ces

The Joyful Reduction of Uncertainty: Music Perception as a Window to Predictive Neuronal Processing




ces

Physical Exercise Prevents Stress-Induced Activation of Granule Neurons and Enhances Local Inhibitory Mechanisms in the Dentate Gyrus

Timothy J. Schoenfeld
May 1, 2013; 33:7770-7777
BehavioralSystemsCognitive




ces

Advances in Enteric Neurobiology: The "Brain" in the Gut in Health and Disease

Subhash Kulkarni
Oct 31, 2018; 38:9346-9354
Symposium and Mini-Symposium




ces

Sleep Deprivation Biases the Neural Mechanisms Underlying Economic Preferences

Vinod Venkatraman
Mar 9, 2011; 31:3712-3718
BehavioralSystemsCognitive




ces

Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control

William W. Seeley
Feb 28, 2007; 27:2349-2356
BehavioralSystemsCognitive




ces

Dural Calcitonin Gene-Related Peptide Produces Female-Specific Responses in Rodent Migraine Models

Amanda Avona
May 29, 2019; 39:4323-4331
Systems/Circuits




ces

Circuit Stability to Perturbations Reveals Hidden Variability in the Balance of Intrinsic and Synaptic Conductances

Sebastian Onasch
Apr 15, 2020; 40:3186-3202
Systems/Circuits




ces

Grey Matter Volume Differences Associated with Extremely Low Levels of Cannabis Use in Adolescence

Catherine Orr
Mar 6, 2019; 39:1817-1827
BehavioralSystemsCognitive




ces

What Visual Information Is Processed in the Human Dorsal Stream?

Martin N. Hebart
Jun 13, 2012; 32:8107-8109
Journal Club




ces

Calcium Influx via the NMDA Receptor Induces Immediate Early Gene Transcription by a MAP Kinase/ERK-Dependent Mechanism

Zhengui Xia
Sep 1, 1996; 16:5425-5436
Articles




ces

Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control

William W. Seeley
Feb 28, 2007; 27:2349-2356
BehavioralSystemsCognitive




ces

Questions fréquemment posées sur les exigences de fonds propres en regard du risque de marché

French translation of "Frequently asked questions on market risk capital requirements" by the Basel Committee, March 2018.




ces

Les divergences s'accroissent sur les marchés : Rapport trimestriel de la BRI

French translation of the BIS press release about the BIS Quarterly Review, September 2018




ces

Exigences de communication financière au titre du troisième pilier - dispositif révisé

French translation of "Pillar 3 disclosure requirements - updated framework", December 2018




ces

2008-06-26: the cure for high gas and food prices








ces

Wintrust Financial Corporation Announces Precautionary Decision to Help Achieve Community Health Objectives By Temporarily Closing Selected Branches

To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452.








ces

4 Things You Need to Know for Successful Enterprise CRM Integration

The enterprise IT environment is complex. Many systems, technologies and practices developed at various times coexist in the same world. With expectations for technological advancements at their peak, we're tasked with enabling these systems to work together harmoniously to support the continuous sharing of information. Systems and data must connect as if all information were native to each.




ces

Services for Shangukeidí clan mother scheduled




ces

Noncoding Microdeletion in Mouse Hgf Disrupts Neural Crest Migration into the Stria Vascularis, Reduces the Endocochlear Potential, and Suggests the Neuropathology for Human Nonsyndromic Deafness DFNB39

Hepatocyte growth factor (HGF) is a multifunctional protein that signals through the MET receptor. HGF stimulates cell proliferation, cell dispersion, neuronal survival, and wound healing. In the inner ear, levels of HGF must be fine-tuned for normal hearing. In mice, a deficiency of HGF expression limited to the auditory system, or an overexpression of HGF, causes neurosensory deafness. In humans, noncoding variants in HGF are associated with nonsyndromic deafness DFNB39. However, the mechanism by which these noncoding variants causes deafness was unknown. Here, we reveal the cause of this deafness using a mouse model engineered with a noncoding intronic 10 bp deletion (del10) in Hgf. Male and female mice homozygous for del10 exhibit moderate-to-profound hearing loss at 4 weeks of age as measured by tone burst auditory brainstem responses. The wild type (WT) 80 mV endocochlear potential was significantly reduced in homozygous del10 mice compared with WT littermates. In normal cochlea, endocochlear potentials are dependent on ion homeostasis mediated by the stria vascularis (SV). Previous studies showed that developmental incorporation of neural crest cells into the SV depends on signaling from HGF/MET. We show by immunohistochemistry that, in del10 homozygotes, neural crest cells fail to infiltrate the developing SV intermediate layer. Phenotyping and RNAseq analyses reveal no other significant abnormalities in other tissues. We conclude that, in the inner ear, the noncoding del10 mutation in Hgf leads to developmental defects of the SV and consequently dysfunctional ion homeostasis and a reduction in the EP, recapitulating human DFNB39 nonsyndromic deafness.

