ces Modeling microbial abundances and dysbiosis with beta-binomial regression By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Bryan D. Martin, Daniela Witten, Amy D. Willis. Source: The Annals of Applied Statistics, Volume 14, Number 1, 94--115.Abstract: Using a sample from a population to estimate the proportion of the population with a certain category label is a broadly important problem. In the context of microbiome studies, this problem arises when researchers wish to use a sample from a population of microbes to estimate the population proportion of a particular taxon, known as the taxon’s relative abundance . In this paper, we propose a beta-binomial model for this task. Like existing models, our model allows for a taxon’s relative abundance to be associated with covariates of interest. However, unlike existing models, our proposal also allows for the overdispersion in the taxon’s counts to be associated with covariates of interest. We exploit this model in order to propose tests not only for differential relative abundance, but also for differential variability. The latter is particularly valuable in light of speculation that dysbiosis , the perturbation from a normal microbiome that can occur in certain disease conditions, may manifest as a loss of stability, or increase in variability, of the counts associated with each taxon. We demonstrate the performance of our proposed model using a simulation study and an application to soil microbial data. Full Article
ces New formulation of the logistic-Gaussian process to analyze trajectory tracking data By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Gianluca Mastrantonio, Clara Grazian, Sara Mancinelli, Enrico Bibbona. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2483--2508.Abstract: Improved communication systems, shrinking battery sizes and the price drop of tracking devices have led to an increasing availability of trajectory tracking data. These data are often analyzed to understand animal behavior. In this work, we propose a new model for interpreting the animal movent as a mixture of characteristic patterns, that we interpret as different behaviors. The probability that the animal is behaving according to a specific pattern, at each time instant, is nonparametrically estimated using the Logistic-Gaussian process. Owing to a new formalization and the way we specify the coregionalization matrix of the associated multivariate Gaussian process, our model is invariant with respect to the choice of the reference element and of the ordering of the probability vector components. We fit the model under a Bayesian framework, and show that the Markov chain Monte Carlo algorithm we propose is straightforward to implement. We perform a simulation study with the aim of showing the ability of the estimation procedure to retrieve the model parameters. We also test the performance of the information criterion we used to select the number of behaviors. The model is then applied to a real dataset where a wolf has been observed before and after procreation. The results are easy to interpret, and clear differences emerge in the two phases. Full Article
ces Predicting paleoclimate from compositional data using multivariate Gaussian process inverse prediction By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST John R. Tipton, Mevin B. Hooten, Connor Nolan, Robert K. Booth, Jason McLachlan. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2363--2388.Abstract: Multivariate compositional count data arise in many applications including ecology, microbiology, genetics and paleoclimate. A frequent question in the analysis of multivariate compositional count data is what underlying values of a covariate(s) give rise to the observed composition. Learning the relationship between covariates and the compositional count allows for inverse prediction of unobserved covariates given compositional count observations. Gaussian processes provide a flexible framework for modeling functional responses with respect to a covariate without assuming a functional form. Many scientific disciplines use Gaussian process approximations to improve prediction and make inference on latent processes and parameters. When prediction is desired on unobserved covariates given realizations of the response variable, this is called inverse prediction. Because inverse prediction is often mathematically and computationally challenging, predicting unobserved covariates often requires fitting models that are different from the hypothesized generative model. We present a novel computational framework that allows for efficient inverse prediction using a Gaussian process approximation to generative models. Our framework enables scientific learning about how the latent processes co-vary with respect to covariates while simultaneously providing predictions of missing covariates. The proposed framework is capable of efficiently exploring the high dimensional, multi-modal latent spaces that arise in the inverse problem. To demonstrate flexibility, we apply our method in a generalized linear model framework to predict latent climate states given multivariate count data. Based on cross-validation, our model has predictive skill competitive with current methods while simultaneously providing formal, statistical inference on the underlying community dynamics of the biological system previously not available. Full Article
ces Statistical inference for partially observed branching processes with application to cell lineage tracking of in vivo hematopoiesis By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Jason Xu, Samson Koelle, Peter Guttorp, Chuanfeng Wu, Cynthia Dunbar, Janis L. Abkowitz, Vladimir N. Minin. