ces

States Dependent on Natural Resources Face Tricky Path on K-12 Revenue

Governors in several natural resource-dependent states said recently they will have to continue to cut public education funding because prices for oil and coal have not rebounded.




ces

West Virginia Teacher Strike Ends After Four Days, Governor Announces Pay Raise

Teachers will receive a 5 percent raise, pending a vote by the state legislature. School will resume Thursday.




ces

Supreme Court to Weigh 'Incorrigible' Bar for Juvenile Life Without Parole Sentences

The justices agreed to decide whether the Eighth Amendment requires a trial court to find that a juvenile is permanently incorrigible before imposing a sentence of life without parole.




ces

Teacher Activism Played Prominent Role in Southern Governors' Races

Governors' races in Kentucky and Mississippi took center stage, testing the political muscle of teacher activists and yielding possible policy implications for everything from public employee pensions to teacher pay.




ces

Education Is on the Ballot in These Governors' Races

Voters in three southern states will head to the polls for governors races that have shined a spotlight on educator activism, school funding, and teacher pay.




ces

Education Issues Resonate in Governors' Races

This year's November elections—a preview to next year's nationwide showdowns—cast their own spotlight on education, a dynamic that played out most prominently in the Kentucky governor's race, where teachers organized to unseat a combative incumbent who'd sparred with them.




ces

On the Snowy Tundra, Alaska Students Bridge Differences and Eat Moose Snout

An Alaskan high school exchange program works to promote understanding between the state's urban centers and its remote Native Villages and communities.




ces

Endell Street Hospital 1915-1920: commemorative calendar. Process print, 1920.

[London?] : [Endell Street Military Hospital?], [1920] (Harlesden, London N.W. 10 : Leveridge & Co.)




ces

Weaving, ceramic manufactures, clothing and coiffure displayed through personifications as industrial arts applied to peace. Process print after C. Brown after F. Leighton.




ces

Oedipus at Colonus: the blind Oedipus, attended by Antigone, is visited by Ismene and by Polynices. Engraving by A.A. Morel after A. Giroust.




ces

The three Graces, seen from behind and from the side. Engraving by D. Marchetti after G. Tognoli after A. Canova.

[Rome?]




ces

The head of a Turk, surmounted by an eagle holding thunderbolts, and surmounting a strapwork panel announcing the manners and fashions of the Turks. Process print, 1873, after a woodcut, 1553.




ces

The device of the Emperor Charles V surrounding initials of the artist Pieter Coecke van Aelst. Process print, 1873.




ces

A woman holding a baby; possibly Victoria Duchess of Kent and Strathearn at the christening of Princess Alexandrina Victoria (subsequently Queen Victoria). Wood engraving by P. Naumann, 18--.




ces

The flight of Francesco Novello di Carrara, Lord of Padua, with his wife Taddea D'Este, from Padua under attack by Milan. Engraving by F. Bacon, 1839, after C.L. Eastlake.

London (No. 18 & 19 Southampton Place, Euston Square, New Road) : Published ... by the proprietors [E. & W. Finden], May 1, 1839.




ces

The flight of Francesco Novello di Carrara, Lord of Padua, with his wife Taddea D'Este, from Padua under attack by Milan. Engraving by F. Bacon after C.L. Eastlake.

[London?] : Cassell & Company Limited, [between 1800 and 1899]




ces

A Burmese family seated in front of a palace, with women and children. Colour process print after Sayo Myo.

[1905?]




ces

Sinhalese devil-dancers. Colour process print after N.H. Hardy.




ces

Andaman and Nicobar Islands: worshippers at a Buddhist temple. Colour process print.




ces

Tashkent: two mendicant Dervish men in conversation. Process print after G.S. Sedoff after V.V. Vereshchagin.




ces

The marriage of King Charles I and Princess Henrietta Maria in Notre Dame cathedral, Paris, 1625. Engraving by N. Dupuis, 1728, after L. Chéron.

London : Printed & sold by Thos. & John Bowles, printsellers, [1728]




ces

Plaintiffs say education-funding lawsuit still necessary




ces

Missouri Tackles Challenge of Dyslexia Screening, Services

New state mandates start next school year aimed at identifying and supporting students with dyslexia. The 2016 law also led to development of training for teachers.




ces

10 Alternative mental health resources




ces

Cigarette smoking as a dependence process / editor: Norman A. Krasnegor.