SIGNIFICANCE STATEMENT Hereditary deafness is a common, clinically and genetically heterogeneous neurosensory disorder. Previously, we reported that human deafness DFNB39 is associated with noncoding variants in the 3'UTR of a short isoform of HGF encoding hepatocyte growth factor. For normal hearing, HGF levels must be fine-tuned as an excess or deficiency of HGF cause deafness in mouse. Using a Hgf mutant mouse with a small 10 bp deletion recapitulating a human DFNB39 noncoding variant, we demonstrate that neural crest cells fail to migrate into the stria vascularis intermediate layer, resulting in a significantly reduced endocochlear potential, the driving force for sound transduction by inner ear hair cells. HGF-associated deafness is a neurocristopathy but, unlike many other neurocristopathies, it is not syndromic.




ces

Interneuron NMDA Receptor Ablation Induces Hippocampus-Prefrontal Cortex Functional Hypoconnectivity after Adolescence in a Mouse Model of Schizophrenia

Although the etiology of schizophrenia is still unknown, it is accepted to be a neurodevelopmental disorder that results from the interaction of genetic vulnerabilities and environmental insults. Although schizophrenia's pathophysiology is still unclear, postmortem studies point toward a dysfunction of cortical interneurons as a central element. It has been suggested that alterations in parvalbumin-positive interneurons in schizophrenia are the consequence of a deficient signaling through NMDARs. Animal studies demonstrated that early postnatal ablation of the NMDAR in corticolimbic interneurons induces neurobiochemical, physiological, behavioral, and epidemiological phenotypes related to schizophrenia. Notably, the behavioral abnormalities emerge only after animals complete their maturation during adolescence and are absent if the NMDAR is deleted during adulthood. This suggests that interneuron dysfunction must interact with development to impact on behavior. Here, we assess in vivo how an early NMDAR ablation in corticolimbic interneurons impacts on mPFC and ventral hippocampus functional connectivity before and after adolescence. In juvenile male mice, NMDAR ablation results in several pathophysiological traits, including increased cortical activity and decreased entrainment to local gamma and distal hippocampal theta rhythms. In addition, adult male KO mice showed reduced ventral hippocampus-mPFC-evoked potentials and an augmented low-frequency stimulation LTD of the pathway, suggesting that there is a functional disconnection between both structures in adult KO mice. Our results demonstrate that early genetic abnormalities in interneurons can interact with postnatal development during adolescence, triggering pathophysiological mechanisms related to schizophrenia that exceed those caused by NMDAR interneuron hypofunction alone.

SIGNIFICANCE STATEMENT NMDAR hypofunction in cortical interneurons has been linked to schizophrenia pathophysiology. How a dysfunction of GABAergic cortical interneurons interacts with maturation during adolescence has not been clarified yet. Here, we demonstrate in vivo that early postnatal ablation of the NMDAR in corticolimbic interneurons results in an overactive but desynchronized PFC before adolescence. Final postnatal maturation during this stage outspreads the impact of the genetic manipulation toward a functional disconnection of the ventral hippocampal-prefrontal pathway, probably as a consequence of an exacerbated propensity toward hippocampal-evoked depotentiation plasticity. Our results demonstrate a complex interaction between genetic and developmental factors affecting cortical interneurons and PFC function.




ces

Circuit Stability to Perturbations Reveals Hidden Variability in the Balance of Intrinsic and Synaptic Conductances