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2091--2119.Abstract: Single-cell lineage tracking strategies enabled by recent experimental technologies have produced significant insights into cell fate decisions, but lack the quantitative framework necessary for rigorous statistical analysis of mechanistic models describing cell division and differentiation. In this paper, we develop such a framework with corresponding moment-based parameter estimation techniques for continuous-time, multi-type branching processes. Such processes provide a probabilistic model of how cells divide and differentiate, and we apply our method to study hematopoiesis , the mechanism of blood cell production. We derive closed-form expressions for higher moments in a general class of such models. These analytical results allow us to efficiently estimate parameters of much richer statistical models of hematopoiesis than those used in previous statistical studies. To our knowledge, the method provides the first rate inference procedure for fitting such models to time series data generated from cellular barcoding experiments. After validating the methodology in simulation studies, we apply our estimator to hematopoietic lineage tracking data from rhesus macaques. Our analysis provides a more complete understanding of cell fate decisions during hematopoiesis in nonhuman primates, which may be more relevant to human biology and clinical strategies than previous findings from murine studies. For example, in addition to previously estimated hematopoietic stem cell self-renewal rate, we are able to estimate fate decision probabilities and to compare structurally distinct models of hematopoiesis using cross validation. These estimates of fate decision probabilities and our model selection results should help biologists compare competing hypotheses about how progenitor cells differentiate. The methodology is transferrable to a large class of stochastic compartmental and multi-type branching models, commonly used in studies of cancer progression, epidemiology and many other fields. Full Article
ces Exponential integrability and exit times of diffusions on sub-Riemannian and metric measure spaces By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Anton Thalmaier, James Thompson. Source: Bernoulli, Volume 26, Number 3, 2202--2225.Abstract: In this article, we derive moment estimates, exponential integrability, concentration inequalities and exit times estimates for canonical diffusions firstly on sub-Riemannian limits of Riemannian foliations and secondly in the nonsmooth setting of $operatorname{RCD}^{*}(K,N)$ spaces. In each case, the necessary ingredients are Itô’s formula and a comparison theorem for the Laplacian, for which we refer to the recent literature. As an application, we derive pointwise Carmona-type estimates on eigenfunctions of Schrödinger operators. Full Article
ces Perfect sampling for Gibbs point processes using partial rejection sampling By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Sarat B. Moka, Dirk P. Kroese. Source: Bernoulli, Volume 26, Number 3, 2082--2104.Abstract: We present a perfect sampling algorithm for Gibbs point processes, based on the partial rejection sampling of Guo, Jerrum and Liu (In STOC’17 – Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (2017) 342–355 ACM). Our particular focus is on pairwise interaction processes, penetrable spheres mixture models and area-interaction processes, with a finite interaction range. For an interaction range $2r$ of the target process, the proposed algorithm can generate a perfect sample with $O(log(1/r))$ expected running time complexity, provided that the intensity of the points is not too high and $Theta(1/r^{d})$ parallel processor units are available. Full Article
ces Matching strings in encoded sequences By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Adriana Coutinho, Rodrigo Lambert, Jérôme Rousseau. Source: Bernoulli, Volume 26, Number 3, 2021--2050.Abstract: We investigate the length of the longest common substring for encoded sequences and its asymptotic behaviour. The main result is a strong law of large numbers for a re-scaled version of this quantity, which presents an explicit relation with the Rényi entropy of the source. We apply this result to the zero-inflated contamination model and the stochastic scrabble. In the case of dynamical systems, this problem is equivalent to the shortest distance between two observed orbits and its limiting relationship with the correlation dimension of the pushforward measure. An extension to the shortest distance between orbits for random dynamical systems is also provided. Full Article
ces Functional weak limit theorem for a local empirical process of non-stationary time series and its application By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Ulrike Mayer, Henryk Zähle, Zhou Zhou. Source: Bernoulli, Volume 26, Number 3, 1891--1911.Abstract: We derive a functional weak limit theorem for a local empirical process of a wide class of piece-wise locally stationary (PLS) time series. The latter result is applied to derive the asymptotics of weighted empirical quantiles and weighted V-statistics of non-stationary time series. The class of admissible underlying time series is illustrated by means of PLS linear processes and PLS ARCH processes. Full Article
ces Kernel and wavelet density estimators on manifolds and more general metric spaces By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Galatia Cleanthous, Athanasios G. Georgiadis, Gerard Kerkyacharian, Pencho Petrushev, Dominique Picard. Source: Bernoulli, Volume 26, Number 3, 1832--1862.Abstract: We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established and discussed. Full Article
ces Random orthogonal matrices and the Cayley transform By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Michael Jauch, Peter D. Hoff, David B. Dunson. Source: Bernoulli, Volume 26, Number 2, 1560--1586.Abstract: Random orthogonal matrices play an important role in probability and statistics, arising in multivariate analysis, directional statistics, and models of physical systems, among other areas. Calculations involving random orthogonal matrices are complicated by their constrained support. Accordingly, we parametrize the Stiefel and Grassmann manifolds, represented as subsets of orthogonal matrices, in terms of Euclidean parameters using the Cayley transform. We derive the necessary Jacobian terms for change of variables formulas. Given a density defined on the Stiefel or Grassmann manifold, these allow us to specify the corresponding density for the Euclidean parameters, and vice versa. As an application, we present a Markov chain Monte Carlo approach to simulating from distributions on the Stiefel and Grassmann manifolds. Finally, we establish that the Euclidean parameters corresponding to a uniform orthogonal matrix can be approximated asymptotically by independent normals. This result contributes to the growing literature on normal approximations to the entries of random orthogonal matrices or transformations thereof. Full Article
