage to the sample. Finally, the necessity of using a sufficient electron fluence to align the tilt images means that this fluence needs to be fractionated across a small number of images; therefore, the order of data acquisition is also a factor to consider. Here, an n-helix tilt scheme is described and simulated which uses overlapping and interleaved tilt series to maximize the use of a pillar geometry, allowing the entire pillar volume to be reconstructed as a single unit. Three related tilt schemes are also evaluated that extend the continuous and classic dose-symmetric tilt schemes for cryo-ET to pillar samples to enable the collection of isotropic information across all spatial frequencies. A fourfold dose-symmetric scheme is proposed which provides a practical compromise between uniform information transfer and complexity of data acquisition. Full Article text
io Introduction of the Capsules environment to support further growth of the SBGrid structural biology software collection By journals.iucr.org Published On :: 2024-06-04 The expansive scientific software ecosystem, characterized by millions of titles across various platforms and formats, poses significant challenges in maintaining reproducibility and provenance in scientific research. The diversity of independently developed applications, evolving versions and heterogeneous components highlights the need for rigorous methodologies to navigate these complexities. In response to these challenges, the SBGrid team builds, installs and configures over 530 specialized software applications for use in the on-premises and cloud-based computing environments of SBGrid Consortium members. To address the intricacies of supporting this diverse application collection, the team has developed the Capsule Software Execution Environment, generally referred to as Capsules. Capsules rely on a collection of programmatically generated bash scripts that work together to isolate the runtime environment of one application from all other applications, thereby providing a transparent cross-platform solution without requiring specialized tools or elevated account privileges for researchers. Capsules facilitate modular, secure software distribution while maintaining a centralized, conflict-free environment. The SBGrid platform, which combines Capsules with the SBGrid collection of structural biology applications, aligns with FAIR goals by enhancing the findability, accessibility, interoperability and reusability of scientific software, ensuring seamless functionality across diverse computing environments. Its adaptability enables application beyond structural biology into other scientific fields. Full Article text
io Deep-learning map segmentation for protein X-ray crystallographic structure determination By journals.iucr.org Published On :: 2024-06-27 When solving a structure of a protein from single-wavelength anomalous diffraction X-ray data, the initial phases obtained by phasing from an anomalously scattering substructure usually need to be improved by an iterated electron-density modification. In this manuscript, the use of convolutional neural networks (CNNs) for segmentation of the initial experimental phasing electron-density maps is proposed. The results reported demonstrate that a CNN with U-net architecture, trained on several thousands of electron-density maps generated mainly using X-ray data from the Protein Data Bank in a supervised learning, can improve current density-modification methods. Full Article text
io Factors affecting macromolecule orientations in thin films formed in cryo-EM By journals.iucr.org Published On :: 2024-06-27 The formation of a vitrified thin film embedded with randomly oriented macromolecules is an essential prerequisite for cryogenic sample electron microscopy. Most commonly, this is achieved using the plunge-freeze method first described nearly 40 years ago. Although this is a robust method, the behaviour of different macromolecules shows great variation upon freezing and often needs to be optimized to obtain an isotropic, high-resolution reconstruction. For a macromolecule in such a film, the probability of encountering the air–water interface in the time between blotting and freezing and adopting preferred orientations is very high. 3D reconstruction using preferentially oriented particles often leads to anisotropic and uninterpretable maps. Currently, there are no general solutions to this prevalent issue, but several approaches largely focusing on sample preparation with the use of additives and novel grid modifications have been attempted. In this study, the effect of physical and chemical factors on the orientations of macromolecules was investigated through an analysis of selected well studied macromolecules, and important parameters that determine the behaviour of proteins on cryo-EM grids were revealed. These insights highlight the nature of the interactions that cause preferred orientations and can be utilized to systematically address orientation bias for any given macromolecule and to provide a framework to design small-molecule additives to enhance sample stability and behaviour. Full Article text