Neurons and circuits each with a distinct balance of intrinsic and synaptic conductances can generate similar behavior but sometimes respond very differently to perturbation. Examining a large family of circuit models with non-identical neurons and synapses underlying rhythmic behavior, we analyzed the circuits' response to modifications in single and multiple intrinsic conductances in the individual neurons. To summarize these changes over the entire range of perturbed parameters, we quantified circuit output by defining a global stability measure. Using this measure, we identified specific subsets of conductances that when perturbed generate similar behavior in diverse individuals of the population. Our unbiased clustering analysis enabled us to quantify circuit stability when simultaneously perturbing multiple conductances as a nonlinear combination of single conductance perturbations. This revealed surprising conductance combinations that can predict the response to specific perturbations, even when the remaining intrinsic and synaptic conductances are unknown. Therefore, our approach can expose hidden variability in the balance of intrinsic and synaptic conductances of the same neurons across different versions of the same circuit solely from the circuit response to perturbations. Developed for a specific family of model circuits, our quantitative approach to characterizing high-dimensional degenerate systems provides a conceptual and analytic framework to guide future theoretical and experimental studies on degeneracy and robustness.

SIGNIFICANCE STATEMENT Neural circuits can generate nearly identical behavior despite neuronal and synaptic parameters varying several-fold between individual instantiations. Yet, when these parameters are perturbed through channel deletions and mutations or environmental disturbances, seemingly identical circuits can respond very differently. What distinguishes inconsequential perturbations that barely alter circuit behavior from disruptive perturbations that drastically disturb circuit output remains unclear. Focusing on a family of rhythmic circuits, we propose a computational approach to reveal hidden variability in the intrinsic and synaptic conductances in seemingly identical circuits based solely on circuit output to different perturbations. We uncover specific conductance combinations that work similarly to maintain stability and predict the effect of changing multiple conductances simultaneously, which often results from neuromodulation or injury.




ces

Treatment with Mesenchymal-Derived Extracellular Vesicles Reduces Injury-Related Pathology in Pyramidal Neurons of Monkey Perilesional Ventral Premotor Cortex

Functional recovery after cortical injury, such as stroke, is associated with neural circuit reorganization, but the underlying mechanisms and efficacy of therapeutic interventions promoting neural plasticity in primates are not well understood. Bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), which mediate cell-to-cell inflammatory and trophic signaling, are thought be viable therapeutic targets. We recently showed, in aged female rhesus monkeys, that systemic administration of MSC-EVs enhances recovery of function after injury of the primary motor cortex, likely through enhancing plasticity in perilesional motor and premotor cortices. Here, using in vitro whole-cell patch-clamp recording and intracellular filling in acute slices of ventral premotor cortex (vPMC) from rhesus monkeys (Macaca mulatta) of either sex, we demonstrate that MSC-EVs reduce injury-related physiological and morphologic changes in perilesional layer 3 pyramidal neurons. At 14-16 weeks after injury, vPMC neurons from both vehicle- and EV-treated lesioned monkeys exhibited significant hyperexcitability and predominance of inhibitory synaptic currents, compared with neurons from nonlesioned control brains. However, compared with vehicle-treated monkeys, neurons from EV-treated monkeys showed lower firing rates, greater spike frequency adaptation, and excitatory:inhibitory ratio. Further, EV treatment was associated with greater apical dendritic branching complexity, spine density, and inhibition, indicative of enhanced dendritic plasticity and filtering of signals integrated at the soma. Importantly, the degree of EV-mediated reduction of injury-related pathology in vPMC was significantly correlated with measures of behavioral recovery. These data show that EV treatment dampens injury-related hyperexcitability and restores excitatory:inhibitory balance in vPMC, thereby normalizing activity within cortical networks for motor function.