ces A characterization of the finiteness of perpetual integrals of Lévy processes By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Martin Kolb, Mladen Savov. Source: Bernoulli, Volume 26, Number 2, 1453--1472.Abstract: We derive a criterium for the almost sure finiteness of perpetual integrals of Lévy processes for a class of real functions including all continuous functions and for general one-dimensional Lévy processes that drifts to plus infinity. This generalizes previous work of Döring and Kyprianou, who considered Lévy processes having a local time, leaving the general case as an open problem. It turns out, that the criterium in the general situation simplifies significantly in the situation, where the process has a local time, but we also demonstrate that in general our criterium can not be reduced. This answers an open problem posed in ( J. Theoret. Probab. 29 (2016) 1192–1198). Full Article
ces On stability of traveling wave solutions for integro-differential equations related to branching Markov processes By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Pasha Tkachov. Source: Bernoulli, Volume 26, Number 2, 1354--1380.Abstract: The aim of this paper is to prove stability of traveling waves for integro-differential equations connected with branching Markov processes. In other words, the limiting law of the left-most particle of a (time-continuous) branching Markov process with a Lévy non-branching part is demonstrated. The key idea is to approximate the branching Markov process by a branching random walk and apply the result of Aïdékon [ Ann. Probab. 41 (2013) 1362–1426] on the limiting law of the latter one. Full Article
ces Interacting reinforced stochastic processes: Statistical inference based on the weighted empirical means By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Giacomo Aletti, Irene Crimaldi, Andrea Ghiglietti. Source: Bernoulli, Volume 26, Number 2, 1098--1138.Abstract: This work deals with a system of interacting reinforced stochastic processes , where each process $X^{j}=(X_{n,j})_{n}$ is located at a vertex $j$ of a finite weighted directed graph, and it can be interpreted as the sequence of “actions” adopted by an agent $j$ of the network. The interaction among the dynamics of these processes depends on the weighted adjacency matrix $W$ associated to the underlying graph: indeed, the probability that an agent $j$ chooses a certain action depends on its personal “inclination” $Z_{n,j}$ and on the inclinations $Z_{n,h}$, with $h eq j$, of the other agents according to the entries of $W$. The best known example of reinforced stochastic process is the Pólya urn. The present paper focuses on the weighted empirical means $N_{n,j}=sum_{k=1}^{n}q_{n,k}X_{k,j}$, since, for example, the current experience is more important than the past one in reinforced learning. Their almost sure synchronization and some central limit theorems in the sense of stable convergence are proven. The new approach with weighted means highlights the key points in proving some recent results for the personal inclinations $Z^{j}=(Z_{n,j})_{n}$ and for the empirical means $overline{X}^{j}=(sum_{k=1}^{n}X_{k,j}/n)_{n}$ given in recent papers (e.g. Aletti, Crimaldi and Ghiglietti (2019), Ann. Appl. Probab. 27 (2017) 3787–3844, Crimaldi et al. Stochastic Process. Appl. 129 (2019) 70–101). In fact, with a more sophisticated decomposition of the considered processes, we can understand how the different convergence rates of the involved stochastic processes combine. From an application point of view, we provide confidence intervals for the common limit inclination of the agents and a test statistics to make inference on the matrix $W$, based on the weighted empirical means. In particular, we answer a research question posed in Aletti, Crimaldi and Ghiglietti (2019). Full Article
ces Stable processes conditioned to hit an interval continuously from the outside By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Leif Döring, Philip Weissmann. Source: Bernoulli, Volume 26, Number 2, 980--1015.Abstract: Conditioning stable Lévy processes on zero probability events recently became a tractable subject since several explicit formulas emerged from a deep analysis using the Lamperti transformations for self-similar Markov processes. In this article, we derive new harmonic functions and use them to explain how to condition stable processes to hit continuously a compact interval from the outside. Full Article
ces Distances and large deviations in the spatial preferential attachment model By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Christian Hirsch, Christian Mönch. Source: Bernoulli, Volume 26, Number 2, 927--947.Abstract: This paper considers two asymptotic properties of a spatial preferential-attachment model introduced by E. Jacob and P. Mörters (In Algorithms and Models for the Web Graph (2013) 14–25 Springer). First, in a regime of strong linear reinforcement, we show that typical distances are at most of doubly-logarithmic order. Second, we derive a large deviation principle for the empirical neighbourhood structure and express the rate function as solution to an entropy minimisation problem in the space of stationary marked point processes. Full Article
ces Convergence of the age structure of general schemes of population processes By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Jie Yen Fan, Kais Hamza, Peter Jagers, Fima Klebaner. Source: Bernoulli, Volume 26, Number 2, 893--926.Abstract: We consider a family of general branching processes with reproduction parameters depending on the age of the individual as well as the population age structure and a parameter $K$, which may represent the carrying capacity. These processes are Markovian in the age structure. In a previous paper ( Proc. Steklov Inst. Math. 282 (2013) 90–105), the Law of Large Numbers as $K o infty $ was derived. Here we prove the central limit theorem, namely the weak convergence of the fluctuation processes in an appropriate Skorokhod space. We also show that the limit is driven by a stochastic partial differential equation. Full Article