Rockville, Maryland : National Institute on Drug Abuse, 1979.




ces

Treatment process in methadone, residential, and outpatient drug free programs / Margaret Allison, Robert L. Hubbard, J. Valley Rachal.

Rockville, Maryland : National Institute on Drug Abuse, 1985.




ces

The aging process and psychoactive drug use.

Rockville, Maryland : National Institute on Drug Abuse, 1979.




ces

Co-ordinating drugs services : the role of regional and district drug advisory committees : a preliminary study for the Department of Health / by Peter Baker and Dorothy Runnicles.

London : London Research Centre, 1991.




ces

Monitoring and evaluation : alcoholism and other drug dependence services.

Chicago, Ill. : Joint Commission on Accreditation of Healthcare Organizations, 1987.




ces

Policy and guidelines for the provision of needle and syringe exchange services to young people / Tom Aldridge and Andrew Preston.

[Dorchester] : Dorset Community NHS Trust, 1997.




ces

Methadone substitution therapy : policies and practices / edited by Hamid Ghodse, Carmel Clancy, Adenekan Oyefeso.

London : European Collaborating Centres in Addiction Studies, 1998.




ces

Recovery of simultaneous low rank and two-way sparse coefficient matrices, a nonconvex approach

Ming Yu, Varun Gupta, Mladen Kolar.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 413--457.

Abstract:
We study the problem of recovery of matrices that are simultaneously low rank and row and/or column sparse. Such matrices appear in recent applications in cognitive neuroscience, imaging, computer vision, macroeconomics, and genetics. We propose a GDT (Gradient Descent with hard Thresholding) algorithm to efficiently recover matrices with such structure, by minimizing a bi-convex function over a nonconvex set of constraints. We show linear convergence of the iterates obtained by GDT to a region within statistical error of an optimal solution. As an application of our method, we consider multi-task learning problems and show that the statistical error rate obtained by GDT is near optimal compared to minimax rate. Experiments demonstrate competitive performance and much faster running speed compared to existing methods, on both simulations and real data sets.




ces

Parseval inequalities and lower bounds for variance-based sensitivity indices

Olivier Roustant, Fabrice Gamboa, Bertrand Iooss.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 386--412.

Abstract:
The so-called polynomial chaos expansion is widely used in computer experiments. For example, it is a powerful tool to estimate Sobol’ sensitivity indices. In this paper, we consider generalized chaos expansions built on general tensor Hilbert basis. In this frame, we revisit the computation of the Sobol’ indices with Parseval equalities and give general lower bounds for these indices obtained by truncation. The case of the eigenfunctions system associated with a Poincaré differential operator leads to lower bounds involving the derivatives of the analyzed function and provides an efficient tool for variable screening. These lower bounds are put in action both on toy and real life models demonstrating their accuracy.




ces

Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes

François Bachoc, José Betancourt, Reinhard Furrer, Thierry Klein.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1962--2008.

Abstract:
The asymptotic analysis of covariance parameter estimation of Gaussian processes has been subject to intensive investigation. However, this asymptotic analysis is very scarce for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes obtained by regular non-linear transformations of Gaussian processes. We provide the increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross validation estimators of the covariance parameters of a non-Gaussian process of this class. We show that these estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. They do not need to model or estimate the non-linear transformation. Our results can thus be interpreted as a robustness of (Gaussian) maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on two technical results that are of independent interest for the increasing-domain asymptotic literature of spatial processes. First, we show that, under mild assumptions, coefficients of inverses of large covariance matrices decay at an inverse polynomial rate as a function of the corresponding observation location distances. Second, we provide a general central limit theorem for quadratic forms obtained from transformed Gaussian processes. Finally, our asymptotic results are illustrated by numerical simulations.




ces

Non-parametric adaptive estimation of order 1 Sobol indices in stochastic models, with an application to Epidemiology

Gwenaëlle Castellan, Anthony Cousien, Viet Chi Tran.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 50--81.