SIGNIFICANCE STATEMENT Neuronal plasticity can facilitate recovery of function after cortical injury, but the underlying mechanisms and efficacy of therapeutic interventions promoting this plasticity in primates are not well understood. Our recent work has shown that intravenous infusions of mesenchymal-derived extracellular vesicles (EVs) that are involved in cell-to-cell inflammatory and trophic signaling can enhance recovery of motor function after injury in monkey primary motor cortex. This study shows that this EV-mediated enhancement of recovery is associated with amelioration of injury-related hyperexcitability and restoration of excitatory-inhibitory balance in perilesional ventral premotor cortex. These findings demonstrate the efficacy of mesenchymal EVs as a therapeutic to reduce injury-related pathologic changes in the physiology and structure of premotor pyramidal neurons and support recovery of function.




ces

Emotional Stress Induces Structural Plasticity in Bergmann Glial Cells via an AC5-CPEB3-GluA1 Pathway

Stress alters brain function by modifying the structure and function of neurons and astrocytes. The fine processes of astrocytes are critical for the clearance of neurotransmitters during synaptic transmission. Thus, experience-dependent remodeling of glial processes is anticipated to alter the output of neural circuits. However, the molecular mechanisms that underlie glial structural plasticity are not known. Here we show that a single exposure of male and female mice to an acute stress produced a long-lasting retraction of the lateral processes of cerebellar Bergmann glial cells. These cells express the GluA1 subunit of AMPA-type glutamate receptors, and GluA1 knockdown is known to shorten the length of glial processes. We found that stress reduced the level of GluA1 protein and AMPA receptor-mediated currents in Bergmann glial cells, and these effects were absent in mice devoid of CPEB3, a protein that binds to GluA1 mRNA and regulates GluA1 protein synthesis. Administration of a β-adrenergic receptor blocker attenuated the reduction in GluA1, and deletion of adenylate cyclase 5 prevented GluA1 suppression. Therefore, stress suppresses GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway, and reduces the length of astrocyte lateral processes. Our results identify a novel mechanism for GluA1 subunit plasticity in non-neuronal cells and suggest a previously unappreciated role for AMPA receptors in stress-induced astrocytic remodeling.

SIGNIFICANCE STATEMENT Astrocytes play important roles in synaptic transmission by extending fine processes around synapses. In this study, we showed that a single exposure to an acute stress triggered a retraction of lateral/fine processes in mouse cerebellar astrocytes. These astrocytes express GluA1, a glutamate receptor subunit known to lengthen astrocyte processes. We showed that astrocytic structural changes are associated with a reduction of GluA1 protein levels. This requires activation of β-adrenergic receptors and is triggered by noradrenaline released during stress. We identified adenylyl cyclase 5, an enzyme that elevates cAMP levels, as a downstream effector and found that lowering GluA1 levels depends on CPEB3 proteins that bind to GluA1 mRNA. Therefore, stress regulates GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway in astrocytes and remodels their fine processes.




ces

Deletion of Voltage-Gated Calcium Channels in Astrocytes during Demyelination Reduces Brain Inflammation and Promotes Myelin Regeneration in Mice

To determine whether Cav1.2 voltage-gated Ca2+ channels contribute to astrocyte activation, we generated an inducible conditional knock-out mouse in which the Cav1.2 α subunit was deleted in GFAP-positive astrocytes. This astrocytic Cav1.2 knock-out mouse was tested in the cuprizone model of myelin injury and repair which causes astrocyte and microglia activation in the absence of a lymphocytic response. Deletion of Cav1.2 channels in GFAP-positive astrocytes during cuprizone-induced demyelination leads to a significant reduction in the degree of astrocyte and microglia activation and proliferation in mice of either sex. Concomitantly, the production of proinflammatory factors such as TNFα, IL1β and TGFβ1 was significantly decreased in the corpus callosum and cortex of Cav1.2 knock-out mice through demyelination. Furthermore, this mild inflammatory environment promotes oligodendrocyte progenitor cells maturation and myelin regeneration across the remyelination phase of the cuprizone model. Similar results were found in animals treated with nimodipine, a Cav1.2 Ca2+ channel inhibitor with high affinity to the CNS. Mice of either sex injected with nimodipine during the demyelination stage of the cuprizone treatment displayed a reduced number of reactive astrocytes and showed a faster and more efficient brain remyelination. Together, these results indicate that Cav1.2 Ca2+ channels play a crucial role in the induction and proliferation of reactive astrocytes during demyelination; and that attenuation of astrocytic voltage-gated Ca2+ influx may be an effective therapy to reduce brain inflammation and promote myelin recovery in demyelinating diseases.