ces Stochastic differential equations with a fractionally filtered delay: A semimartingale model for long-range dependent processes By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Richard A. Davis, Mikkel Slot Nielsen, Victor Rohde. Source: Bernoulli, Volume 26, Number 2, 799--827.Abstract: In this paper, we introduce a model, the stochastic fractional delay differential equation (SFDDE), which is based on the linear stochastic delay differential equation and produces stationary processes with hyperbolically decaying autocovariance functions. The model departs from the usual way of incorporating this type of long-range dependence into a short-memory model as it is obtained by applying a fractional filter to the drift term rather than to the noise term. The advantages of this approach are that the corresponding long-range dependent solutions are semimartingales and the local behavior of the sample paths is unaffected by the degree of long memory. We prove existence and uniqueness of solutions to the SFDDEs and study their spectral densities and autocovariance functions. Moreover, we define a subclass of SFDDEs which we study in detail and relate to the well-known fractionally integrated CARMA processes. Finally, we consider the task of simulating from the defining SFDDEs. Full Article
ces Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Jing Lei. Source: Bernoulli, Volume 26, Number 1, 767--798.Abstract: We provide upper bounds of the expected Wasserstein distance between a probability measure and its empirical version, generalizing recent results for finite dimensional Euclidean spaces and bounded functional spaces. Such a generalization can cover Euclidean spaces with large dimensionality, with the optimal dependence on the dimensionality. Our method also covers the important case of Gaussian processes in separable Hilbert spaces, with rate-optimal upper bounds for functional data distributions whose coordinates decay geometrically or polynomially. Moreover, our bounds of the expected value can be combined with mean-concentration results to yield improved exponential tail probability bounds for the Wasserstein error of empirical measures under Bernstein-type or log Sobolev-type conditions. Full Article
ces Tail expectile process and risk assessment By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Abdelaati Daouia, Stéphane Girard, Gilles Stupfler. Source: Bernoulli, Volume 26, Number 1, 531--556.Abstract: Expectiles define a least squares analogue of quantiles. They are determined by tail expectations rather than tail probabilities. For this reason and many other theoretical and practical merits, expectiles have recently received a lot of attention, especially in actuarial and financial risk management. Their estimation, however, typically requires to consider non-explicit asymmetric least squares estimates rather than the traditional order statistics used for quantile estimation. This makes the study of the tail expectile process a lot harder than that of the standard tail quantile process. Under the challenging model of heavy-tailed distributions, we derive joint weighted Gaussian approximations of the tail empirical expectile and quantile processes. We then use this powerful result to introduce and study new estimators of extreme expectiles and the standard quantile-based expected shortfall, as well as a novel expectile-based form of expected shortfall. Our estimators are built on general weighted combinations of both top order statistics and asymmetric least squares estimates. Some numerical simulations and applications to actuarial and financial data are provided. Full Article
ces High dimensional deformed rectangular matrices with applications in matrix denoising By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Xiucai Ding. Source: Bernoulli, Volume 26, Number 1, 387--417.Abstract: We consider the recovery of a low rank $M imes N$ matrix $S$ from its noisy observation $ ilde{S}$ in the high dimensional framework when $M$ is comparable to $N$. We propose two efficient estimators for $S$ under two different regimes. Our analysis relies on the local asymptotics of the eigenstructure of large dimensional rectangular matrices with finite rank perturbation. We derive the convergent limits and rates for the singular values and vectors for such matrices. Full Article
ces Weak convergence of quantile and expectile processes under general assumptions By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Tobias Zwingmann, Hajo Holzmann. Source: Bernoulli, Volume 26, Number 1, 323--351.Abstract: We show weak convergence of quantile and expectile processes to Gaussian limit processes in the space of bounded functions endowed with an appropriate semimetric which is based on the concepts of epi- and hypo- convergence as introduced in A. Bücher, J. Segers and S. Volgushev (2014), ‘ When Uniform Weak Convergence Fails: Empirical Processes for Dependence Functions and Residuals via Epi- and Hypographs ’, Annals of Statistics 42 . We impose assumptions for which it is known that weak convergence with respect to the supremum norm generally fails to hold. For quantiles, we consider stationary observations, where the marginal distribution function is assumed to be strictly increasing and continuous except for finitely many points and to admit strictly positive – possibly infinite – left- and right-sided derivatives. For expectiles, we focus on independent and identically distributed (i.i.d.) observations. Only a finite second moment and continuity at the boundary points but no further smoothness properties of the distribution function are required. We also show consistency of the bootstrap for this mode of convergence in the i.i.d. case for quantiles and expectiles. Full Article
ces Needles and straw in a haystack: Robust confidence for possibly sparse sequences By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Eduard Belitser, Nurzhan Nurushev. Source: Bernoulli, Volume 26, Number 1, 191--225.Abstract: In the general signal$+$noise (allowing non-normal, non-independent observations) model, we construct an empirical Bayes posterior which we then use for uncertainty quantification for the unknown, possibly sparse, signal. We introduce a novel excessive bias restriction (EBR) condition, which gives rise to a new slicing of the entire space that is suitable for uncertainty quantification. Under EBR and some mild exchangeable exponential moment condition on the noise, we establish the local (oracle) optimality of the proposed confidence ball. Without EBR, we propose another confidence ball of full coverage, but its radius contains an additional $sigma n^{1/4}$-term. In passing, we also get the local optimal results for estimation , posterior contraction problems, and the problem of weak recovery of sparsity structure . Adaptive minimax results (also for the estimation and posterior contraction problems) over various sparsity classes follow from our local results. Full Article
ces Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm. By www.catalog.slsa.sa.gov.au Published On :: Fuhlbohm (Family) Full Article