Abstract:
Global sensitivity analysis is a set of methods aiming at quantifying the contribution of an uncertain input parameter of the model (or combination of parameters) on the variability of the response. We consider here the estimation of the Sobol indices of order 1 which are commonly-used indicators based on a decomposition of the output’s variance. In a deterministic framework, when the same inputs always give the same outputs, these indices are usually estimated by replicated simulations of the model. In a stochastic framework, when the response given a set of input parameters is not unique due to randomness in the model, metamodels are often used to approximate the mean and dispersion of the response by deterministic functions. We propose a new non-parametric estimator without the need of defining a metamodel to estimate the Sobol indices of order 1. The estimator is based on warped wavelets and is adaptive in the regularity of the model. The convergence of the mean square error to zero, when the number of simulations of the model tend to infinity, is computed and an elbow effect is shown, depending on the regularity of the model. Applications in Epidemiology are carried to illustrate the use of non-parametric estimators.




ces

A fast MCMC algorithm for the uniform sampling of binary matrices with fixed margins

Guanyang Wang.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1690--1706.

Abstract:
Uniform sampling of binary matrix with fixed margins is an important and difficult problem in statistics, computer science, ecology and so on. The well-known swap algorithm would be inefficient when the size of the matrix becomes large or when the matrix is too sparse/dense. Here we propose the Rectangle Loop algorithm, a Markov chain Monte Carlo algorithm to sample binary matrices with fixed margins uniformly. Theoretically the Rectangle Loop algorithm is better than the swap algorithm in Peskun’s order. Empirically studies also demonstrates the Rectangle Loop algorithm is remarkablely more efficient than the swap algorithm.




ces

A Bayesian approach to disease clustering using restricted Chinese restaurant processes

Claudia Wehrhahn, Samuel Leonard, Abel Rodriguez, Tatiana Xifara.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1449--1478.

Abstract:
Identifying disease clusters (areas with an unusually high incidence of a particular disease) is a common problem in epidemiology and public health. We describe a Bayesian nonparametric mixture model for disease clustering that constrains clusters to be made of adjacent areal units. This is achieved by modifying the exchangeable partition probability function associated with the Ewen’s sampling distribution. We call the resulting prior the Restricted Chinese Restaurant Process, as the associated full conditional distributions resemble those associated with the standard Chinese Restaurant Process. The model is illustrated using synthetic data sets and in an application to oral cancer mortality in Germany.




ces

Testing goodness of fit for point processes via topological data analysis

Christophe A. N. Biscio, Nicolas Chenavier, Christian Hirsch, Anne Marie Svane.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1024--1074.

Abstract:
We introduce tests for the goodness of fit of point patterns via methods from topological data analysis. More precisely, the persistent Betti numbers give rise to a bivariate functional summary statistic for observed point patterns that is asymptotically Gaussian in large observation windows. We analyze the power of tests derived from this statistic on simulated point patterns and compare its performance with global envelope tests. Finally, we apply the tests to a point pattern from an application context in neuroscience. As the main methodological contribution, we derive sufficient conditions for a functional central limit theorem on bounded persistent Betti numbers of point processes with exponential decay of correlations.




ces

Generalized bounds for active subspaces

Mario Teixeira Parente, Jonas Wallin, Barbara Wohlmuth.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 917--943.

Abstract:
In this article, we consider scenarios in which traditional estimates for the active subspace method based on probabilistic Poincaré inequalities are not valid due to unbounded Poincaré constants. Consequently, we propose a framework that allows to derive generalized estimates in the sense that it enables to control the trade-off between the size of the Poincaré constant and a weaker order of the final error bound. In particular, we investigate independently exponentially distributed random variables in dimension two or larger and give explicit expressions for corresponding Poincaré constants showing their dependence on the dimension of the problem. Finally, we suggest possibilities for future work that aim for extending the class of distributions applicable to the active subspace method as we regard this as an opportunity to enlarge its usability.




ces

Convergences of Regularized Algorithms and Stochastic Gradient Methods with Random Projections