SIGNIFICANCE STATEMENT Reducing voltage-gated Ca2+ influx in astrocytes during brain demyelination significantly attenuates brain inflammation and astrocyte reactivity. Furthermore, these changes promote myelin restoration and oligodendrocyte maturation throughout remyelination.




ces

‘We must be voices of the hungry'

We will only achieve zero hunger if we speak on behalf of those unable to represent themselves. That was a key message during an event titled “Zero Hunger: are we ready?” at FAO headquarters in Rome, Italy, on Friday, 11 October. “Hungry people have no voice, they are different from all others,” said FAO Director-General José Graziano da Silva (pictured, left). “We [...]




ces

Reduce your food waste and save money and our natural resources

Total food losses have been estimated at 1.3 billion tons per year, which represents roughly one-third of the world food production for human consumption. The economic value of food losses and waste amounts to $680 billion in industrialized countries and $310 billion in developing countries. In total, food loss and waste amount to one trillion dollars globally. Lost and wasted food [...]




ces

Whittling down instances of child labour in agriculture

“Children subjected to child labour need our support and action so they can enjoy their right to education and health and become productive farmers and workers as adults to escape poverty and hunger.” - José Graziano da Silva, FAO Director- General  Child labour is not unique to a particular country, ethnicity, culture, or ideology. Today, there are about 100 million boys [...]




ces

On ecosystems and the services they provide – Let's talk facts

Ecosystem services make human life possible by, for example, providing nutritious food and clean water, regulating disease and climate, supporting the pollination of crops and soil formation, and providing recreational, cultural and spiritual benefits. In 2014, the value of ecosystem services was estimated at a staggering US$ 125 trillion.  Ecosystem services, provided by biodiversity, are fundamental to food production and [...]




ces

7 success factors to empowering rural women through ICTs

The digital revolution has changed the way we work, access information and connect with each other. It offers opportunities to those who can use the new technologies, but also presents new challenges for those who are left behind. Often referred to collectively as Information and Communications Technologies or ICTs, these technologies are any method of electronically sharing or storing data: telephones, [...]




ces

Release of FAO's resource mobilization annual report, Resources, Partnerships, Impact – 2019


ces

This Tiny Island Was Key for Allied Forces to Secure North Africa

During WWII, Nazi forces were preparing to take the coastal city of Tobruk and tighten their grip on North Africa




ces

A Dinosaur 'Stomping Ground' Surfaces on the Isle of Skye

Two sites preserve around 50 footprints, a discovery that highlights the richness of prehistoric life on the island




ces

Lego Pieces Could Last for 1,300 Years in Marine Environments

The extent of the toy’s durability came as a 'surprise' to researchers behind a new study




ces

Japan's Experiment to Calculate an Asteroid's Age Was a Smashing Success

The spacecraft Hayabusa2 hurled a four-pound copper ball toward the asteroid's surface at about 4,500 miles an hour to create an artificial crater




ces

Traces of Millennia-Old Milk Help Date Pottery Fragments to Neolithic London

These dairy products are no longer edible, but they're still valuable to researchers




ces

Portrait Project Reveals the Faces Behind Health Care Workers' Protective Gear

Doctors and nurses are attaching smiling photos of themselves to the outside of their protective gear to maintain connections with patients




ces

Norway Lobsters Crush Ocean Plastic Into Even Smaller Pieces—and That's Bad

The crustaceans' guts pulverize plastics into tiny bits that can be consumed by even smaller creatures at the base of the ocean food chain




ces

300,000-Year-Old Stick Suggests Human Ancestors Were Skilled Hunters

The ancient throwing stick may have been used by Neanderthals or an even earlier hominin




ces

Despite Their Differences, Dogs and Horses Find Common Ground in Play

Canine-equid pairs can mimic each other’s facial expressions during play, which has never been seen between animals of different species




ces

Why Microsoft Word Now Considers Two Spaces After a Period an Error

Traditionalist "two-spacers" can still disable the function




ces

The Forces Behind Venus’ Super-Rotating Atmosphere

Earth’s sister planet spins slowly, but its atmosphere whips around at high speeds




ces

After Closure, the Met Opera Offers Free Streaming of Past Performances

Each night, the institution will post an encore showing of an opera from its "Met Live in HD" series