ces No turning back : stories of our ancestors / by David Gambling. By www.catalog.slsa.sa.gov.au Published On :: Gambling (Family) Full Article
ces Daws : the ancestors of Revell Daws. By www.catalog.slsa.sa.gov.au Published On :: Daws, Revell. Full Article
ces South Australian history sources / by Andrew Guy Peake. By www.catalog.slsa.sa.gov.au Published On :: South Australia -- History -- Sources. Full Article
ces Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm. By www.catalog.slsa.sa.gov.au Published On :: Fuhlbohm (Family) Full Article
ces From alms house to first nation : a story of my ancestors in South Australia : a Sherwell family story / by Pamela Coad (nee Sherwell). By www.catalog.slsa.sa.gov.au Published On :: Sherwell (Family) Full Article
ces ACT and Teachers’ Union Partner to Provide Remote Learning Resources Amid Pandemic By marketbrief.edweek.org Published On :: Wed, 06 May 2020 20:18:13 +0000 ACT and the American Federation of Teachers are partnering to provide free resources as educators increasingly switch to distance learning amid the COVID-19 pandemic. The post ACT and Teachers’ Union Partner to Provide Remote Learning Resources Amid Pandemic appeared first on Market Brief. Full Article Marketplace K-12 Assessment / Testing Business Strategy Career / College Readiness Coronavirus COVID-19 Curriculum / Digital Curriculum Online / Virtual Learning
ces Calif. Ed-Tech Consortium Seeks Media Repository Solutions; Saint Paul District Needs Background Check Services By marketbrief.edweek.org Published On :: Fri, 08 May 2020 13:52:21 +0000 Saint Paul schools are in the market for a vendor to provide background checks, while the Education Technology Joint Powers Authority is seeking media repositories. A Texas district wants quotes on technology for new campuses. The post Calif. Ed-Tech Consortium Seeks Media Repository Solutions; Saint Paul District Needs Background Check Services appeared first on Market Brief. Full Article Purchasing Alert Background Checks Media Repository Procurement / Purchasing / RFPs Software / Hardware
ces Smart research for HSC students: Better searching with online resources By feedproxy.google.com Published On :: Mon, 04 May 2020 01:20:48 +0000 In this online session, we simplify searching for you so that the skills you need in one resource will work wherever you are. Full Article
ces Smart research for HSC students: Essential Library resources for your research and study By feedproxy.google.com Published On :: Mon, 04 May 2020 01:47:45 +0000 This session brings together the key resources for HSC subjects, including those that are useful for studying Advanced and Extension courses. Full Article
ces New Zealand says it backs Taiwan's role in WHO due to success with coronavirus By news.yahoo.com Published On :: Thu, 07 May 2020 23:20:43 -0400 Full Article
ces The accusation against Joe Biden has Democrats rediscovering the value of due process By news.yahoo.com Published On :: Sat, 09 May 2020 08:37:00 -0400 Some Democrats took "Believe Women" literally until Joe Biden was accused. Now they're relearning that guilt-by-accusation doesn't serve justice. Full Article
ces Additive Multivariate Gaussian Processes for Joint Species Distribution Modeling with Heterogeneous Data By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Jarno Vanhatalo, Marcelo Hartmann, Lari Veneranta. Source: Bayesian Analysis, Volume 15, Number 2, 415--447.Abstract: Species distribution models (SDM) are a key tool in ecology, conservation and management of natural resources. Two key components of the state-of-the-art SDMs are the description for species distribution response along environmental covariates and the spatial random effect that captures deviations from the distribution patterns explained by environmental covariates. Joint species distribution models (JSDMs) additionally include interspecific correlations which have been shown to improve their descriptive and predictive performance compared to single species models. However, current JSDMs are restricted to hierarchical generalized linear modeling framework. Their limitation is that parametric models have trouble in explaining changes in abundance due, for example, highly non-linear physical tolerance limits which is particularly important when predicting species distribution in new areas or under scenarios of environmental change. On the other hand, semi-parametric response functions have been shown to improve the predictive performance of SDMs in these tasks in single species models. Here, we propose JSDMs where the responses to environmental covariates are modeled with additive multivariate Gaussian processes coded as linear models of coregionalization. These allow inference for wide range of functional forms and interspecific correlations between the responses. We propose also an efficient approach for inference with Laplace approximation and parameterization of the interspecific covariance matrices on the Euclidean space. We demonstrate the benefits of our model with two small scale examples and one real world case study. We use cross-validation to compare the proposed model to analogous semi-parametric single species models and parametric single and joint species models in interpolation and extrapolation tasks. The proposed model outperforms the alternative models in all cases. We also show that the proposed model can be seen as an extension of the current state-of-the-art JSDMs to semi-parametric models. Full Article
ces Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Abhishek Bishoyi, Xiaojing Wang, Dipak K. Dey. Source: Bayesian Analysis, Volume 15, Number 1, 215--239.Abstract: Missing data often appear as a practical problem while applying classical models in the statistical analysis. In this paper, we consider a semiparametric regression model in the presence of missing covariates for nonparametric components under a Bayesian framework. As it is known that Gaussian processes are a popular tool in nonparametric regression because of their flexibility and the fact that much of the ensuing computation is parametric Gaussian computation. However, in the absence of covariates, the most frequently used covariance functions of a Gaussian process will not be well defined. We propose an imputation method to solve this issue and perform our analysis using Bayesian inference, where we specify the objective priors on the parameters of Gaussian process models. Several simulations are conducted to illustrate effectiveness of our proposed method and further, our method is exemplified via two real datasets, one through Langmuir equation, commonly used in pharmacokinetic models, and another through Auto-mpg data taken from the StatLib library. Full Article