We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We first investigate regularized algorithms adapted to a projection operator on a closed subspace of the Hilbert space. We prove convergence results with respect to variants of norms, under a capacity assumption on the hypothesis space and a regularity condition on the target function. As a result, we obtain optimal rates for regularized algorithms with randomized sketches, provided that the sketch dimension is proportional to the effective dimension up to a logarithmic factor. As a byproduct, we obtain similar results for Nystr"{o}m regularized algorithms. Our results provide optimal, distribution-dependent rates that do not have any saturation effect for sketched/Nystr"{o}m regularized algorithms, considering both the attainable and non-attainable cases, in the well-conditioned regimes. We then study stochastic gradient methods with projection over the subspace, allowing multi-pass over the data and minibatches, and we derive similar optimal statistical convergence results.




ces

GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing

We present GluonCV and GluonNLP, the deep learning toolkits for computer vision and natural language processing based on Apache MXNet (incubating). These toolkits provide state-of-the-art pre-trained models, training scripts, and training logs, to facilitate rapid prototyping and promote reproducible research. We also provide modular APIs with flexible building blocks to enable efficient customization. Leveraging the MXNet ecosystem, the deep learning models in GluonCV and GluonNLP can be deployed onto a variety of platforms with different programming languages. The Apache 2.0 license has been adopted by GluonCV and GluonNLP to allow for software distribution, modification, and usage.




ces

Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes

We consider the problem of jointly estimating multiple inverse covariance matrices from high-dimensional data consisting of distinct classes. An $ell_2$-penalized maximum likelihood approach is employed. The suggested approach is flexible and generic, incorporating several other $ell_2$-penalized estimators as special cases. In addition, the approach allows specification of target matrices through which prior knowledge may be incorporated and which can stabilize the estimation procedure in high-dimensional settings. The result is a targeted fused ridge estimator that is of use when the precision matrices of the constituent classes are believed to chiefly share the same structure while potentially differing in a number of locations of interest. It has many applications in (multi)factorial study designs. We focus on the graphical interpretation of precision matrices with the proposed estimator then serving as a basis for integrative or meta-analytic Gaussian graphical modeling. Situations are considered in which the classes are defined by data sets and subtypes of diseases. The performance of the proposed estimator in the graphical modeling setting is assessed through extensive simulation experiments. Its practical usability is illustrated by the differential network modeling of 12 large-scale gene expression data sets of diffuse large B-cell lymphoma subtypes. The estimator and its related procedures are incorporated into the R-package rags2ridges.




ces

Dynamical Systems as Temporal Feature Spaces

Parametrised state space models in the form of recurrent networks are often used in machine learning to learn from data streams exhibiting temporal dependencies. To break the black box nature of such models it is important to understand the dynamical features of the input-driving time series that are formed in the state space. We propose a framework for rigorous analysis of such state representations in vanishing memory state space models such as echo state networks (ESN). In particular, we consider the state space a temporal feature space and the readout mapping from the state space a kernel machine operating in that feature space. We show that: (1) The usual ESN strategy of randomly generating input-to-state, as well as state coupling leads to shallow memory time series representations, corresponding to cross-correlation operator with fast exponentially decaying coefficients; (2) Imposing symmetry on dynamic coupling yields a constrained dynamic kernel matching the input time series with straightforward exponentially decaying motifs or exponentially decaying motifs of the highest frequency; (3) Simple ring (cycle) high-dimensional reservoir topology specified only through two free parameters can implement deep memory dynamic kernels with a rich variety of matching motifs. We quantify richness of feature representations imposed by dynamic kernels and demonstrate that for dynamic kernel associated with cycle reservoir topology, the kernel richness undergoes a phase transition close to the edge of stability.




ces

Ancestral Gumbel-Top-k Sampling for Sampling Without Replacement

We develop ancestral Gumbel-Top-$k$ sampling: a generic and efficient method for sampling without replacement from discrete-valued Bayesian networks, which includes multivariate discrete distributions, Markov chains and sequence models. The method uses an extension of the Gumbel-Max trick to sample without replacement by finding the top $k$ of perturbed log-probabilities among all possible configurations of a Bayesian network. Despite the exponentially large domain, the algorithm has a complexity linear in the number of variables and sample size $k$. Our algorithm allows to set the number of parallel processors $m$, to trade off the number of iterations versus the total cost (iterations times $m$) of running the algorithm. For $m = 1$ the algorithm has minimum total cost, whereas for $m = k$ the number of iterations is minimized, and the resulting algorithm is known as Stochastic Beam Search. We provide extensions of the algorithm and discuss a number of related algorithms. We analyze the properties of ancestral Gumbel-Top-$k$ sampling and compare against alternatives on randomly generated Bayesian networks with different levels of connectivity. In the context of (deep) sequence models, we show its use as a method to generate diverse but high-quality translations and statistical estimates of translation quality and entropy.