ces Determinantal Point Process Mixtures Via Spectral Density Approach By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Ilaria Bianchini, Alessandra Guglielmi, Fernando A. Quintana. Source: Bayesian Analysis, Volume 15, Number 1, 187--214.Abstract: We consider mixture models where location parameters are a priori encouraged to be well separated. We explore a class of determinantal point process (DPP) mixture models, which provide the desired notion of separation or repulsion. Instead of using the rather restrictive case where analytical results are partially available, we adopt a spectral representation from which approximations to the DPP density functions can be readily computed. For the sake of concreteness the presentation focuses on a power exponential spectral density, but the proposed approach is in fact quite general. We later extend our model to incorporate covariate information in the likelihood and also in the assignment to mixture components, yielding a trade-off between repulsiveness of locations in the mixtures and attraction among subjects with similar covariates. We develop full Bayesian inference, and explore model properties and posterior behavior using several simulation scenarios and data illustrations. Supplementary materials for this article are available online (Bianchini et al., 2019). Full Article
ces Bayesian Functional Forecasting with Locally-Autoregressive Dependent Processes By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Guillaume Kon Kam King, Antonio Canale, Matteo Ruggiero. Source: Bayesian Analysis, Volume 14, Number 4, 1121--1141.Abstract: Motivated by the problem of forecasting demand and offer curves, we introduce a class of nonparametric dynamic models with locally-autoregressive behaviour, and provide a full inferential strategy for forecasting time series of piecewise-constant non-decreasing functions over arbitrary time horizons. The model is induced by a non Markovian system of interacting particles whose evolution is governed by a resampling step and a drift mechanism. The former is based on a global interaction and accounts for the volatility of the functional time series, while the latter is determined by a neighbourhood-based interaction with the past curves and accounts for local trend behaviours, separating these from pure noise. We discuss the implementation of the model for functional forecasting by combining a population Monte Carlo and a semi-automatic learning approach to approximate Bayesian computation which require limited tuning. We validate the inference method with a simulation study, and carry out predictive inference on a real dataset on the Italian natural gas market. Full Article
ces Post-Processing Posteriors Over Precision Matrices to Produce Sparse Graph Estimates By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Amir Bashir, Carlos M. Carvalho, P. Richard Hahn, M. Beatrix Jones. Source: Bayesian Analysis, Volume 14, Number 4, 1075--1090.Abstract: A variety of computationally efficient Bayesian models for the covariance matrix of a multivariate Gaussian distribution are available. However, all produce a relatively dense estimate of the precision matrix, and are therefore unsatisfactory when one wishes to use the precision matrix to consider the conditional independence structure of the data. This paper considers the posterior predictive distribution of model fit for these covariance models. We then undertake post-processing of the Bayes point estimate for the precision matrix to produce a sparse model whose expected fit lies within the upper 95% of the posterior predictive distribution of fit. The impact of the method for selecting the zero elements of the precision matrix is evaluated. Good results were obtained using models that encouraged a sparse posterior (G-Wishart, Bayesian adaptive graphical lasso) and selection using credible intervals. We also find that this approach is easily extended to the problem of finding a sparse set of elements that differ across a set of precision matrices, a natural summary when a common set of variables is observed under multiple conditions. We illustrate our findings with moderate dimensional data examples from finance and metabolomics. Full Article
ces Extrinsic Gaussian Processes for Regression and Classification on Manifolds By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Lizhen Lin, Niu Mu, Pokman Cheung, David Dunson. Source: Bayesian Analysis, Volume 14, Number 3, 907--926.Abstract: Gaussian processes (GPs) are very widely used for modeling of unknown functions or surfaces in applications ranging from regression to classification to spatial processes. Although there is an increasingly vast literature on applications, methods, theory and algorithms related to GPs, the overwhelming majority of this literature focuses on the case in which the input domain corresponds to a Euclidean space. However, particularly in recent years with the increasing collection of complex data, it is commonly the case that the input domain does not have such a simple form. For example, it is common for the inputs to be restricted to a non-Euclidean manifold, a case which forms the motivation for this article. In particular, we propose a general extrinsic framework for GP modeling on manifolds, which relies on embedding of the manifold into a Euclidean space and then constructing extrinsic kernels for GPs on their images. These extrinsic Gaussian processes (eGPs) are used as prior distributions for unknown functions in Bayesian inferences. Our approach is simple and general, and we show that the eGPs inherit fine theoretical properties from GP models in Euclidean spaces. We consider applications of our models to regression and classification problems with predictors lying in a large class of manifolds, including spheres, planar shape spaces, a space of positive definite matrices, and Grassmannians. Our models can be readily used by practitioners in biological sciences for various regression and classification problems, such as disease diagnosis or detection. Our work is also likely to have impact in spatial statistics when spatial locations are on the sphere or other geometric spaces. Full Article
ces Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable Selection By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Mengyang Gu. Source: Bayesian Analysis, Volume 14, Number 3, 877--905.Abstract: Gaussian stochastic process (GaSP) has been widely used in two fundamental problems in uncertainty quantification, namely the emulation and calibration of mathematical models. Some objective priors, such as the reference prior, are studied in the context of emulating (approximating) computationally expensive mathematical models. In this work, we introduce a new class of priors, called the jointly robust prior, for both the emulation and calibration. This prior is designed to maintain various advantages from the reference prior. In emulation, the jointly robust prior has an appropriate tail decay rate as the reference prior, and is computationally simpler than the reference prior in parameter estimation. Moreover, the marginal posterior mode estimation with the jointly robust prior can separate the influential and inert inputs in mathematical models, while the reference prior does not have this property. We establish the posterior propriety for a large class of priors in calibration, including the reference prior and jointly robust prior in general scenarios, but the jointly robust prior is preferred because the calibrated mathematical model typically predicts the reality well. The jointly robust prior is used as the default prior in two new R packages, called “RobustGaSP” and “RobustCalibration”, available on CRAN for emulation and calibration, respectively. Full Article
ces Stochastic Approximations to the Pitman–Yor Process By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Julyan Arbel, Pierpaolo De Blasi, Igor Prünster. Source: Bayesian Analysis, Volume 14, Number 3, 753--771.Abstract: In this paper we consider approximations to the popular Pitman–Yor process obtained by truncating the stick-breaking representation. The truncation is determined by a random stopping rule that achieves an almost sure control on the approximation error in total variation distance. We derive the asymptotic distribution of the random truncation point as the approximation error $epsilon$ goes to zero in terms of a polynomially tilted positive stable random variable. The practical usefulness and effectiveness of this theoretical result is demonstrated by devising a sampling algorithm to approximate functionals of the $epsilon$ -version of the Pitman–Yor process. Full Article
ces Low Information Omnibus (LIO) Priors for Dirichlet Process Mixture Models By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Yushu Shi, Michael Martens, Anjishnu Banerjee, Purushottam Laud. Source: Bayesian Analysis, Volume 14, Number 3, 677--702.Abstract: Dirichlet process mixture (DPM) models provide flexible modeling for distributions of data as an infinite mixture of distributions from a chosen collection. Specifying priors for these models in individual data contexts can be challenging. In this paper, we introduce a scheme which requires the investigator to specify only simple scaling information. This is used to transform the data to a fixed scale on which a low information prior is constructed. Samples from the posterior with the rescaled data are transformed back for inference on the original scale. The low information prior is selected to provide a wide variety of components for the DPM to generate flexible distributions for the data on the fixed scale. The method can be applied to all DPM models with kernel functions closed under a suitable scaling transformation. Construction of the low information prior, however, is kernel dependent. Using DPM-of-Gaussians and DPM-of-Weibulls models as examples, we show that the method provides accurate estimates of a diverse collection of distributions that includes skewed, multimodal, and highly dispersed members. With the recommended priors, repeated data simulations show performance comparable to that of standard empirical estimates. Finally, we show weak convergence of posteriors with the proposed priors for both kernels considered. Full Article
ces A Bayesian Nonparametric Spiked Process Prior for Dynamic Model Selection By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Alberto Cassese, Weixuan Zhu, Michele Guindani, Marina Vannucci. Source: Bayesian Analysis, Volume 14, Number 2, 553--572.Abstract: In many applications, investigators monitor processes that vary in space and time, with the goal of identifying temporally persistent and spatially localized departures from a baseline or “normal” behavior. In this manuscript, we consider the monitoring of pneumonia and influenza (P&I) mortality, to detect influenza outbreaks in the continental United States, and propose a Bayesian nonparametric model selection approach to take into account the spatio-temporal dependence of outbreaks. More specifically, we introduce a zero-inflated conditionally identically distributed species sampling prior which allows borrowing information across time and to assign data to clusters associated to either a null or an alternate process. Spatial dependences are accounted for by means of a Markov random field prior, which allows to inform the selection based on inferences conducted at nearby locations. We show how the proposed modeling framework performs in an application to the P&I mortality data and in a simulation study, and compare with common threshold methods for detecting outbreaks over time, with more recent Markov switching based models, and with spike-and-slab Bayesian nonparametric priors that do not take into account spatio-temporal dependence. Full Article
ces Analysis of the Maximal a Posteriori Partition in the Gaussian Dirichlet Process Mixture Model By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Łukasz Rajkowski. Source: Bayesian Analysis, Volume 14, Number 2, 477--494.Abstract: Mixture models are a natural choice in many applications, but it can be difficult to place an a priori upper bound on the number of components. To circumvent this, investigators are turning increasingly to Dirichlet process mixture models (DPMMs). It is therefore important to develop an understanding of the strengths and weaknesses of this approach. This work considers the MAP (maximum a posteriori) clustering for the Gaussian DPMM (where the cluster means have Gaussian distribution and, for each cluster, the observations within the cluster have Gaussian distribution). Some desirable properties of the MAP partition are proved: ‘almost disjointness’ of the convex hulls of clusters (they may have at most one point in common) and (with natural assumptions) the comparability of sizes of those clusters that intersect any fixed ball with the number of observations (as the latter goes to infinity). Consequently, the number of such clusters remains bounded. Furthermore, if the data arises from independent identically distributed sampling from a given distribution with bounded support then the asymptotic MAP partition of the observation space maximises a function which has a straightforward expression, which depends only on the within-group covariance parameter. As the operator norm of this covariance parameter decreases, the number of clusters in the MAP partition becomes arbitrarily large, which may lead to the overestimation of the number of mixture components. Full Article