ces

Sparse and low-rank multivariate Hawkes processes

We consider the problem of unveiling the implicit network structure of node interactions (such as user interactions in a social network), based only on high-frequency timestamps. Our inference is based on the minimization of the least-squares loss associated with a multivariate Hawkes model, penalized by $ell_1$ and trace norm of the interaction tensor. We provide a first theoretical analysis for this problem, that includes sparsity and low-rank inducing penalizations. This result involves a new data-driven concentration inequality for matrix martingales in continuous time with observable variance, which is a result of independent interest and a broad range of possible applications since it extends to matrix martingales former results restricted to the scalar case. A consequence of our analysis is the construction of sharply tuned $ell_1$ and trace-norm penalizations, that leads to a data-driven scaling of the variability of information available for each users. Numerical experiments illustrate the significant improvements achieved by the use of such data-driven penalizations.




ces

Union of Low-Rank Tensor Spaces: Clustering and Completion

We consider the problem of clustering and completing a set of tensors with missing data that are drawn from a union of low-rank tensor spaces. In the clustering problem, given a partially sampled tensor data that is composed of a number of subtensors, each chosen from one of a certain number of unknown tensor spaces, we need to group the subtensors that belong to the same tensor space. We provide a geometrical analysis on the sampling pattern and subsequently derive the sampling rate that guarantees the correct clustering under some assumptions with high probability. Moreover, we investigate the fundamental conditions for finite/unique completability for the union of tensor spaces completion problem. Both deterministic and probabilistic conditions on the sampling pattern to ensure finite/unique completability are obtained. For both the clustering and completion problems, our tensor analysis provides significantly better bound than the bound given by the matrix analysis applied to any unfolding of the tensor data.




ces

Identifiability of Additive Noise Models Using Conditional Variances

This paper considers a new identifiability condition for additive noise models (ANMs) in which each variable is determined by an arbitrary Borel measurable function of its parents plus an independent error. It has been shown that ANMs are fully recoverable under some identifiability conditions, such as when all error variances are equal. However, this identifiable condition could be restrictive, and hence, this paper focuses on a relaxed identifiability condition that involves not only error variances, but also the influence of parents. This new class of identifiable ANMs does not put any constraints on the form of dependencies, or distributions of errors, and allows different error variances. It further provides a statistically consistent and computationally feasible structure learning algorithm for the identifiable ANMs based on the new identifiability condition. The proposed algorithm assumes that all relevant variables are observed, while it does not assume faithfulness or a sparse graph. Demonstrated through extensive simulated and real multivariate data is that the proposed algorithm successfully recovers directed acyclic graphs.




ces

Access thousands of newspapers and magazines with PressReader

Want to access thousands of newspapers and magazines wherever you are?




ces

Town Notices




ces

Symmetrical and asymmetrical mixture autoregressive processes

Mohsen Maleki, Arezo Hajrajabi, Reinaldo B. Arellano-Valle.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 273--290.

Abstract:
In this paper, we study the finite mixtures of autoregressive processes assuming that the distribution of innovations (errors) belongs to the class of scale mixture of skew-normal (SMSN) distributions. The SMSN distributions allow a simultaneous modeling of the existence of outliers, heavy tails and asymmetries in the distribution of innovations. Therefore, a statistical methodology based on the SMSN family allows us to use a robust modeling on some non-linear time series with great flexibility, to accommodate skewness, heavy tails and heterogeneity simultaneously. The existence of convenient hierarchical representations of the SMSN distributions facilitates also the implementation of an ECME-type of algorithm to perform the likelihood inference in the considered model. Simulation studies and the application to a real data set are finally presented to illustrate the usefulness of the proposed model.