ces Modeling Population Structure Under Hierarchical Dirichlet Processes By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Lloyd T. Elliott, Maria De Iorio, Stefano Favaro, Kaustubh Adhikari, Yee Whye Teh. Source: Bayesian Analysis, Volume 14, Number 2, 313--339.Abstract: We propose a Bayesian nonparametric model to infer population admixture, extending the hierarchical Dirichlet process to allow for correlation between loci due to linkage disequilibrium. Given multilocus genotype data from a sample of individuals, the proposed model allows inferring and classifying individuals as unadmixed or admixed, inferring the number of subpopulations ancestral to an admixed population and the population of origin of chromosomal regions. Our model does not assume any specific mutation process, and can be applied to most of the commonly used genetic markers. We present a Markov chain Monte Carlo (MCMC) algorithm to perform posterior inference from the model and we discuss some methods to summarize the MCMC output for the analysis of population admixture. Finally, we demonstrate the performance of the proposed model in a real application, using genetic data from the ectodysplasin-A receptor (EDAR) gene, which is considered to be ancestry-informative due to well-known variations in allele frequency as well as phenotypic effects across ancestry. The structure analysis of this dataset leads to the identification of a rare haplotype in Europeans. We also conduct a simulated experiment and show that our algorithm outperforms parametric methods. Full Article
ces Model-Based Approach to the Joint Analysis of Single-Cell Data on Chromatin Accessibility and Gene Expression By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Zhixiang Lin, Mahdi Zamanighomi, Timothy Daley, Shining Ma, Wing Hung Wong. Source: Statistical Science, Volume 35, Number 1, 2--13.Abstract: Unsupervised methods, including clustering methods, are essential to the analysis of single-cell genomic data. Model-based clustering methods are under-explored in the area of single-cell genomics, and have the advantage of quantifying the uncertainty of the clustering result. Here we develop a model-based approach for the integrative analysis of single-cell chromatin accessibility and gene expression data. We show that combining these two types of data, we can achieve a better separation of the underlying cell types. An efficient Markov chain Monte Carlo algorithm is also developed. Full Article
ces Comment: “Models as Approximations I: Consequences Illustrated with Linear Regression” by A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, L. Zhan and K. Zhang By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Roderick J. Little. Source: Statistical Science, Volume 34, Number 4, 580--583. Full Article
ces Models as Approximations I: Consequences Illustrated with Linear Regression By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Andreas Buja, Lawrence Brown, Richard Berk, Edward George, Emil Pitkin, Mikhail Traskin, Kai Zhang, Linda Zhao. Source: Statistical Science, Volume 34, Number 4, 523--544.Abstract: In the early 1980s, Halbert White inaugurated a “model-robust” form of statistical inference based on the “sandwich estimator” of standard error. This estimator is known to be “heteroskedasticity-consistent,” but it is less well known to be “nonlinearity-consistent” as well. Nonlinearity, however, raises fundamental issues because in its presence regressors are not ancillary, hence cannot be treated as fixed. The consequences are deep: (1) population slopes need to be reinterpreted as statistical functionals obtained from OLS fits to largely arbitrary joint ${x extrm{-}y}$ distributions; (2) the meaning of slope parameters needs to be rethought; (3) the regressor distribution affects the slope parameters; (4) randomness of the regressors becomes a source of sampling variability in slope estimates of order $1/sqrt{N}$; (5) inference needs to be based on model-robust standard errors, including sandwich estimators or the ${x extrm{-}y}$ bootstrap. In theory, model-robust and model-trusting standard errors can deviate by arbitrary magnitudes either way. In practice, significant deviations between them can be detected with a diagnostic test. Full Article
ces Gaussian Integrals and Rice Series in Crossing Distributions—to Compute the Distribution of Maxima and Other Features of Gaussian Processes By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Georg Lindgren. Source: Statistical Science, Volume 34, Number 1, 100--128.Abstract: We describe and compare how methods based on the classical Rice’s formula for the expected number, and higher moments, of level crossings by a Gaussian process stand up to contemporary numerical methods to accurately deal with crossing related characteristics of the sample paths. We illustrate the relative merits in accuracy and computing time of the Rice moment methods and the exact numerical method, developed since the late 1990s, on three groups of distribution problems, the maximum over a finite interval and the waiting time to first crossing, the length of excursions over a level, and the joint period/amplitude of oscillations. We also treat the notoriously difficult problem of dependence between successive zero crossing distances. The exact solution has been known since at least 2000, but it has remained largely unnoticed outside the ocean science community. Extensive simulation studies illustrate the accuracy of the numerical methods. As a historical introduction an attempt is made to illustrate the relation between Rice’s original formulation and arguments and the exact numerical methods. Full Article